Binding of Tetrachloroaurate(III) to Bovine or Human γ-Globulins
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BGG | Bovine γ-globulin |
| HGG | Human γ-globulin |
| CD | Circular dichroism |
| BSA | Bovine serum albumin |
| HSA | Human serum albumin |
References
- Varga, M. Clinical Pathology. In Textbook of Rabbit Medicine; Elsevier: Amsterdam, The Netherlands, 2014; pp. 111–136. ISBN 978-0-7020-4979-8. [Google Scholar]
- Najjar, V.A. The Physiological Role of γ-Globulin. In Advances in Enzymology- and Related Areas of Molecular Biology; Meister, A., Ed.; Wiley: Hoboken, NJ, USA, 1974; Volume 41, pp. 129–178. ISBN 978-0-471-59176-4. [Google Scholar]
- Glover, Z.K.; Basa, L.; Moore, B.; Laurence, J.S.; Sreedhara, A. Metal Ion Interactions with mAbs: Part 1: pH and Conformation Modulate Copper-Mediated Site-Specific Fragmentation of the IgG1 Hinge Region. mAbs 2015, 7, 901–911. [Google Scholar] [CrossRef]
- Gupta, S.; Upadhyay, K.; Schöneich, C.; Rathore, A.S. Impact of Various Factors on the Kinetics of Non-Enzymatic Fragmentation of a Monoclonal Antibody. Eur. J. Pharm. Biopharm. 2022, 178, 131–139. [Google Scholar] [CrossRef]
- Hou, W.; Wu, S.; Liu, Y.; Li, H. Impact of Conformational Change of Immunoglobulin G Induced by Silver Ions on Escherichia Coli and Macrophage Adhesion to Biomaterial Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128700. [Google Scholar] [CrossRef]
- Saporito-Magriña, C.; Facio, M.L.; Lopez-Montañana, L.; Pagano, G.; Repetto, M.G. Copper-Induced Aggregation of IgG: A Potential Driving Force for the Formation of Circulating Protein Aggregates. Metallomics 2023, 15, mfad005. [Google Scholar] [CrossRef] [PubMed]
- Messori, L.; Marcon, G.; Orioli, P. Gold(III) Compounds as New Family of Anticancer Drugs. Bioinorg. Chem. Appl. 2003, 1, 177–187. [Google Scholar] [CrossRef]
- Gabbiani, C.; Casini, A.; Messori, L. Gold(III) Compounds as Anticancer Drugs. Gold Bull 2007, 40, 73–81. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Abyar, S.; Carbo-Bague, I.; Wang, L.; Türck, S.; Siegler, M.A.; Basu, U.; Ott, I.; Liu, R.; IJzerman, A.P.; et al. Multitarget Thiol-Activated Tetrapyridyl Gold(III) Complexes for Hypoxic Cancer Therapy. CCS Chem. 2024, 6, 783–797. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Fang, R.; Wei, W.; Wang, Y.; Jin, J.; Yang, F.; Chen, J. Organometallic Gold(I) and Gold(III) Complexes for Lung Cancer Treatment. Front. Pharmacol. 2022, 13, 979951. [Google Scholar] [CrossRef]
- Gurba, A.; Taciak, P.; Sacharczuk, M.; Młynarczuk-Biały, I.; Bujalska-Zadrożny, M.; Fichna, J. Gold (III) Derivatives in Colon Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 724. [Google Scholar] [CrossRef]
- Ratia, C.; Sueiro, S.; Soengas, R.G.; Iglesias, M.J.; López-Ortiz, F.; Soto, S.M. Gold(III) Complexes Activity against Multidrug-Resistant Bacteria of Veterinary Significance. Antibiotics 2022, 11, 1728. [Google Scholar] [CrossRef]
- Ratia, C.; Ballén, V.; Gabasa, Y.; Soengas, R.G.; Velasco-de Andrés, M.; Iglesias, M.J.; Cheng, Q.; Lozano, F.; Arnér, E.S.J.; López-Ortiz, F.; et al. Novel Gold(III)-Dithiocarbamate Complex Targeting Bacterial Thioredoxin Reductase: Antimicrobial Activity, Synergy, Toxicity, and Mechanistic Insights. Front. Microbiol. 2023, 14, 1198473. [Google Scholar] [CrossRef]
- Büssing, R.; Karge, B.; Lippmann, P.; Jones, P.G.; Brönstrup, M.; Ott, I. Gold(I) and Gold(III) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. ChemMedChem 2021, 16, 3402–3409. [Google Scholar] [CrossRef]
- Yeo, C.I.; Goh, C.H.P.; Tiekink, E.R.T.; Chew, J. Antibiotics: A “GOLDen” Promise? Coord. Chem. Rev. 2024, 500, 215429. [Google Scholar] [CrossRef]
- Myagkova, I.N.; Evseev, A.K.; Polyakov, N.A.; Drovosekov, A.B.; Goroncharovskaya, I.V.; Shabanov, A.K. Physico-chemical approaches to improve the characteristics of electrosurgical instruments. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2022, 65, 6–13. [Google Scholar] [CrossRef]
- Wróblewska, A.; Sadowski, M.; Jasiński, R. Selectivity and molecular mechanism of the Au(III)-catalyzed [3+2] cycloaddition reaction between (Z)-C,N-diphenylnitrone and nitroethene in the light of the molecular electron density theory computational study. Chem. Heter. Comp. 2024, 60, 639–645. [Google Scholar] [CrossRef]
- Shaw, C.F. Gold-Based Therapeutic Agents. Chem. Rev. 1999, 99, 2589–2600. [Google Scholar] [CrossRef] [PubMed]
- Gamov, G.A. Processing of the Spectrofluorimetric Data Using the Graphical Methods and the Maximum Likelihood Approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119334. [Google Scholar] [CrossRef] [PubMed]
- Yarullin, D.N.; Zavalishin, M.N.; Sharnin, V.A.; Gamov, G.A. Equilibrium in a Bovine Serum Albumin–Pyridoxal-5-Phosphate 4-Hydroxybenzoyl Hydrazone–La3+ Ion System. Russ. J. Phys. Chem. A 2022, 96, 1190–1194. [Google Scholar] [CrossRef]
- Gamov, G.A. Complexation of Gold(I) and Gold(III) in Solutions. Coord. Chem. Rev. 2024, 520, 216162. [Google Scholar] [CrossRef]
- Bondareva, A.P.; Kolosov, I.V.; Landau, M.A. Complexation of Co(II), Fe(II), and Mn(II) with Serum Proteins. Koord. Khim. 1980, 6, 264–272. [Google Scholar]
- Babaeva, E.E.; Vorobyova, U.A.; Zharkova, M.S.; Cheknyov, S.B. Human Serum γ-Globulin Binds Copper Cations. Bull Exp. Biol. Med. 2006, 141, 53–56. [Google Scholar] [CrossRef]
- Cheknev, S.B.; Babaeva, E.E.; Golub, A.E.; Denisova, E.A.; Vorobieva, U.A. The effects of copper and zinc ions during their binding with human serum γ-globulin. Med. Immunol. 2014, 8, 615. [Google Scholar] [CrossRef]
- Babaeva, E.E.; Vorobyova, U.A.; Denisova, E.A.; Medvedeva, D.A.; Cheknev, S.B. Binding of Zinc Cations to Human Serum γ-Globulin. Bull Exp. Biol. Med. 2006, 141, 602–605. [Google Scholar] [CrossRef]
- Cheknev, S.B.; Sarycheva, M.A.; Mezdrokina, A.S.; Babayants, A.A. The G-globulin metal complexes in regulation of the production by human blood cells of monocyte chemoattractant protein MCP-1. Immunologiya 2016, 37, 150–155. [Google Scholar]
- Cheknev, S.B. The Proteins of γ-Globulin Fraction, That Bind Metal Ions, in Physiological Immune Regulation. Opposite Effects of Copper and Zinc. Immunologiya 2021, 42, 293–300. [Google Scholar] [CrossRef]
- Cheknev, S.B. The Proteins of γ-Globulin Fraction Binding Metal Ions, in Physiological Immune Regulation. Mutual Action of Copper and Zinc. Immunologiya 2021, 42, 546–551. [Google Scholar] [CrossRef]
- Cheknev, S.B. The Proteins of γ-Globulin Fraction, That Bind Metal Ions, in Physiological Immune Regulation. Polarization of the Responses and Rational Limitation of Inflammation. Immunologiya 2022, 43, 468–476. [Google Scholar] [CrossRef]
- Zavalishin, M.N.; Pimenov, O.A.; Belov, K.V.; Khodov, I.A.; Gamov, G.A. Chemical Equilibria in Aqueous Solutions of H[AuCl4] and Bovine or Human Serum Albumin. J. Mol. Liq. 2023, 389, 122914. [Google Scholar] [CrossRef]
- Mironov, I.V.; Kharlamova, V.Y. On the Interaction of Gold(III) Complexes with Human Serum Albumin. Russ. J. Inorg. Chem. 2023, 68, 1487–1494. [Google Scholar] [CrossRef]
- Mironov, I.V.; Kharlamova, V.Y.; Makotchenko, E.V. Some Remarks on the Biological Application of Gold(III) Complexes. Biometals 2024, 37, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Akulinina, A.A.; Roshchin, I.S.; Konstantinov, L.E.; Yarullin, D.N.; Zavalishin, M.N.; Kholodkov, I.V.; Gamov, G.A. Gold(III)-DNA Interaction in Aqueous Solution. J. Mol. Liq. 2024, 398, 124212. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Taqi, S.G.; Arif, M.; Wasim, M.; Sher, M. In Vitro Distribution of Gold in Serum Proteins after Incubation of Sodium Aurothiomalate and Auranofin with Human Blood and Its Pharmacological Significance. Biol. Trace Elem. Res. 2009, 130, 204–209. [Google Scholar] [CrossRef]
- Balfourier, A.; Kolosnjaj-Tabi, J.; Luciani, N.; Carn, F.; Gazeau, F. Gold-Based Therapy: From Past to Present. Proc. Natl. Acad. Sci. USA 2020, 117, 22639–22648. [Google Scholar] [CrossRef]
- Tomasello, M.F.; Nardon, C.; Lanza, V.; Di Natale, G.; Pettenuzzo, N.; Salmaso, S.; Milardi, D.; Caliceti, P.; Pappalardo, G.; Fregona, D. New Comprehensive Studies of a Gold(III) Dithiocarbamate Complex with Proven Anticancer Properties: Aqueous Dissolution with Cyclodextrins, Pharmacokinetics and Upstream Inhibition of the Ubiquitin-Proteasome Pathway. Eur. J. Med. Chem. 2017, 138, 115–127. [Google Scholar] [CrossRef]
- Dixon, J.M.; Egusa, S. Conformational Change-Induced Fluorescence of Bovine Serum Albumin–Gold Complexes. J. Am. Chem. Soc. 2018, 140, 2265–2271. [Google Scholar] [CrossRef]
- Schauenstein, E.; Sorger, S.; Reiter, M.; Dachs, F. Free Thiol Groups and Labile Disulfide Bonds in the IgG Fraction of Human Serum. J. Immunol. Methods 1982, 50, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Meshkov, A.N.; Gamov, G.A. KEV: A Free Software for Calculating the Equilibrium Composition and Determining the Equilibrium Constants Using UV–Vis and Potentiometric Data. Talanta 2019, 198, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Herrlinger, J.D.; Weikert, W. Protein binding of gold in serum of patients treated with different gold preparations. Z Rheumatol. 1982, 41, 230–234. [Google Scholar]
- Van De Weert, M. Fluorescence Quenching to Study Protein-Ligand Binding: Common Errors. J. Fluoresc. 2010, 20, 625–629, Erratum in J. Fluoresc. 2011, 21, 2245. [Google Scholar] [CrossRef] [PubMed]
- Van De Weert, M.; Stella, L. Fluorescence Quenching and Ligand Binding: A Critical Discussion of a Popular Methodology. J. Mol. Struct. 2011, 998, 144–150. [Google Scholar] [CrossRef]
- Sookai, S.; Munro, O.Q. Complexities of the Interaction of NiII, PdII and PtII Pyrrole-Imine Chelates with Human Serum Albumin**. ChemistryEurope 2023, 1, e202300012. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: A Web Server for Accurate Protein Secondary Structure Prediction and Fold Recognition from the Circular Dichroism Spectra. Nucleic Acids Res. 2018, 46, W315–W322. [Google Scholar] [CrossRef] [PubMed]
- Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.; Murvai, N.; Lee, Y.-H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; et al. BeStSel: Webserver for Secondary Structure and Fold Prediction for Protein CD Spectroscopy. Nucleic Acids Res. 2022, 50, W90–W98. [Google Scholar] [CrossRef]
- Buijs, J.; Norde, W.; Lichtenbelt, J.W.T. Changes in the Secondary Structure of Adsorbed IgG and F(Ab‘)2 Studied by FTIR Spectroscopy. Langmuir 1996, 12, 1605–1613. [Google Scholar] [CrossRef]
- Li, S.-Q.; Bomser, J.A.; Zhang, Q.H. Effects of Pulsed Electric Fields and Heat Treatment on Stability and Secondary Structure of Bovine Immunoglobulin G. J. Agric. Food Chem. 2005, 53, 663–670. [Google Scholar] [CrossRef]
- Vermeer, A.W.P.; Bremer, M.G.E.G.; Norde, W. Structural Changes of IgG Induced by Heat Treatment and by Adsorption onto a Hydrophobic Teflon Surface Studied by Circular Dichroism Spectroscopy. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1998, 1425, 1–12. [Google Scholar] [CrossRef]
- Vermeer, A.W.P.; Norde, W. The Influence of the Binding of Low Molecular Weight Surfactants on the Thermal Stability and Secondary Structure of IgG. Colloids Surf. A Physicochem. Eng. Asp. 2000, 161, 139–150. [Google Scholar] [CrossRef]
- Dutta, U.; Cohenford, M.A.; Dain, J.A. Monitoring the Effect of Glucosamine and Glyceraldehyde Glycation on the Secondary Structure of Human Serum Albumin and Immunoglobulin G: An Analysis Based on Circular Dichroism, Thermal Melting Profiles and UV–Fluorescence Spectroscopy. Anal. Chim. Acta 2006, 558, 187–194. [Google Scholar] [CrossRef]
- Ba, X.-X.; Gao, T.; Yang, M.; Jiang, P.; Jiang, F.-L.; Liu, Y. Thermodynamics of the Interaction Between Graphene Quantum Dots with Human Serum Albumin and γ-Globulins. J. Solution Chem. 2020, 49, 100–116. [Google Scholar] [CrossRef]
- Liu, W.; Rose, J.; Plantevin, S.; Auffan, M.; Bottero, J.-Y.; Vidaud, C. Protein Corona Formation for Nanomaterials and Proteins of a Similar Size: Hard or Soft Corona? Nanoscale 2013, 5, 1658. [Google Scholar] [CrossRef] [PubMed]
- Deokar, V.; Sharma, A.; Mody, R.; Volety, S.M. Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. J. Pharm. Sci. 2020, 109, 3579–3589. [Google Scholar] [CrossRef]
- Jones, C. Impact of Imperfect Data on Protein Secondary Structure Estimates from Far-UV Circular Dichroism Spectra. Anal. Biochem. 2024, 688, 115483. [Google Scholar] [CrossRef]
- Nagy, G.; Grubmüller, H. How Accurate Is Circular Dichroism-Based Model Validation? Eur. Biophys. J. 2020, 49, 497–510. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Walport, M.; Shlomchik, M. The structure of a typical antibody molecule. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK27144/ (accessed on 29 December 2025).
- Mizerska, U.; Fortuniak, W.; Pospiech, P.; Chojnowski, J.; Slomkowski, S. Gamma Globulins Adsorption on Carbofunctional Polysiloxane Microspheres. J. Inorg. Organomet. Polym. 2015, 25, 507–514. [Google Scholar] [CrossRef]
- Available online: https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/TR0006-Extinction-coefficients.pdf (accessed on 31 March 2025).
- Абраменкoв, A.B. KINET Прoграмма Для Численнoгo Мoделирoвания Кинетики Слoжных Химических Реакций. Available online: https://www.chem.msu.ru/rus/teaching/KINET2012/ (accessed on 8 October 2025).
- Bjerrum, N. La Stabilité Des Chlorures d’or. Bull. Soc. Chim. 1948, 57, 432–445. [Google Scholar] [CrossRef]



| Medium | Gold(III) Species | Gold(III) Ions per 1 Protein Molecule * | log K’ per 1 Gold(III) Ion | Gold(III) Ions per 1 Protein Molecule * | log K’ per 1 Gold(III) Ion | ||||
|---|---|---|---|---|---|---|---|---|---|
| UV-Vis | Fluorimetry | CD | UV-Vis | Fluorimetry | CD | ||||
| Bovine γ-Globulin | Human γ-Globulin | ||||||||
| 0.1 M NaCl | [AuCl4]− | 15.2 ± 5.1 | 4.64 ± 0.01 | 4.40 ± 0.11 | 4.46 ± 0.09 | 13.3 ± 3.3 | 4.18 ± 0.28 | 3.71 ± 0.02 | 4.07 ± 0.09 |
| No NaCl added | [AuCl3(OH)]− | 11.3 ± 3.4 | 4.09 ± 0.12 | 4.21 ± 0.09 | 4.07 ± 0.08 | 10.3 ± 1.2 | 3.85 ± 0.24 | 4.27 ± 0.09 | 4.02 ± 0.29 |
| [AuCl2(OH)2]− | 7.6 ± 1.7 | 3.89 ± 0.12 | 4.02 ± 0.09 | 3.89 ± 0.08 | 6.8 ± 0.6 | 3.63 ± 0.24 | 4.08 ± 0.09 | 3.81 ± 0.27 | |
| Secondary Structure Element | BGG in Diluted Solution | BGG + Gold(III) in Diluted Solution | BGG in 0.1 M NaCl | BGG + Gold(III) in 0.1 M NaCl | HGG in Diluted Solution | HGG + Gold(III) in Diluted Solution | HGG in 0.1 M NaCl | HGG + Gold(III) in 0.1 M NaCl |
|---|---|---|---|---|---|---|---|---|
| α-helices, % | 0 | 1.3 | 0 | 0 | 0 | 8.5 | 0 | 0 |
| β-sheets, % | 64.9 | 43.9 | 55.6 | 48.6 | 58.7 | 41.3 | 58.6 | 47.4 |
| turns, % | 15.8 | 16.2 | 8.8 | 14.2 | 7.1 | 7.1 | 6.3 | 18.6 |
| other, % | 19.2 | 38.6 | 35.6 | 37.2 | 34.2 | 43.1 | 35.0 | 34.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yarullin, D.N.; Logacheva, O.I.; Zavalishin, M.N.; Gamov, G.A. Binding of Tetrachloroaurate(III) to Bovine or Human γ-Globulins. Int. J. Mol. Sci. 2026, 27, 541. https://doi.org/10.3390/ijms27010541
Yarullin DN, Logacheva OI, Zavalishin MN, Gamov GA. Binding of Tetrachloroaurate(III) to Bovine or Human γ-Globulins. International Journal of Molecular Sciences. 2026; 27(1):541. https://doi.org/10.3390/ijms27010541
Chicago/Turabian StyleYarullin, Daniil N., Olga I. Logacheva, Maksim N. Zavalishin, and George A. Gamov. 2026. "Binding of Tetrachloroaurate(III) to Bovine or Human γ-Globulins" International Journal of Molecular Sciences 27, no. 1: 541. https://doi.org/10.3390/ijms27010541
APA StyleYarullin, D. N., Logacheva, O. I., Zavalishin, M. N., & Gamov, G. A. (2026). Binding of Tetrachloroaurate(III) to Bovine or Human γ-Globulins. International Journal of Molecular Sciences, 27(1), 541. https://doi.org/10.3390/ijms27010541

