Fibrin Glues: Proteins, Mechanism of Action, Classification, and Application
Abstract
1. Introduction
2. Variety of Fibrin Glues
| Name | Manufacturer | Pharmaceutical Form and Presentation | Active Constituents | Foreignness of Major Components | Polymerisation Time | Storage Conditions | Shelf Life |
|---|---|---|---|---|---|---|---|
| Hemaseel™ [22] | Heamacure Corp., Westmount, Canada | Consists of two ingredients: a clotting protein containing mainly fibrinogen, and a thrombin component. | No. 1 is a clotting protein from bovine blood; No. 2 is a processed commercial thrombin medication. | Xeno- | No public data | No public data | No public data |
| BIOSEAL [29] | Ethicon, Inc., Guangzhou Bioseal Biotechnology Co., Ltd., Gaopu Road, Tianhe District, China | Fibrin sealant based on porcine plasma, consisting of thrombin and fibrinogen. | No. 1 is fibrinogen from porcine plasma; No. 2 is thrombin from porcine plasma. | Xeno- | No public data | No public data | No public data |
| Vivostat® [32] | Vivostat A/S, Alleroed, Denmark | A fully automated, closed system for fibrin glue preparation from the patient’s blood. | No. 1 is a fibrin solution from the patient’s blood plasma; No. 2 is a buffer solution (manufacturer does not disclose the composition). | Auto- | 2 min | From −18 °C to −25 °C | Up to 5 weeks |
| CRYOSEAL® FS SYSTEM [33] | ThermoGenesis Corp., Rancho Cordova, CA, USA | Medical device that simultaneously produces cryoprecipitate and thrombin from a sample of autologous plasma. When the components are mixed, they form fibrin sealant. | No. 1 is a cryoprecipitate from the patient’s blood plasma; No. 2 is thrombin from the patient’s blood plasma. | Auto- | 3–5 min | From +34 °C to +37 °C | Up to 6 h |
| VISTASEAL™ [34] | Ethicon, Inc., INSTITUTO GRIFOLS, S.A., Barcelona, Spain | Frozen, pre-filled syringes with components No. 1 and No. 2, combined in a single-use carrier. | No. 1 is a sterile solution with pH 6.5–8.0. Active ingredient: human fibrinogen (80 mg/mL). Auxiliary ingredients: sodium citrate, sodium chloride, arginine, L-isoleucine, L-glutamic acid, monosodium, and water for injection. No. 2 is a sterile solution with pH 6.0–8.0. Active ingredient: human thrombin (500 IU/mL). Auxiliary ingredients: calcium chloride, human albumin, sodium chloride, glycine, and water for injection. | Allo- | 2–4 min | −18 °C or colder | Up to 2 years |
| Evicel ® [35] | Omrix Biopharmaceuticals Ltd., Nes Ziyyona, Israel | Package containing vials of frozen components No. 1 and No. 2. Modular application device. | No. 1 is a sterile solution, pH 6.7–7.2. Active ingredient: human fibrinogen concentrate (55–85 mg/mL). Auxiliary ingredients: arginine hydrochloride, glycine, sodium chloride, sodium citrate, calcium chloride, water for injection; No. 2 is a sterile solution, pH 6.8–7.2. Active ingredient: human thrombin (800–1200 IU/mL). Auxiliary ingredients: calcium chloride, human albumin, mannitol, sodium acetate, water for injection. | Allo- | 4–6 min | −18 °C or colder | Up to 2 years |
| Tissucol® Kit [36] | Baxter, AG, Vienna, Austria | Set of lyophilised components No. 1 and No. 2, solvents for the components, Duploject spraying system for fibrin glue application. | No. 1 is lyophilized Tissucol powder and aprotinin solution as a solvent; No. 2 is lyophilized thrombin of various concentrations (4 IU and 500 IU) and calcium chloride solution as a solvent | Allo- | 40–60 s | From +2 °C to +8 °C | 2.5 years |
| TISSEEL Kit [37] | Baxter Inc., Deerfield, Illinois, USA | Frozen, pre-filled syringes with components No. 1 and No. 2, complete with the Duploject spraying system. | No. 1—Active ingredients: fibrinogen (72 mg/mL), factor XIII (1.2 IU/mL), aprotinin (3000 KIU/mL). Auxiliary ingredients: human albumin, trisodium citrate, histidine, niacinamide, polysorbate, water for injection; No. 2—Active ingredients: thrombin (400 IU/mL), calcium chloride (36 micromoles/mL). Auxiliary ingredients: human albumin, sodium chloride, water for injection. | Allo- | 4–5 min | −20 °C or colder | 2 years |
| BERIPLAST P COMBI-SET [38] | CSL Behring GmbH, Hattersheim am Main, Germany | Supplied as a powder and solvent. Administration kit: sterile disposable tuberculin syringes, Pantaject application kit, sprayers and cannulas. | Vial 1: Concentrate: fibrinogen 90 mg/mL, Auxiliary ingredients: factor XIII (60 IU/mL), human albumin, L-arginine, L-isoleucine, sodium chloride, sodium citrate dihydrate, sodium L-glutamate monohydrate. Vial 2: Solvent: bovine lung aprotinin 1000 KI (kallikrein inactivator unit), sodium chloride, water for injection. Vial 3: Concentrate: thrombin 500 IU/mL, sodium chloride, sodium citrate dihydrate. Vial 4: Solvent: calcium chloride dihydrate, water for injection. | Allo- Xeno- | Not specified | From +2 °C to +8 °C | 2 years |
| KRIOFIT medical glue [39] | LLC “PLASMA-FTK”, Moscow, Russia | Set to prepare two-component fibrin-thrombin glue: a cassette of two syringes with a common plunger. | No. 1 is a donor plasma fraction containing concentrated fibrinogen; No. 2 is activated thrombin. | Allo- | Not specified | −18 °C or colder | 1 year |
3. Sources and Techniques for Obtaining the Key Fibrin Glue Components—Fibrinogen and Thrombin
3.1. Fibrinogen
3.2. Thrombin
4. Mechanisms of Interaction Between Fibrin Glue Components and the Potential for Further Modifications
5. Fibrin Glues—Experimental Studies
6. Fibrin Glues in Clinical Practice
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FG | Fibrin glue |
| FS | Fibrin sealant |
| FA | Fibrin adhesive |
| BAS | Biologically active substances |
| TAFI | Thrombin-activatable fibrinolysis inhibitor |
References
- Smilowitz, N.R.; Ruetzler, K.; Berger, J.S. Perioperative Bleeding and Outcomes after Noncardiac Surgery. Am. Heart J. 2023, 260, 26–33. [Google Scholar] [CrossRef]
- Roshanov, P.S.; Eikelboom, J.W.; Sessler, D.I.; Kearon, C.; Guyatt, G.H.; Crowther, M.; Tandon, V.; Borges, F.K.; Lamy, A.; Whitlock, R.; et al. Bleeding Independently Associated with Mortality after Noncardiac Surgery (BIMS): An International Prospective Cohort Study Establishing Diagnostic Criteria and Prognostic Importance. Br. J. Anaesth. 2021, 126, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Siech, C.; Baudo, A.; de Angelis, M.; Jannello, L.M.I.; Di Bello, F.; Goyal, J.A.; Tian, Z.; Saad, F.; Shariat, S.F.; Longo, N.; et al. Perioperative Complications and In-Hospital Mortality in Radical Cystectomy Patients with Heart-Valve Replacement. Eur. J. Surg. Oncol. 2024, 50, 108297. [Google Scholar] [CrossRef]
- Dinkova, A.; Petrov, P.; Shopova, D.; Daskalov, H.; Harizanova, S. Biomaterial-Based and Surgical Approaches to Local Hemostasis in Contemporary Oral Surgery: A Narrative Review. J. Funct. Biomater. 2025, 16, 190. [Google Scholar] [CrossRef] [PubMed]
- Umedov, X.A. Intraoperative Surgical Hemostasis Tactics in Case of Combined Injuries of Parenchymal Organs Abdominal Cavity. Am. J. Med. Med. Sci. 2024, 14, 110–114. Available online: http://article.sapub.org/10.5923.j.ajmms.20241401.25.html (accessed on 2 September 2025).
- Halme, A.L.E.; Roshanov, P.S.; Tornberg, S.V.; Lavikainen, L.I.; Devereaux, P.J.; Tikkinen, K.A.O. Timing of Major Postoperative Bleeding Among Patients Undergoing Surgery. JAMA Netw. Open 2024, 7, e244581. [Google Scholar] [CrossRef]
- Senage, T.; Gerrard, C.; Moorjani, N.; Jenkins, D.P.; Ali, J.M. Early Postoperative Bleeding Impacts Long-Term Survival Following First-Time on-Pump Coronary Artery Bypass Grafting. J. Thorac. Dis. 2021, 13, 5670–5682. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, K.; Kang, G.; Lee, S.W.; Park, C.M.; Cho, J.; Choi, J.W.; Park, S.J.; Kang, M.; Kim, T.J.; et al. Risk of Postoperative Gastrointestinal Bleeding and Its Associated Factors: A Nationwide Population-Based Study in Korea. J. Pers. Med. 2021, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Lopezcarasa-Hernandez, G.; Perez-Vazquez, J.F.; Guerrero-Naranjo, J.L.; Martinez-Castellanos, M.A. Versatility of Use of Fibrin Glue in Wound Closure and Vitreo-Retinal Surgery. Int. J. Retin. Vitr. 2021, 7, 33. [Google Scholar] [CrossRef]
- Feltrin De Barros, G.; Susanna, B.N.; Brito, L.; Lima, V.L.; Moscovici, B.K. Results of Fibrin Glue Applied over the Corneal Surface Immediately after Pterygium Surgery: A Novel Pain Relief Technique. Cornea 2023, 42, 1327–1331. [Google Scholar] [CrossRef]
- Desai, A.; Hansraj, S.; Tyagi, M. Intraocular Bioadhesives in Vitreoretinal Surgeries: A Systematic Review. Semin. Ophthalmol. 2024, 39, 570–576. [Google Scholar] [CrossRef]
- Zheng, K.; Gu, Q.; Zhou, D.; Zhou, M.; Zhang, L. Recent Progress in Surgical Adhesives for Biomedical Applications. Smart Mater. Med. 2022, 3, 41–65. [Google Scholar] [CrossRef]
- Dhandapani, V.; Ringuette, V.; Desrochers, M.; Sirois, M.; Vermette, P. Composition, Host Responses and Clinical Applications of Bioadhesives. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2779–2797. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Zakrzewski, W.; Szymonowicz, M.; Rybak, Z. Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. Materials 2022, 15, 5215. [Google Scholar] [CrossRef]
- Beudert, M.; Gutmann, M.; Lühmann, T.; Meinel, L. Fibrin Sealants: Challenges and Solutions. ACS Biomater. Sci. Eng. 2022, 8, 2220–2231. [Google Scholar] [CrossRef]
- Ortiz, A.d.C.; Fideles, S.O.M.; Pomini, K.T.; Reis, C.H.B.; Bueno, C.R.d.S.; Pereira, E.d.S.B.M.; Rossi, J.d.O.; Novais, P.C.; Pilon, J.P.G.; Junior, G.M.R.; et al. Effects of Therapy with Fibrin Glue Combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells 2021, 10, 2323. [Google Scholar] [CrossRef]
- Jackson, M.R. Fibrin Sealants in Surgical Practice: An Overview. Am. J. Surg. 2001, 182, S1–S7. [Google Scholar] [CrossRef]
- Nguyen, M.; Tran, L.; Foreman, A.; Lockwood, C. The Effectiveness of Fibrin Sealants in Head and Neck Surgery: A Systematic Review and Meta-Analysis. Syst. Rev. 2024, 13, 246. [Google Scholar] [CrossRef]
- Global Human Fibrin Glue Market Analysis-Industry Size, Share, Research Report, Insights, COVID-19 Impact, Statistics, Trends, Growth and Forecast 2025–2034|Size, Share, Growth. Available online: https://markwideresearch.com/global-human-fibrin-glue-market/ (accessed on 2 September 2025).
- Fibrin Glue Market Size & Forecast, 2025–2035. Available online: https://www.futuremarketinsights.com/reports/fibrin-glue-market (accessed on 2 September 2025).
- Global Human Fibrin Glue Market–Industry Trends and Forecast to 2029. Available online: https://www.databridgemarketresearch.com/reports/global-human-fibrin-glue-market (accessed on 28 December 2025).
- Brodniewicz, T.; Bui-Khac, T.; Emire, P.; Rudnicka, K.; Nowotarski, M. Veterinary Hemaseel®: Ex Vivo and in Vivo Studies on Bovine Fibrin Sealant. In Surgical Adhesives & Sealants; CRC Press: Boca Raton, FL, USA, 2020; pp. 91–96. [Google Scholar] [CrossRef]
- Cierniewski, C.S.; Pluskota, E.; Cieslak, M.; Brodniewicz, T.; Nowotarski, M. Antigenic Properties of Fibrinogen Component of HemaseelTM HMN Subjected to the Antiviral Severe Dry Heat Treatment. Thromb. Res. 1996, 82, 349–359. [Google Scholar] [CrossRef]
- Meek, K.; De Virgilio, C.; Murrell, Z.; Karamatsu, M.; Stabile, B.; Amin, S.; Sandoval, M.; French, S.; Pierre, K. Inhibition of Intra-Abdominal Adhesions: A Comparison of Hemaseel APR and Cryoprecipitate Fibrin Glue. J. Investig. Surg. 2001, 14, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, H.; Brodniewicz, T.; Auger, F.A.; Germain, L. Cultured Epidermal Sheet Grafting with HemaseelTM HMN Fibrin Sealant on Nude Mice. Burns 1996, 22, 191–196. [Google Scholar] [CrossRef]
- Bioseal Fibrin Sealant and Manual Compression in Hemorrhage and Cardiovascular Bleeding and Vascular Bleeding—Clinical Trials Registry—ICH GCP. Available online: https://ichgcp.net/clinical-trials-registry/NCT02094885 (accessed on 2 September 2025).
- Fibrin Tissue Adhesive and Bioseal Fibrin Sealant and Standard of Care (SoC) in Hemostasis and Meningioma Surgery—Clinical Trials Registry—ICH GCP. Available online: https://ichgcp.net/clinical-trials-registry/NCT02034799 (accessed on 2 September 2025).
- Porcine Fibrin Sealant (PFS) and Surgery in Esophageal Cancer and Anastomotic Leak and Gastroesophageal Junction Cancer—Clinical Trials Registry—ICH GCP. Available online: https://ichgcp.net/clinical-trials-registry/NCT03529266 (accessed on 3 September 2025).
- Porcine Fibrin Sealant (PFS) and McKeown Esophagectomy in Esophageal Anastomotic Leak—Clinical Trials Registry—ICH GCP. Available online: https://ichgcp.net/clinical-trials-registry/NCT03847857 (accessed on 3 September 2025).
- Anitua, E.; Pino, A.; Prado, R.; Muruzabal, F.; Alkhraisat, M.H. Biochemical and Biomechanical Characterization of an Autologous Protein-Based Fibrin Sealant for Regenerative Medicine. J. Mater. Sci. Mater. Med. 2024, 35, 15. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Muruzabal, F.; Prado, R.; Pino, A.; Tierno, R.; Persinal-Medina, M.; Alkhraisat, M.H.; Merayo-Lloves, J. Biological and Adhesive Properties of an Autologous Protein-Based Fibrin Sealant for Ophthalmological Applications. Transl. Vis. Sci. Technol. 2023, 12, 32. [Google Scholar] [CrossRef]
- Vivostat, Full Prescribing Information, Allerød, Hovedstaden, Denmark. Available online: https://vivostat.com/user-guides/ (accessed on 3 September 2025).
- CryoSeal-FS-System, Full Prescribing Information, ThermoGenesis Corp, Kilgore Rd., Rancho Cordova. Available online: https://www.fda.gov/media/73860/download (accessed on 3 September 2025).
- VISTASEAL, Full Prescribing Information, Instituto Grifols, S.A., Barcelona, Spain. Available online: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/vistaseal (accessed on 3 September 2025).
- EVICEL, Full Prescribing Information, OMRIX Biopharmaceuticals Ltd, Patheon Italia S.p.A., Instituto Grifols S.A. Available online: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/evicel (accessed on 3 September 2025).
- Tissucol® Kit, Full Prescribing Information, BAXTER, AG Austria. Available online: https://www.vidal.ru/drugs/tissucol_kit__25206?ysclid=miczoy1xpm201316422 (accessed on 3 September 2025).
- TISSEEL KIT, Full Prescribing Information, BAXTER, Baxter International Inc., U.S.A. Available online: https://www.baxter.com/healthcare-professionals/surgical-care/tisseel-fibrin-sealant (accessed on 3 September 2025).
- Beriplast® P Combi-Set. CSL Behring GmbH, Germany. Available online: https://avindarou.ir/product/beriplast-p-combi-set-fibrin-sealant-kit/ (accessed on 3 September 2025).
- Medical Glue “KRIOFIT”, Full Prescribing Information, Plasma FTK, Moscow, Zelenograd. Available online: https://kriofit.ru/medicinskiy-kley/instrukciya (accessed on 3 September 2025).
- de Melo, B.A.G.; Jodat, Y.A.; Cruz, E.M.; Benincasa, J.C.; Shin, S.R.; Porcionatto, M.A. Strategies to Use Fibrinogen as Bioink for 3D Bioprinting Fibrin-Based Soft and Hard Tissues. Acta Biomater. 2020, 117, 60–76. [Google Scholar] [CrossRef]
- Litvinov, R.I.; Weisel, J.W. Not Fibrin(Ogen), but Fibrinogen or Fibrin. Blood 2015, 126, 1977–1978. [Google Scholar] [CrossRef]
- Qiu, L.L.; Levinson, S.S.; Keeling, K.L.; Elin, R.J. Convenient and Effective Method for Removing Fibrinogen from Serum Specimens before Protein Electrophoresis. Clin. Chem. 2003, 49, 868–872. [Google Scholar] [CrossRef]
- Dietrich, M.; Heselhaus, J.; Wozniak, J.; Weinandy, S.; Mela, P.; Tschoeke, B.; Schmitz-Rode, T.; Jockenhoevel, S. Fibrin-Based Tissue Engineering: Comparison of Different Methods of Autologous Fibrinogen Isolation. Tissue Eng. Part C Methods 2013, 19, 216–226. [Google Scholar] [CrossRef]
- Pace, C.N.; Treviño, S.; Prabhakaran, E.; Scholtz, J.M.; Franks, F.; Wilson, K.; Daniel, R.M.; Halling, P.J.; Clark, D.S.; Purkiss, A. Protein Structure, Stability and Solubility in Water and Other Solvents. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1225–1235. [Google Scholar] [CrossRef]
- Vila, V.; Regañón, E.; Llopis, F.; Aznar, J. A Rapid Method for Isolation of Fibrinogen from Human Plasma by Precipitation with Polyethylene Glycol 6000. Thromb. Res. 1985, 39, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Goczyńska, P.; Lasocka, J.; Lachert, E. Fibrin Glues—The Current State of Knowledge. J. Transfus. Med. 2021, 14, 214–224. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Dare, E.V.; Hincke, M. Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2008, 14, 199–215. [Google Scholar] [CrossRef]
- Callum, J.L.; Karkouti, K.; Lin, Y. Cryoprecipitate: The Current State of Knowledge. Transfus. Med. Rev. 2009, 23, 177–188. [Google Scholar] [CrossRef]
- DePalma, L.; Criss, V.R.; Luban, N.L. The Preparation of Fibrinogen Concentrate for Use as Fibrin Glue by Four Different Methods. Transfusion 1993, 33, 717–720. [Google Scholar] [CrossRef]
- Kovacic Krizanic, K.; Prüller, F.; Rosskopf, K.; Payrat, J.M.; Andresen, S.; Schlenke, P. Preparation and Storage of Cryoprecipitate Derived from Amotosalen and UVA-Treated Apheresis Plasma and Assessment of In Vitro Quality Parameters. Pathogens 2022, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.F.; Letassy, N.A.; Thompson, G.D. Fibrin Glue: A Review of Its Preparation, Efficacy, and Adverse Effects as a Topical Hemostat. Drug Intell. Clin. Pharm. 1988, 22, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S. Multifunctional Roles of Thrombin. Ann. Clin. Lab. Sci. 1999, 29, 275–280. [Google Scholar]
- Aizawa, P.; Winge, S.; Karlsson, G. Large-Scale Preparation of Thrombin from Human Plasma. Thromb. Res. 2008, 122, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Mölndal, A.H.; Mölndal, A.L. Method for Production of Recombinant Human Thrombin. U.S. Patent 8,206,967 B2, 26 June 2012. [Google Scholar]
- Kumar, V.; Chapman, J.R. Whole Blood Thrombin: Development of a Process for Intra-Operative Production of Human Thrombin. J. ExtraCorpor. Technol. 2007, 39, 18. [Google Scholar] [CrossRef]
- Harrysson, A.; Lovgren, A. Method for Preparation of Thrombin. J.P. Patent No. JP 6359495B2, 18 July 2018. [Google Scholar]
- Weisel, J.W.; Litvinov, R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017, 82, 405. [Google Scholar] [CrossRef]
- Butera, D.; Hogg, P.J. Protein Function Achieved through Multiple Covalent States. bioRxiv 2019. [Google Scholar] [CrossRef]
- Kattula, S.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Asquith, N.L.; Duval, C.; Zhmurov, A.; Baker, S.R.; McPherson, H.R.; Domingues, M.M.; Connell, S.D.A.; Barsegov, V.; Ariëns, R.A.S. Fibrin Protofibril Packing and Clot Stability Are Enhanced by Extended Knob-Hole Interactions and Catch-Slip Bonds. Blood Adv. 2022, 6, 4015–4027. [Google Scholar] [CrossRef] [PubMed]
- Valnickova, Z.; Enghild, J.J. Human Procarboxypeptidase U, or Thrombin-Activable Fibrinolysis Inhibitor, Is a Substrate for Transglutaminases: Evidence for Transglutaminase-Catalyzed Cross-Linking to Fibrin. J. Biol. Chem. 1998, 273, 27220–27224. [Google Scholar] [CrossRef]
- Bayer, I.S. Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022, 27, 4504. [Google Scholar] [CrossRef]
- Sobel, J.H.; Gawinowicz, M.A. Identification of the α Chain Lysine Donor Sites Involved in Factor XIII(a) Fibrin Cross-Linking. J. Biol. Chem. 1996, 271, 19288–19297. [Google Scholar] [CrossRef]
- Alshehri, F.S.M.; Whyte, C.S.; Mutch, N.J. Factor XIII-A: An Indispensable “Factor” in Haemostasis and Wound Healing. Int. J. Mol. Sci. 2021, 22, 3055. [Google Scholar] [CrossRef]
- Marguerie, G. The Binding of Calcium to Fibrinogen: Some Structural Features. BBA Protein Struct. 1977, 494, 172–181. [Google Scholar] [CrossRef]
- Hense, D.; Strube, O.I. Fibrillogenesis and Hydrogel Formation from Fibrinogen Induced by Calcium Salts. Gels 2023, 9, 175. [Google Scholar] [CrossRef]
- Singh, S.; Dodt, J.; Volkers, P.; Hethershaw, E.; Philippou, H.; Ivaskevicius, V.; Imhof, D.; Oldenburg, J.; Biswas, A. Structure Functional Insights into Calcium Binding during the Activation of Coagulation Factor XIII A. Sci. Rep. 2019, 9, 11324. [Google Scholar] [CrossRef]
- Marx, P.F.; Havik, S.R.; Bouma, B.N.; Meijers, J.C.M. Role of Isoleucine Residues 182 and 183 in Thrombin-Activatable Fibrinolysis Inhibitor. J. Thromb. Haemost. 2005, 3, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Malloy, B.E.; Tsai, S.P.; Henzel, W.; Drayna, D. Isolation, Molecular Cloning, and Partial Characterization of a Novel Carboxypeptidase B from Human Plasma. J. Biol. Chem. 1991, 266, 21833–21838. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P.J. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 3670. [Google Scholar] [CrossRef]
- Valnickova, Z.; Thaysen-Andersen, M.; Højrup, P.; Christensen, T.; Sanggaard, K.W.; Kristensen, T.; Enghild, J.J. Biochemical Characterization of Bovine Plasma Thrombin-Activatable Fibrinolysis Inhibitor (TAFI). BMC Biochem. 2009, 10, 13. [Google Scholar] [CrossRef]
- Ząbczyk, M.; Ariëns, R.A.S.; Undas, A. Fibrin Clot Properties in Cardiovascular Disease: From Basic Mechanisms to Clinical Practice. Cardiovasc. Res. 2023, 119, 94–111. [Google Scholar] [CrossRef]
- Kanno, Y. α 2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life 2022, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Neves, M.A.D.; Wu, C.; Cerroni, S.E.; Flick, M.J.; Ni, H.; Weitz, J.I.; Gross, P.L.; Kim, P.Y.; Sciences, M.; et al. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrin-dependent plasmin generation on thrombin-activated platelets. J. Thromb. Haemost. 2021, 18, 2364–2376. [Google Scholar] [CrossRef] [PubMed]
- Traub, J.; Weber, M.S.; Frey, A. Differential Role of Factor XIII in Acute Myocardial Infarction and Ischemic Stroke. Biomedicines 2024, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Castellino, F.J.; Gong, Y. Critical Role for Conversion of Glu-Plasminogen to Lys-Plasminogen for Optimal Stimulation of Plasminogen Activation on Cell Surfaces. Trends Cardiovasc. Med. 2003, 13, 21–30. [Google Scholar] [CrossRef]
- Schneider, M.; Nesheim, M. A Study of the Protection of Plasmin from Antiplasmin Inhibition within an Intact Fibrin Clot during the Course of Clot Lysis. J. Biol. Chem. 2004, 279, 13333–13339. [Google Scholar] [CrossRef]
- Cholewinski, E.; Dietrich, M.; Flanagan, T.C.; Schmitz-Rode, T.; Jockenhoevel, S. Tranexamic Acid-an Alternative to Aprotinin in Fibrin-Based Cardiovascular Tissue Engineering. Tissue Eng. Part A 2009, 15, 3645–3653. [Google Scholar] [CrossRef]
- Martino, M.M.; Briquez, P.S.; Ranga, A.; Lutolf, M.P.; Hubbell, J.A. Heparin-Binding Domain of Fibrin(Ogen) Binds Growth Factors and Promotes Tissue Repair When Incorporated within a Synthetic Matrix. Proc. Natl. Acad. Sci. USA 2013, 110, 4563–4568. [Google Scholar] [CrossRef]
- Panetti, T.S.; Kudryk, B.J.; Mosher, D.F. Interaction of Recombinant Procollagen and Properdin Modules of Thrombospondin-1 with Heparin and Fibrinogen/Fibrin. J. Biol. Chem. 1999, 274, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Spicer, P.P.; Mikos, A.G. Fibrin Glue as a Drug Delivery System. J. Control. Release 2010, 148, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Ny, L.; Wilczynska, M.; Shen, Y.; Ny, T.; Parmer, R.J. Plasminogen Receptors and Fibrinolysis. Int. J. Mol. Sci. 2021, 22, 1712. [Google Scholar] [CrossRef]
- Mosnier, L.O.; Bouma, B.N. Regulation of Fibrinolysis by Thrombin Activatable Fibrinolysis Inhibitor, an Unstable Carboxypeptidase B That Unites the Pathways of Coagulation and Fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2445–2453. [Google Scholar] [CrossRef]
- Walker, J.B.; Bajzar, L. The Intrinsic Threshold of the Fibrinolytic System Is Modulated by Basic Carboxypeptidases, but the Magnitude of the Antifibrinolytic Effect of Activated Thrombin-Activable Fibrinolysis Inhibitor Is Masked by Its Instability. J. Biol. Chem. 2004, 279, 27896–27904. [Google Scholar] [CrossRef] [PubMed]
- Siedentop, K.H.; Harris, D.M.; Ham, K.; Sanchiez, B. Extended Experimental and Preliminary Surgical Findings with Autologous Fibrin Tissue Adhesive Made from Patient’s Own Blood. Laryngoscope 1986, 96, 1062–1064. [Google Scholar] [CrossRef]
- Marx, G.; Mou, X. Characterizing Fibrin Glue Performance as Modulated by Heparin, Aprotinin, and Factor XIII. J. Lab. Clin. Med. 2002, 140, 152–160. [Google Scholar] [CrossRef]
- Carter, G.; Goss, A.; Lloyd, J.; Tocchetti, R. Tranexamic Acid Mouthwash Versus Autologous Fibrin Glue in Patients Taking Warfarin Undergoing Dental Extractions: A Randomized Prospective Clinical Study. J. Oral Maxillofac. Surg. 2003, 61, 1432–1435. [Google Scholar] [CrossRef]
- Fenger-Eriksen, C.; Lindholm, A.D.A.; Krogh, L.; Hell, T.; Berger, M.; Hermann, M.; Fries, D.; Juul, N.; Rasmussen, M.; Hvas, A.M. Effect of Tranexamic Acid on Coagulation and Fibrin Clot Properties in Children Undergoing Craniofacial Surgery. Thromb. Haemost. 2020, 120, 392–399. [Google Scholar] [CrossRef]
- Jeon, O.; Soo, H.R.; Ji, H.C.; Kim, B.S. Control of Basic Fibroblast Growth Factor Release from Fibrin Gel with Heparin and Concentrations of Fibrinogen and Thrombin. J. Control. Release 2005, 105, 249–259. [Google Scholar] [CrossRef]
- Squires, R. Fibrin-Sealant-as-a-Delivery-Vehicle-for-Cells-Antibiotics-Growth-Factors-and-Painkillers. J. Appl. Biotechnol. Bioeng. 2023, 10, 56–64. [Google Scholar] [CrossRef]
- Totty, J.P.; Moss, J.W.E.; Barker, E.; Mealing, S.J.; Posnett, J.W.; Chetter, I.C.; Smith, G.E. The Impact of Surgical Site Infection on Hospitalisation, Treatment Costs, and Health-Related Quality of Life after Vascular Surgery. Int. Wound J. 2021, 18, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. JAMA 2023, 329, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Kobayashi, N.; Ide, M.; Uchino, Y.; Inoue, T.; Inaba, Y. The Effect of Local Administration of Vancomycin Suspended in Fibrin Glue for Prevention of Surgical Site Infection After Spinal Instrumentation: Comparison by Probability of Treatment Weighting Model. Spine 2023, 48, 384–390. [Google Scholar] [CrossRef]
- Strickland, A.D.; Lang, C.; Manhartseder, S.; Reichsoellner, R.; Valliant, E.; Schädl, B.; Gulle, H.; Slezak, P. In Vitro and Ex Vivo Assessments of the Compatibility of Fibrin Sealant with Antimicrobial Compounds. Surg. Infect. 2023, 24, 82–90. [Google Scholar] [CrossRef]
- Kram, H.B.; Bansal, M.; Timberlake, O.; Shoemaker, W.C. Antibacterial Effects of Fibrin Glue-Antibiotic Mixtures. J. Surg. Res. 1991, 50, 175–178. [Google Scholar] [CrossRef]
- Nguyen Doan, V.; Thanh Truong, T.; Bao Tran, H. LE Development of Local Vancomycin Delivery System from Fibrin Gel to Prevent Staphylococcus Aureus Biofilms Graft Infection. J. Biosci. 2020, 45, 124. [Google Scholar] [CrossRef]
- Thompson, D.F.; Davis, T.W. The Addition of Antibiotics to Fibrin Glue. South. Med. J. 1997, 90, 681–684. [Google Scholar] [CrossRef]
- Heher, P.; Mühleder, S.; Mittermayr, R.; Redl, H.; Slezak, P. Fibrin-Based Delivery Strategies for Acute and Chronic Wound Healing. Adv. Drug Deliv. Rev. 2018, 129, 134–147. [Google Scholar] [CrossRef]
- Ahmad, E.; Fatima, M.T.; Hoque, M.; Owais, M.; Saleemuddin, M. Fibrin Matrices: The Versatile Therapeutic Delivery Systems. Int. J. Biol. Macromol. 2015, 81, 121–136. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, H.; Feng, X.; Liang, X.; Wei, D.; Xia, T.; Yang, B.; Yan, L.; Zhao, X.; Liu, H. Mesenchymal Stem Cell Secretome-Loaded Fibrin Glue Improves the Healing of Intestinal Anastomosis. Front. Bioeng. Biotechnol. 2023, 11, 1103709. [Google Scholar] [CrossRef]
- Fujioka-Kobayashi, M.; Mottini, M.; Kobayashi, E.; Zhang, Y.; Schaller, B.; Miron, R.J. An in Vitro Study of Fibrin Sealant as a Carrier System for Recombinant Human Bone Morphogenetic Protein (RhBMP)–9 for Bone Tissue Engineering. J. Cranio-Maxillofac. Surg. 2017, 45, 27–32. [Google Scholar] [CrossRef]
- Abdelkader, A. Effect of Fibrin Glue on Corneal Lamellar Healing and How It Correlates to Biomechanical Properties: Biomechanical Wavefront Analysis and Confocal Study. Eye Vis. 2016, 3, 15. [Google Scholar] [CrossRef]
- Akhter, E.T.; Rotterman, T.M.; English, A.W.; Alvarez, F.J. Sciatic Nerve Cut and Repair Using Fibrin Glue in Adult Mice. Bio-Protocol 2019, 9, e3363. [Google Scholar] [CrossRef]
- Zabbia, G.; Toia, F.; Coppola, F.; Cassata, G.; Cicero, L.; Giglia, G.; Puleio, R.; Cordova, A. Nerve Regeneration after a Nerve Graft in a Rat Model: The Effectiveness of Fibrin Glue. J. Pers. Med. 2024, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer-Schmid, M.; Aman, M.; Panayi, A.C.; Raasveld, F.V.; Kneser, U.; Eberlin, K.R.; Harhaus, L.; Böcker, A. Fibrin Glue Coating Limits Scar Tissue Formation around Peripheral Nerves. Int. J. Mol. Sci. 2024, 25, 3687. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.R.; Maxwell, E.A.; Gallagher, A.E.; Portela, D.A. Endoscopic Application of Fibrin Glue May Be a Feasible Method of Treatment for Postintubation Tracheal Lacerations in Cats. Am. J. Vet. Res. 2023, 84, ajvr.22.08.0137. [Google Scholar] [CrossRef]
- de Oliveira, C.T.B.; Leonel, B.C.; de Oliveira, A.C.; de Brito Paiva, M.; Ramos, J.; Barraviera, B.; Ferreira Junior, R.S.; Shimano, A.C. Effects of Fibrin Sealant and Bone Fragments on Defect Regeneration Performed on Rat Tibiae: An Experimental Study. J. Mech. Behav. Biomed. Mater. 2020, 104, 103662. [Google Scholar] [CrossRef] [PubMed]
- Dejyong, K.; Kaewamatawong, T.; Brikshavana, P.; Durongphongtorn, S. Efficacy of Bubaline Fibrin Glue on Full-Thickness Pinch and Punch Skin Grafting in a Pig. J. Biomater. Appl. 2017, 31, 1215–1224. [Google Scholar] [CrossRef]
- Stergios, K.; Frountzas, M.; Pergialiotis, V.; Korou, L.M.; Kontzoglou, K.; Stefanidis, K.; Nikiteas, N.; Perrea, D.N.; Vaos, G. The Effect of TISSEEL® on Colorectal Anastomosis Healing Process in a Diabetic Animal Experimental Model. In Vivo 2020, 34, 659–665. [Google Scholar] [CrossRef]
- Frountzas, M.; Pergialiotis, V.; Stergios, K.; Nikolaou, C.; Katafygiotis, P.; Lazaris, A.C.; Schizas, D.; Perrea, D.N.; Nikiteas, N.; Toutouzas, K.G. The Effect of TISSEELTM on Confined Bowel Perforation: An Experimental Study. Eur. Surg. Res. 2021, 62, 151–160. [Google Scholar] [CrossRef]
- Luckanahasaporn, S.; Tharasanit, T.; Briksawan, P.; Durongphongthron, S. Hemostatic Efficacy of Sheep-Derived Fibrin Glue for Liver Biopsy in Swine. Thai J. Vet. Med. 2018, 48, 559–565. [Google Scholar] [CrossRef]
- Nikolaou, C.; Frountzas, M.; Schizas, D.; Pergialiotis, V.; Kapetanakis, E.I.; Kontzoglou, K.; Perrea, D.N.; Koniaris, E.; Kykalos, S.; Iliopoulos, D. Could Fibrin Sealants (TISSEELTM) Be Effective in the Management of Burn Injuries? A Histopathological Study in Rats. Med. Sci. 2024, 12, 75. [Google Scholar] [CrossRef]
- Maleki, M.H.; Tashnizi, M.A.; Shahri, H.M.M.; Emadi, E.; Alamdari, D.H.; Sahebkar, A. Persistent Pneumothorax Treatment Following Congenital Cardiac Surgery by Platelet-Fibrin Glue. Updates Surg. 2024, 76, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Danker, W.; DeAnglis, A.; Ferko, N.; Garcia, D.; Hogan, A. Comparison of Fibrin Sealants in Peripheral Vascular Surgery: A Systematic Review and Network Meta-Analysis. Ann. Med. Surg. 2021, 61, 161–168. [Google Scholar] [CrossRef]
- Gazzeri, R.; Galarza, M.; Occhigrossi, F.; Viswanath, O.; Varrassi, G.; Leoni, M.L.G. Prophylactic Fibrin Glue Application for Immediate Management of Dural Puncture during Spinal Cord Stimulation Lead Placement: A Simple and Effective Technique. Curr. Pain Headache Rep. 2025, 29, 70. [Google Scholar] [CrossRef] [PubMed]
- Mudasir, A.; Sanna, K.; Nayil, M.; Zulfikar, A.; Abrar, W.; Mohsin, B.; Sajad, A. Fibrin Glue in Microvascular Decompression for Trigeminal Neuralgia: A Simple Addition-a Significant Impact. Egypt. J. Neurosurg. 2025, 40, 126. [Google Scholar] [CrossRef]
- Koopman, J.E.; Duraku, L.S.; de Jong, T.; de Vries, R.B.M.; Michiel Zuidam, J.; Hundepool, C.A. A Systematic Review and Meta-Analysis on the Use of Fibrin Glue in Peripheral Nerve Repair: Can We Just Glue It? J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 1018–1033. [Google Scholar] [CrossRef]
- Ortiz, A.d.C.; Fideles, S.O.M.; Pomini, K.T.; Bellini, M.Z.; Pereira, E.d.S.B.M.; Reis, C.H.B.; Pilon, J.P.G.; de Marchi, M.Â.; Trazzi, B.F.d.M.; da Silva, W.S.; et al. Potential of Fibrin Glue and Mesenchymal Stem Cells (MSCs) to Regenerate Nerve Injuries: A Systematic Review. Cells 2022, 11, 221. [Google Scholar] [CrossRef]
- Hwang, S.; Na, B.G.; Kim, M.; Won, D.H. Rescue Fibrin Glue-Infiltrating Hemostasis Combined with Hepatorrhaphy to Control Intractable Postoperative Bleeding from the Liver Cut Surface. Ann. Hepato-Biliary-Pancreat. Surg. 2021, 25, 517–522. [Google Scholar] [CrossRef]
- Zheng, X.G.; Wang, F.; Su, Y.C.; Xu, C.Y.; Wang, M.Z. Efficacy and Safety of Fibrin Sealant Application in Patients Undergoing Thyroidectomy: A Systematic Review and Meta-Analysis. BMC Surg. 2024, 24, 122. [Google Scholar] [CrossRef]
- Koerniawan, H.S.; Candrawinata, V.S.; Tjahyanto, T.; Wijaya, N.J.; Putra, A.W.; Wijaya, J.H. The Safety and Efficacy of Fibrin Sealant for Thyroidectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Surg. 2023, 10, 1149882. [Google Scholar] [CrossRef]
- Hwang, S.; Jung, D.-H.; Song, G.-W.; Ha, T.-Y.; Jwa, E.-K.; Lee, S.-G. Fibrin Glue-Infiltrating Hemostasis for Intractable Bleeding from the Liver or Spleen during Liver Transplantation. Ann. Hepato-Biliary-Pancreat. Surg. 2016, 20, 197. [Google Scholar] [CrossRef]
- Wells, C.I.; Ratnayake, C.B.B.; Mentor, K.; Sen, G.; Hammond, J.S.; French, J.J.; Wilson, C.H.; Manas, D.; White, S.; Pandanaboyana, S. Haemostatic Efficacy of Topical Agents During Liver Resection: A Network Meta-Analysis of Randomised Trials. World J. Surg. 2020, 44, 3461–3469. [Google Scholar] [CrossRef]
- Segger, L.; Lerchbaumer, M.H.; Collettini, F.; Hamm, B.; Fleckenstein, F.N.; Fehrenbach, U.; Gebauer, B.; Auer, T.A. Percutaneous Computed Tomography (CT) Fluoroscopy-Guided Biopsy of the Spleen Using Fibrin Glue as a Sealant. Diagnostics 2024, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Othman, S.; Messa, C.A.; Elfanagely, O.; Bormann, B.; Mellia, J.A.; Broach, R.B.; Kovach, S.J.; Fischer, J.P. Sticking to What Matters: A Matched Comparative Study of Fibrin Glue and Mechanical Fixation for Split-Thickness Skin Grafts in the Lower Extremity. Int. J. Low. Extrem. Wounds 2024, 23, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Shuchi, A.; Gupta, D.; Sarabahi, S. An Outcome Analysis of Fibrin Sealant versus Staples for Fixation of Split-Thickness Skin Grafts. Indian J. Plast. Surg. 2024, 57, 60. [Google Scholar] [CrossRef]
- Nikolaou, C.; Frountzas, M.; Kapetanakis, E.I.; Stefanoudakis, D.; Papadopulos, N.A.; Kykalos, S.; Schizas, D.; Iliopoulos, D. The Potential Use of Fibrin Sealants in Burn Wound Management: A Comprehensive Review of Experimental and Clinical Studies. Eur. Burn J. 2025, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Sörgel, C.A.; Schmid, R.; Kengelbach-Weigand, A.; Promny, T.; Horch, R.E. Air-Pressure-Supported Application of Cultured Human Keratinocytes in a Fibrin Sealant Suspension as a Potential Clinical Tool for Large-Scale Wounds. J. Clin. Med. 2022, 11, 5032. [Google Scholar] [CrossRef]
- Arefev, I.Y.; Aleynik, D.Y.; Vorobev, E.V.; Charykova, I.N.; Rubtsova, Y.P.; Sidorova, T.I.; Egorikhina, M.N. Autologous Uncultivated Skin Cells In Combination With A Mesh Graft In The Treatment Of Deep Burns. Int. J. Appl. Fundam. Res. 2019, 8, 38–43. [Google Scholar] [CrossRef]
- Kunnasegaran, R.; Ng, J.; Ebk, K. Use of Fibrin Glue as a Surgical Adjunct in Bone Grafting of Fracture Non-Unions. Malays. Orthop. J. 2024, 18, 49. [Google Scholar] [CrossRef]
- Sircana, G.; Cauteruccio, M.; Oliva, M.S.; Piccirillo, N.; Pesare, E.; Minutillo, F.; Ziranu, A. Fibrin Sealant Reduces Need for Transfusions after Hip Hemiarthroplasty for Femoral Neck Fractures. Injury 2020, 51, S23–S27. [Google Scholar] [CrossRef]
- Tzagiollari, A.; Mccarthy, H.O.; Levingstone, T.J.; Dunne, N.J.; Kim, Y.; Aparicio, C.; Knabe-Ducheyne, C.; Tzagiollari, A.; Mccarthy, H.O.; Levingstone, T.J.; et al. Biodegradable and Biocompatible Adhesives for the Effective Stabilisation, Repair and Regeneration of Bone. Bioengineering 2022, 9, 250. [Google Scholar] [CrossRef]
- Amirhekmat, A.; Brown, W.E.; Salinas, E.Y.; Hu, J.C.; Athanasiou, K.A.; Wang, D. Mechanical Evaluation of Commercially Available Fibrin Sealants for Cartilage Repair. Cartilage 2024, 15, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Christensen, B.B.; Olesen, M.L.; Hede, K.T.C.; Bergholt, N.L.; Foldager, C.B.; Lind, M. Particulated Cartilage for Chondral and Osteochondral Repair: A Review. Cartilage 2021, 13, 1047S–1057S. [Google Scholar] [CrossRef]
- Ozkul, E.; Mangan, M.S.; Yalcin, L.; Turan-Vural, E. Fibrin Sealant-Assisted Fixation of an Autologous Iliac Bone Graft in Orbital Floor Reconstruction. J. Craniofac. Surg. 2025, 36, e1370–e1373. [Google Scholar] [CrossRef] [PubMed]
- Um, J.H.; Kim, S.H.; Jo, D.I. Surgical Fixation with Only Fibrin Glue in the Isolated Anterior Wall of the Maxillary Sinus Fracture. J. Craniofac. Surg. 2022, 33, E368–E370. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, Y.; Prasad, N.; Hall, S.R.; Howard, B.E. Diced Cartilage in Fibrin Glue for Dorsal Reconstruction as Part of Staged Paramedian Forehead Flap Reconstruction. J. Craniofac. Surg. 2021, 32, 1140–1142. [Google Scholar] [CrossRef]
- Somani, S.N.; Moshirfar, M.; Shmunes, K.M.; Ronquillo, Y.C. Comparison and Application of Commercially Available Fibrin Sealants in Ophthalmology. Ocul. Surf. 2020, 18, 418–426. [Google Scholar] [CrossRef]
- Bouhout, S.; Kam, J.; Robert, M.C.; Harissi-Dagher, M. Cost-Effectiveness Analysis: Fibrin Glue versus Sutures for Conjonctival Fixation during Pterygion Surgery. Can. J. Ophthalmol. 2022, 57, 41–46. [Google Scholar] [CrossRef]
- Szczyt, M.; Batko, J.; Pasternak, A. A Systematic Review: Fibrin Glue in Drainless Rhytidoplasty. Aesthetic Plast. Surg. 2024, 48, 2224–2230. [Google Scholar] [CrossRef]
- Chen, K.; Sinelnikov, M.Y.; Nikolenko, V.N.; Reshetov, I.V.; Cao, Y.; Li, Z.; Kochurova, E.V.; Nikolenko, S.N.; Avila-Rodríguez, M.; Somasundaram, S.G.; et al. The Use of Fibrin-Based Tissue Adhesives for Breast in Reconstructive and Plastic Surgery. Curr. Top. Med. Chem. 2019, 19, 2985–2990. [Google Scholar] [CrossRef]
- Bloom, J.A.; Erlichman, Z.; Foroutanjazi, S.; Beqiraj, Z.; Jonczyk, M.M.; Persing, S.M.; Chatterjee, A. The Use of Hemostatic Agents to Decrease Bleeding Complications in General Plastic Surgery Procedures. Plast. Reconstr. Surg. Glob. Open 2021, 9, E3744. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, R.; Meeprasertsagool, K.; Rojdamrongratana, D.; Kashima, T. A Comparison of Fibrin Glue versus Suture for Anchoring Fat Pedicles in Transconjunctival Lower Eyelid Blepharoplasty. JPRAS Open 2025, 44, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mortier, J.; Bilotta, G.; Fransen, E.; Pingnet, L.; Verkest, V.; Declau, F. Wound Healing in External Rhinoplasty—The Effect of Fibrin Glue on Dead Space Closure: A Retrospective Propensity Score-Matched Study. Aesthetic Plast. Surg. 2025, 49, 2991–3003. [Google Scholar] [CrossRef]
- Kizilkaya, M.C.; Gokay, R.; Mutlu, A.U.; Sonmez, S.; Yilmaz, S.; Kocatas, A.; Saracoglu, C.; Aytac, E. Posterior Fixation of Gastric Tube with Fibrin Sealant in Laparoscopic Sleeve Gastrectomy: A Promising Method to Prevent Revision Surgeries. Langenbeck’s Arch. Surg. 2024, 409, 60. [Google Scholar] [CrossRef]
- Chen, Y.S.; Loh, E.W.; Shen, S.C.; Su, Y.H.; Tam, K.W. Efficacy of Fibrin Sealant in Reducing Complication Risk After Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2021, 31, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Wakim, H.R.; Fawzi, F.S.; Emad, M.M.; Mohammed Baraka, M.A.A. Comparison between Fibrin Glue vs Mechanical Mesh Fixation in Laparoscopic Inguinal Hernia Repair, A Prospective Study. QJM An Int. J. Med. 2024, 117, ii125. [Google Scholar] [CrossRef]
- Habib Bedwani, N.A.R.; Kelada, M.; Smart, N.; Szydlo, R.; Patten, D.K.; Bhargava, A. Glue versus Mechanical Mesh Fixation in Laparoscopic Inguinal Hernia Repair: Meta-Analysis and Trial Sequential Analysis of Randomized Clinical Trials. Br. J. Surg. 2021, 108, 14–23. [Google Scholar] [CrossRef]
- Alves, J.R.; Spengler, L.F.M.; Justino, L.B.; Justino, G.B.; Silva, I.K.; Amico, E.C. Umbilical And Epigastric Hernia Repair: A Systematic Review. Arq. Bras. Cir. Dig. 2024, 37, e1807. [Google Scholar] [CrossRef] [PubMed]
- Mounsif, M.; Smouni, F.E.; Bouziane, A. Fibrin Sealant versus Sutures in Periodontal Surgery: A Systematic Review. Ann. Med. Surg. 2022, 76, 103539. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Levicheva, E.A.; Linkova, D.D.; Farafontova, E.A.; Rubtsova, Y.P.; Charykova, I.N.; Aleynik, D.Y.; Egorikhina, M.N. Fibrin Glues: Proteins, Mechanism of Action, Classification, and Application. Int. J. Mol. Sci. 2026, 27, 447. https://doi.org/10.3390/ijms27010447
Levicheva EA, Linkova DD, Farafontova EA, Rubtsova YP, Charykova IN, Aleynik DY, Egorikhina MN. Fibrin Glues: Proteins, Mechanism of Action, Classification, and Application. International Journal of Molecular Sciences. 2026; 27(1):447. https://doi.org/10.3390/ijms27010447
Chicago/Turabian StyleLevicheva, Ekaterina A., Daria D. Linkova, Ekaterina A. Farafontova, Yulia P. Rubtsova, Irina N. Charykova, Diana Ya. Aleynik, and Marfa N. Egorikhina. 2026. "Fibrin Glues: Proteins, Mechanism of Action, Classification, and Application" International Journal of Molecular Sciences 27, no. 1: 447. https://doi.org/10.3390/ijms27010447
APA StyleLevicheva, E. A., Linkova, D. D., Farafontova, E. A., Rubtsova, Y. P., Charykova, I. N., Aleynik, D. Y., & Egorikhina, M. N. (2026). Fibrin Glues: Proteins, Mechanism of Action, Classification, and Application. International Journal of Molecular Sciences, 27(1), 447. https://doi.org/10.3390/ijms27010447

