Host Factors Promoting the LTR Retrotransposon Life Cycle in Plant Cells: Current Knowledge and Future Directions
Abstract
1. Introduction
2. LTR-RTE Transcription, RNA Export, and Modifications
2.1. LTR-RTE Transcription
2.2. Nuclear Export of LTR-RTE RNAs
2.3. Processing and Modification of LTR-RTE RNAs
3. Virus-like Particles Formation and Reverse Transcription
3.1. LTR-RTE Translation
3.2. Cytoplasmic Granules and VLP Formation
3.3. Reverse Transcription Initiation
3.4. Strand Transfer Process
3.5. Extrachromosomal Circular DNA Formations
4. LTR-RTE Insertions
4.1. Insertion Site Selection
4.2. Integrase-Independent Retrotransposition
5. The Future Perspectives
5.1. Reporter System for Studying LTR-RTEs
5.2. Novel Methods for Exploiting LTR-RTE Biology in Non-Model Plant Species
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paszkowski, J. Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 2015, 32, 200–206. [Google Scholar] [CrossRef]
- Yang, L.-L.; Zhang, X.-Y.; Wang, L.-Y.; Li, Y.-G.; Li, X.-T.; Yang, Y.; Su, Q.; Chen, N.; Zhang, Y.-L.; Li, N.; et al. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genom. 2023, 24, 423. [Google Scholar] [CrossRef]
- Vitte, C.; Bennetzen, J.L. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 17638–17643. [Google Scholar] [CrossRef]
- Rai, S.K.; Sangesland, M.; Lee, M.; Esnault, C.; Cui, Y.; Chatterjee, A.G.; Levin, H.L. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet. 2017, 13, e1006775. [Google Scholar] [CrossRef]
- Li, C.; Meng, Z.; Wen, Q.; Yang, W.; Xu, Y.; Lyu, Y.; Guo, Y.; Lyu, T.; Shen, D.; Dou, K. Translesion DNA polymerases Rev1 and PolH promote LTR-retrotransposon transcription by safeguarding Pol II occupancy in both germline and somatic tissues of Drosophila. Nucleic Acids Res. 2025, 53, gkaf903. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, Y.-C.; Zhang, Z.-Q.; Chen, J.-F.; Niu, X.-M.; Hou, X.-H.; Li, X.-T.; Wang, L.; Zhang, Y.E.; Ge, S.; et al. Forces driving transposable element load variation during Arabidopsis range expansion. Plant Cell 2024, 36, 840–862. [Google Scholar] [CrossRef]
- Yang, F.; Su, W.; Chung, O.W.; Tracy, L.; Wang, L.; Ramsden, D.A.; Zhang, Z.Z.Z. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 2023, 620, 218–225. [Google Scholar] [CrossRef]
- Sundararajan, A.; Lee, B.-S.; Garfinkel, D.J. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 2003, 163, 55–67. [Google Scholar] [CrossRef]
- Havecker, E.R.; Gao, X.; Voytas, D.F. The diversity of LTR retrotransposons. Genome Biol. 2004, 5, 225. [Google Scholar] [CrossRef]
- Galindo-González, L.; Mhiri, C.; Deyholos, M.K.; Grandbastien, M.-A. LTR-retrotransposons in plants: Engines of evolution. Gene 2017, 626, 14–25. [Google Scholar] [CrossRef]
- Cavrak, V.V.; Lettner, N.; Jamge, S.; Kosarewicz, A.; Bayer, L.M.; Mittelsten Scheid, O. How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet. 2014, 10, e1004115. [Google Scholar] [CrossRef]
- Zervudacki, J.; Yu, A.; Amesefe, D.; Wang, J.; Drouaud, J.; Navarro, L.; Deleris, A. Transcriptional control and exploitation of an immune-responsive family of plant retrotransposons. EMBO J. 2018, 37, e98482. [Google Scholar] [CrossRef]
- Papolu, P.K.; Ramakrishnan, M.; Wei, Q.; Vinod, K.K.; Zou, L.-H.; Yrjala, K.; Kalendar, R.; Zhou, M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC Plant Biol. 2021, 21, 585. [Google Scholar] [CrossRef]
- Happel, A.M.; Swanson, M.S.; Winston, F. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 1991, 128, 69–77. [Google Scholar] [CrossRef]
- Lee, S.C.; Adams, D.W.; Ipsaro, J.J.; Cahn, J.; Lynn, J.; Kim, H.S.; Berube, B.; Major, V.; Calarco, J.P.; LeBlanc, C.; et al. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023, 186, 4100–4116.e15. [Google Scholar] [CrossRef]
- Du, K.; Wu, J.; Wang, J.; Xie, W.; Yin, L.; Li, X.; Li, C.; Dong, A. The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice. Nat. Commun. 2024, 15, 10919. [Google Scholar] [CrossRef] [PubMed]
- Craig, N.L.; Chandler, M.; Gellert, M.; Lambowitz, A.M.; Rice, P.A.; Sandmeyer, S.B. (Eds.) The Ty1 LTR-Retrotransposon of Budding Yeast, Saccharomyces cerevisiae. In Mobile DNA III; American Society of Microbiology: Washington, DC, USA, 2015; pp. 927–964. [Google Scholar]
- Kirov, I.; Omarov, M.; Merkulov, P.; Dudnikov, M.; Gvaramiya, S.; Kolganova, E.; Komakhin, R.; Karlov, G.; Soloviev, A. Genomic and transcriptomic survey provides new insight into the organization and transposition activity of highly expressed LTR retrotransposons of sunflower (Helianthus annuus L.). Int. J. Mol. Sci. 2020, 21, 9331. [Google Scholar] [CrossRef]
- Vicient, C.M. Transcriptional activity of transposable elements in maize. BMC Genomics 2010, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Picault, N.; Chaparro, C.; Piegu, B.; Stenger, W.; Formey, D.; Llauro, C.; Descombin, J.; Sabot, F.; Lasserre, E.; Meynard, D.; et al. Identification of an active LTR retrotransposon in rice. Plant J. 2009, 58, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Kirov, I.; Dudnikov, M.; Merkulov, P.; Shingaliev, A.; Omarov, M.; Kolganova, E.; Sigaeva, A.; Karlov, G.; Soloviev, A. Nanopore RNA sequencing revealed long non-coding and LTR retrotransposon-related RNAs expressed at early stages of triticale SEED development. Plants 2020, 9, 1794. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Li, W.; Li, K.; Nan, H.; Shi, C.; Zhang, Y.; Dai, Z.-Y.; Lin, Y.-L.; Yang, X.-L.; Tong, Y.; et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Mol. Plant 2020, 13, 935–938. [Google Scholar] [CrossRef]
- Kalendar, R.; Tanskanen, J.; Chang, W.; Antonius, K.; Sela, H.; Peleg, O.; Schulman, A.H. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. USA 2008, 105, 5833–5838. [Google Scholar] [CrossRef]
- Kubina, J.; Geldreich, A.; Gales, J.P.; Baumberger, N.; Bouton, C.; Ryabova, L.A.; Grasser, K.D.; Keller, M.; Dimitrova, M. Nuclear export of plant pararetrovirus mRNAs involves the TREX complex, two viral proteins and the highly structured 5′ leader region. Nucleic Acids Res. 2021, 49, 8900–8922. [Google Scholar] [CrossRef]
- Khan, G.A.; Deforges, J.; Reis, R.S.; Hsieh, Y.-F.; Montpetit, J.; Antosz, W.; Santuari, L.; Hardtke, C.S.; Grasser, K.D.; Poirier, Y. The transcription and export complex THO/TREX contributes to transcription termination in plants. PLoS Genet. 2020, 16, e1008732. [Google Scholar] [CrossRef]
- Steinbauerová, V.; Neumann, P.; Macas, J. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Mol. Genet. Genom. 2008, 280, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Oberlin, S.; Sarazin, A.; Chevalier, C.; Voinnet, O.; Marí-Ordóñez, A. A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res. 2017, 27, 1549–1562. [Google Scholar] [CrossRef]
- Yelina, N.E.; Smith, L.M.; Jones, A.M.E.; Patel, K.; Kelly, K.A.; Baulcombe, D.C. Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 13948–13953. [Google Scholar] [CrossRef] [PubMed]
- Rödel, A.; Weig, I.; Tiedemann, S.; Schwartz, U.; Längst, G.; Moehle, C.; Grasser, M.; Grasser, K.D. Arabidopsis mRNA export factor MOS11: Molecular interactions and role in abiotic stress responses. New Phytol. 2024, 243, 180–194. [Google Scholar] [CrossRef]
- Sen, R.; Barman, P.; Kaja, A.; Ferdoush, J.; Lahudkar, S.; Roy, A.; Bhaumik, S.R. Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol. Cell. Biol. 2019, 39, e00540-18. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Lee, E.S. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front. Genet. 2018, 9, 440. [Google Scholar] [CrossRef]
- Lei, H.; Zhai, B.; Yin, S.; Gygi, S.; Reed, R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res. 2013, 41, 2517–2525. [Google Scholar] [CrossRef]
- Pessel-Vivares, L.; Ferrer, M.; Lainé, S.; Mougel, M. MLV requires Tap/NXF1-dependent pathway to export its unspliced RNA to the cytoplasm and to express both spliced and unspliced RNAs. Retrovirology 2014, 11, 21. [Google Scholar] [CrossRef]
- Lindtner, S.; Felber, B.K.; Kjems, J.r. An element in the 3′ untranslated region of human LINE-1 retrotransposon mRNA binds NXF1(TAP) and can function as a nuclear export element. RNA 2002, 8, 345–356. [Google Scholar] [CrossRef]
- Legiewicz, M.; Zolotukhin, A.S.; Pilkington, G.R.; Purzycka, K.J.; Mitchell, M.; Uranishi, H.; Bear, J.; Pavlakis, G.N.; Le Grice, S.F.J.; Felber, B.K. The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J. Biol. Chem. 2010, 285, 42097–42104. [Google Scholar] [CrossRef] [PubMed]
- Zolotukhin, A.S.; Schneider, R.; Uranishi, H.; Bear, J.; Tretyakova, I.; Michalowski, D.; Smulevitch, S.; O’Keeffe, S.; Pavlakis, G.N.; Felber, B.K. The RNA transport element RTE is essential for IAP LTR-retrotransposon mobility. Virology 2008, 377, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Kim, H.; Mello, C.C.; Priess, J.R. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet. 2023, 19, e1010804. [Google Scholar] [CrossRef] [PubMed]
- Checkley, M.A.; Mitchell, J.A.; Eizenstat, L.D.; Lockett, S.J.; Garfinkel, D.J. Ty1 gag enhances the stability and nuclear export of Ty1 mRNA. Traffic 2013, 14, 57–69. [Google Scholar] [CrossRef]
- Manhas, S.; Ma, L.; Measday, V. The yeast Ty1 retrotransposon requires components of the nuclear pore complex for transcription and genomic integration. Nucleic Acids Res. 2018, 46, 3552–3578. [Google Scholar] [CrossRef]
- Dutko, J.A.; Kenny, A.E.; Gamache, E.R.; Curcio, M.J. 5′ to 3′ mRNA decay factors colocalize with Ty1 gag and human APOBEC3G and promote Ty1 retrotransposition. J. Virol. 2010, 84, 5052–5066. [Google Scholar] [CrossRef]
- Ding, P.; Summers, M.F. Sequestering the 5′-cap for viral RNA packaging. Bioessays 2022, 44, e2200104. [Google Scholar] [CrossRef]
- Chang, W.; Schulman, A.H. BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant J. 2008, 56, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Vicient, C.M.; Casacuberta, J.M. Additional ORFs in plant LTR-retrotransposons. Front. Plant Sci. 2020, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Chinnusamy, V.; Zhu, J.-K. RNA-directed DNA methylation and demethylation in plants. Sci. China C Life Sci. 2009, 52, 331–343. [Google Scholar] [CrossRef]
- Matsuda, E.; Garfinkel, D.J. Posttranslational interference of Ty1 retrotransposition by antisense RNAs. Proc. Natl. Acad. Sci. USA 2009, 106, 15657–15662. [Google Scholar] [CrossRef]
- Berretta, J.; Pinskaya, M.; Morillon, A. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev. 2008, 22, 615–626. [Google Scholar] [CrossRef]
- Rowley, P.A.; Ho, B.; Bushong, S.; Johnson, A.; Sawyer, S.L. XRN1 is a species-specific virus restriction factor in yeasts. PLoS Pathog. 2016, 12, e1005890, Erratum in PLoS Pathog. 2016, 12, e1006002. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wang, L.; Lei, Z.; Li, H.; Chu, J.; Yan, M.; Wang, Y.; Wang, H.; Yang, J.; Cho, J. m6A RNA demethylase AtALKBH9B promotes mobilization of a heat-activated long terminal repeat retrotransposon in Arabidopsis. Sci. Adv. 2023, 9, eadf3292. [Google Scholar] [CrossRef]
- Song, P.; Cai, Z.; Tayier, S.; Tian, E.; Chen, Z.; Yu, K.; Liu, L.; Jia, G. RNA m6A regulates the transcription and heterochromatin state of retrotransposons in Arabidopsis. Nat. Plants 2025, 11, 2300–2318. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Xu, Z.; Jiang, S.; Shi, Y.; Xie, H.; Wang, S.; Hua, J.; Wu, Y. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. Plant Physiol. 2023, 192, 1466–1482. [Google Scholar] [CrossRef]
- Barter, B.; Cho, J. RNA methylation in retrotransposon control. Trends Genet. 2025, 41, 556–558. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, R.; Lee, J.-H.; Li, S.; Chen, S.-F.; Liao, Z.; Hasani, L.A.; Nguyen, P.T.; Zhu, X.; Krakowiak, J.; et al. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res. 2021, 31, 861–885. [Google Scholar] [CrossRef]
- Alvarado-Marchena, L.; Martínez-Pérez, M.; Aparicio, F.; Pallas, V.; Maumus, F. Recent acquisition of functional m6A RNA demethylase domain in orchid Ty3/Gypsy elements. Front. Plant Sci. 2022, 13, 939843. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Ramachandran, S. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS ONE 2013, 8, e71118. [Google Scholar] [CrossRef]
- Vicient, C.M. Retand LTR-retrotransposons in plants: A long way from pol to 3′ LTR. Mobile DNA 2025, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Wang, J.; Gong, Z.; Han, G.-Z. Plants acquired a major retrotransposon horizontally from fungi during the conquest of land. New Phytol. 2021, 232, 11–16. [Google Scholar] [CrossRef]
- Riccioni, C.; Rubini, A.; Belfiori, B.; Passeri, V.; Paolocci, F.; Arcioni, S. Tmt1: The first LTR-retrotransposon from a Tuber spp. Curr. Genet. 2008, 53, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Navaratna, T.A.; Alansari, N.; Eisenberg, A.R.; O’Malley, M.A. Anaerobic fungi contain abundant, diverse, and transcriptionally active Long Terminal Repeat retrotransposons. Fungal Genet. Biol. 2024, 172, 103897. [Google Scholar] [CrossRef]
- Rodriguez, F.; Kenefick, A.; Arkhipova, I. LTR-retrotransposons from bdelloid rotifers capture additional ORFs shared between highly diverse retroelement types. Viruses 2017, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.S.; Fulton, J.E.; Hocking, P.M.; Burt, D.W. A new look at the LTR retrotransposon content of the chicken genome. BMC Genom. 2016, 17, 688. [Google Scholar] [CrossRef]
- Copeland, C.S.; Brindley, P.J.; Heyers, O.; Michael, S.F.; Johnston, D.A.; Williams, D.L.; Ivens, A.C.; Kalinna, B.H. Boudicca, a retrovirus-like long terminal repeat retrotransposon from the genome of the human blood fluke Schistosoma mansoni. J. Virol. 2003, 77, 6153–6166. [Google Scholar] [CrossRef]
- Risler, J.K.; Kenny, A.E.; Palumbo, R.J.; Gamache, E.R.; Curcio, M.J. Host co-factors of the retrovirus-like transposon Ty1. Mob. DNA 2012, 3, 12. [Google Scholar] [CrossRef]
- Devroe, E.; Silver, P.A.; Engelman, A. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases. Virology 2005, 331, 181–189. [Google Scholar] [CrossRef]
- Ye, Y.; De Leon, J.; Yokoyama, N.; Naidu, Y.; Camerini, D. DBR1 siRNA inhibition of HIV-1 replication. Retrovirology 2005, 2, 63. [Google Scholar] [CrossRef]
- Kovak, E.E.; Marshall, C.M.; Molinari, M.D.C.; Nepomuceno, A.L.; Harmon, F.G. Lariat debranching by RNA DEBRANCHING ENZYME 1 depends on SICKLE in Arabidopsis thaliana. bioRxiv 2023. [Google Scholar] [CrossRef]
- Oberlin, S.; Rajeswaran, R.; Trasser, M.; Barragán-Borrero, V.; Schon, M.A.; Plotnikova, A.; Loncsek, L.; Nodine, M.D.; Marí-Ordóñez, A.; Voinnet, O. Innate, translation-dependent silencing of an invasive transposon in Arabidopsis. EMBO Rep. 2022, 23, e53400. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Jääskeläinen, M.; Li, S.-P.; Schulman, A.H. BARE retrotransposons are translated and replicated via distinct RNA pools. PLoS ONE 2013, 8, e72270. [Google Scholar] [CrossRef]
- Doh, J.H.; Lutz, S.; Curcio, M.J. Co-translational localization of an LTR-retrotransposon RNA to the endoplasmic reticulum nucleates virus-like particle assembly sites. PLoS Genet. 2014, 10, e1004219. [Google Scholar] [CrossRef]
- Polkhovskiy, A.; Komakhin, R.; Kirov, I. GAG protein of Arabidopsis thaliana LTR retrotransposon forms retrosome-like cytoplasmic granules and activates stress response genes. Plants 2025, 14, 1894. [Google Scholar] [CrossRef]
- Beliakova-Bethell, N.; Beckham, C.; Giddings, T.H., Jr.; Winey, M.; Parker, R.; Sandmeyer, S. Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components. RNA 2006, 12, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Namkoong, S.A.-O. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Bilanchone, V.; Clemens, K.; Kaake, R.; Dawson, A.R.; Matheos, D.; Nagashima, K.; Sitlani, P.; Patterson, K.; Chang, I.; Huang, L.; et al. Ty3 retrotransposon hijacks mating yeast RNA processing bodies to infect new genomes. PLoS Genet. 2015, 11, e1005528. [Google Scholar] [CrossRef]
- Kim, E.Y.; Wang, L.; Lei, Z.; Li, H.; Fan, W.; Cho, J. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. Nat. Plants 2021, 7, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Pochart, P.; Agoutin, B.; Rousset, S.; Chanet, R.; Doroszkiewicz, V.; Heyman, T. Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1DNA plus strand synthesis. Nucleic Acids Res. 1993, 21, 3513–3520. [Google Scholar] [CrossRef]
- Wilhelm, M.; Boutabout, M.; Heyman, T.; Wilhelm, F.X. Reverse transcription of the yeast Ty1 retrotransposon: The mode of first strand transfer is either intermolecular or intramolecular. J. Mol. Biol. 1999, 288, 505–510. [Google Scholar] [CrossRef]
- Neumann, P.; Novák, P.; Hoštáková, N.; Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Züchter Genet. Breed. Res. 2010, 121, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Benoit, M.; Catoni, M.; Drost, H.-G.; Brestovitsky, A.; Oosterbeek, M.; Paszkowski, J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat. Plants 2019, 5, 26–33. [Google Scholar] [CrossRef]
- Schorn, A.J.; Gutbrod, M.J.; LeBlanc, C.; Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 2017, 170, 61–71.e11. [Google Scholar] [CrossRef]
- Martinez, G.; Choudury, S.G.; Slotkin, R.K. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 2017, 45, 5142–5152. [Google Scholar] [CrossRef]
- Lauermann, V.; Boeke, J.D. Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. EMBO J. 1997, 16, 6603–6612. [Google Scholar] [CrossRef]
- Hughes, S.H. Reverse Transcription of Retroviruses and LTR Retrotransposons. In Mobile DNA III; American Society of Microbiology: Washington, DC, USA, 2015; pp. 1051–1077. [Google Scholar]
- Sabot, F.; Schulman, A.H. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genom. 2007, 8, 247. [Google Scholar] [CrossRef]
- Hou, Y.; Rajagopal, J.; Irwin, P.A.; Voytas, D.F. Retrotransposon vectors for gene delivery in plants. Mob. DNA 2010, 1, 19. [Google Scholar] [CrossRef]
- Tramontano, A.; Donath, A.; Bernhart, S.H.; Reiche, K.; Böhmdorfer, G.; Stadler, P.F.; Bachmair, A. Deletion analysis of the 3′ long terminal repeat sequence of plant retrotransposon Tto1 identifies 125 base pairs redundancy as sufficient for first strand transfer. Virology 2011, 412, 75–82. [Google Scholar] [CrossRef]
- Martínez-Macías, M.I.; Córdoba-Cañero, D.; Ariza, R.R.; Roldán-Arjona, T. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J. Biol. Chem. 2013, 288, 5496–5505. [Google Scholar] [CrossRef]
- Córdoba-Cañero, D.; Roldán-Arjona, T.; Ariza, R.R. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. Plant J. 2011, 68, 693–702. [Google Scholar] [CrossRef]
- Lv, Q.; Han, S.; Wang, L.; Xia, J.; Li, P.; Hu, R.; Wang, J.; Gao, L.; Chen, Y.; Wang, Y.; et al. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res. 2022, 50, 6820–6836. [Google Scholar] [CrossRef]
- Sanchez, D.H.; Gaubert, H.; Drost, H.-G.; Zabet, N.R.; Paszkowski, J. High-frequency recombination between members of an LTR retrotransposon family during transposition bursts. Nat. Commun. 2017, 8, 1283. [Google Scholar] [CrossRef] [PubMed]
- Serviene, E.; Shapka, N.; Cheng, C.-P.; Panavas, T.; Phuangrat, B.; Baker, J.; Nagy, P.D. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. USA 2005, 102, 10545–10550. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.; Prasanth, K.R.; Nagy, P.D. Coordinated Function of Cellular DEAD-Box Helicases in Suppression of Viral RNA Recombination and Maintenance of Viral Genome Integrity. PLoS Pathog. 2015, 11, e1004680. [Google Scholar] [CrossRef]
- Hirochika, H.; Otsuki, H. Extrachromosomal circular forms of the tobacco retrotransposon Tto1. Gene 1995, 165, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Lanciano, S.; Zhang, P.; Llauro, C.; Mirouze, M. Identification of extrachromosomal circular forms of active transposable elements using mobilome-seq. Methods Mol. Biol. 2021, 2250, 87–93. [Google Scholar] [CrossRef]
- Zhang, P.; Mbodj, A.; Soundiramourtty, A.; Llauro, C.; Ghesquière, A.; Ingouff, M.; Keith Slotkin, R.; Pontvianne, F.; Catoni, M.; Mirouze, M. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nat. Commun. 2023, 14, 5236. [Google Scholar] [CrossRef]
- Thieme, M.; Lanciano, S.; Balzergue, S.; Daccord, N.; Mirouze, M.; Bucher, E. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol. 2017, 18, 134. [Google Scholar] [CrossRef]
- Esposito, S.; Barteri, F.; Casacuberta, J.; Mirouze, M.; Carputo, D.; Aversano, R. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta 2019, 250, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Drost, H.-G.; Catoni, M.; Gouil, Q.; Lopez-Gomollon, S.; Baulcombe, D.; Paszkowski, J. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet. 2019, 15, e1008370. [Google Scholar] [CrossRef]
- Merkulov, P.; Egorova, E.; Kirov, I. Composition and structure of Arabidopsis thaliana extrachromosomal circular DNAs revealed by nanopore sequencing. Plants 2023, 12, 2178. [Google Scholar] [CrossRef]
- Merkulov, P.; Serganova, M.; Petrov, G.; Mityukov, V.; Kirov, I. Long-read sequencing of extrachromosomal circular DNA and genome assembly of a Solanum lycopersicum breeding line revealed active LTR retrotransposons originating from S. Peruvianum L. introgressions. BMC Genom. 2024, 25, 404. [Google Scholar] [CrossRef] [PubMed]
- Kazancev, M.; Merkulov, P.; Tiurin, K.; Demurin, Y.; Soloviev, A.; Kirov, I. Comparative analysis of active LTR retrotransposons in sunflower (Helianthus annuus L.): From extrachromosomal circular DNA detection to protein structure prediction. Int. J. Mol. Sci. 2024, 25, 13615. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, D.J.; Stefanisko, K.M.; Nyswaner, K.M.; Moore, S.P.; Oh, J.; Hughes, S.H. Retrotransposon suicide: Formation of Ty1 circles and autointegration via a central DNA flap. J. Virol. 2006, 80, 11920–11934. [Google Scholar] [CrossRef]
- Li, L.; Olvera, J.M.; Yoder, K.E.; Mitchell, R.S.; Butler, S.L.; Lieber, M.; Martin, S.L.; Bushman, F.D. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 2001, 20, 3272–3281. [Google Scholar] [CrossRef]
- Rattray, A.J.; Shafer, B.K.; Garfinkel, D.J. The Saccharomyces cerevisiae DNA recombination and repair functions of the RAD52 epistasis group inhibit Ty1 transposition. Genetics 2000, 154, 543–556. [Google Scholar] [CrossRef]
- Quadrana, L.; Etcheverry, M.; Gilly, A.; Caillieux, E.; Madoui, M.-A.; Guy, J.; Bortolini Silveira, A.; Engelen, S.; Baillet, V.; Wincker, P.; et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 2019, 10, 3421. [Google Scholar] [CrossRef]
- Neumann, P.; Navrátilová, A.; Koblížková, A.; Kejnovský, E.; Hřibová, E.; Hobza, R.; Widmer, A.; Doležel, J.; Macas, J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob. DNA 2011, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Novikova, O. Chromodomains and LTR retrotransposons in plants. Commun. Integr. Biol. 2009, 2, 158–162. [Google Scholar] [CrossRef]
- Novikov, A.; Smyshlyaev, G.; Novikova, O. Evolutionary history of LTR retrotransposon chromodomains in plants. Int. J. Plant Genomics 2012, 2012, 874743. [Google Scholar] [CrossRef] [PubMed]
- Lachner, M.; O’Carroll, D.; Rea, S.; Mechtler, K.; Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410, 116–120. [Google Scholar] [CrossRef]
- Gao, X.; Hou, Y.; Ebina, H.; Levin, H.L.; Voytas, D.F. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008, 18, 359–369. [Google Scholar] [CrossRef]
- Heuberger, M.; Koo, D.-H.; Ahmed, H.I.; Tiwari, V.K.; Abrouk, M.; Poland, J.; Krattinger, S.G.; Wicker, T. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mob. DNA 2024, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Bridier-Nahmias, A.; Tchalikian-Cosson, A.; Baller, J.A.; Menouni, R.; Fayol, H.; Flores, A.; Saïb, A.; Werner, M.; Voytas, D.F.; Lesage, P. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 2015, 348, 585–588. [Google Scholar] [CrossRef]
- Li, F.; Lee, M.; Esnault, C.; Wendover, K.; Guo, Y.; Atkins, P.; Zaratiegui, M.; Levin, H.L. Identification of an integrase-independent pathway of retrotransposition. Sci. Adv. 2022, 8, eabm9390. [Google Scholar] [CrossRef]
- McGurk, M.P.; Barbash, D.A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 2018, 28, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Onyango, D.O.; Stark, J.M. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 2016, 32, 566–575. [Google Scholar] [CrossRef]
- Orel, N.; Kyryk, A.; Puchta, H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 2003, 35, 604–612. [Google Scholar] [CrossRef]
- Boeke, J.D.; Garfinkel, D.J.; Styles, C.A.; Fink, G.R. Ty elements transpose through an RNA intermediate. Cell 1985, 40, 491–500. [Google Scholar] [CrossRef]
- Fink, G.R.; Boeke, J.D.; Garfinkel, D.J. The mechanism and consequences of retrotransposition. Trends Genet. 1986, 2, 118–123. [Google Scholar] [CrossRef]
- Mita, P.; Wudzinska, A.; Sun, X.; Andrade, J.; Nayak, S.; Kahler, D.J.; Badri, S.; LaCava, J.; Ueberheide, B.; Yun, C.Y.; et al. LINE-1 protein localization and functional dynamics during the cell cycle. eLife 2018, 7, e30058. [Google Scholar] [CrossRef]
- Horie, K.; Saito, E.-S.; Keng, V.W.; Ikeda, R.; Ishihara, H.; Takeda, J. Retrotransposons influence the mouse transcriptome: Implication for the divergence of genetic traits. Genetics 2007, 176, 815–827. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Keegan, R.M.; Prazak, L.; Dubnau, J. Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. PLoS Biol. 2019, 17, e3000278. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Zhang, X.; Cho, J. Visualization of synthetic retroelement integration reveals determinants of permissivity to retrotransposition. Plant Physiol. 2023, 193, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Mair, A.; Xu, S.-L.; Branon, T.C.; Ting, A.Y.; Bergmann, D.C. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 2019, 8, e47864. [Google Scholar] [CrossRef]
- Borredá, C.; Leduque, B.; Colot, V.; Quadrana, L. Transposable element products, functions, and regulatory networks in Arabidopsis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kirov, I. Toward transgene-free transposon-mediated biological mutagenesis for plant breeding. Int. J. Mol. Sci. 2023, 24, 17054. [Google Scholar] [CrossRef] [PubMed]
- Papikian, A.; Liu, W.; Gallego-Bartolomé, J.; Jacobsen, S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019, 10, 729. [Google Scholar] [CrossRef]
- Steinberger, A.R.; Voytas, D.F. Virus-induced gene editing free from tissue culture. Nat. Plants 2025, 11, 1241–1251. [Google Scholar] [CrossRef]
- Weiss, T.; Kamalu, M.; Shi, H.; Li, Z.; Amerasekera, J.; Zhong, Z.; Adler, B.A.; Song, M.M.; Vohra, K.; Wirnowski, G.; et al. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. Nat. Plants 2025, 11, 967–976. [Google Scholar] [CrossRef]
- Yoshida, T.; Ishikawa, M.; Toki, S.; Ishibashi, K. Heritable tissue-culture-free gene editing in Nicotiana benthamiana through viral delivery of SpCas9 and sgRNA. Plant Cell Physiol. 2024, 65, 1743–1750. [Google Scholar] [CrossRef]
- Qiao, J.-H.; Zang, Y.; Gao, Q.; Liu, S.; Zhang, X.-W.; Hu, W.; Wang, Y.; Han, C.; Li, D.; Wang, X.-B. Transgene- and tissue culture-free heritable genome editing using RNA virus-based delivery in wheat. Nat. Plants 2025, 11, 1252–1259. [Google Scholar] [CrossRef]
- Cao, X.; Xie, H.; Song, M.; Lu, J.; Ma, P.; Huang, B.; Wang, M.; Tian, Y.; Chen, F.; Peng, J.; et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation 2023, 4, 100345. [Google Scholar] [CrossRef]
- Hu, M.; Liu, D. Unlocking the potential of genome editing in agriculture with tissue culture-free techniques. New Phytol. 2025, 246, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Quadrana, L.; Bortolini Silveira, A.; Mayhew, G.F.; LeBlanc, C.; Martienssen, R.A.; Jeddeloh, J.A.; Colot, V. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 2016, 5, e15716. [Google Scholar] [CrossRef]
- Croce, R.; Carmo-Silva, E.; Cho, Y.B.; Ermakova, M.; Harbinson, J.; Lawson, T.; McCormick, A.J.; Niyogi, K.K.; Ort, D.R.; Patel-Tupper, D.; et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell 2024, 36, 3944–3973. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, X.; Li, K.; Yao, Q.; Zhong, D.; Deng, Q.; Lu, Y. Large-scale genome editing in plants: Approaches, applications, and future perspectives. Curr. Opin. Biotechnol. 2023, 79, 102875. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Merkulov, P.; Polkhovskiy, A.; Kamarauli, E.; Tiurin, K.; Soloviev, A.; Kirov, I. Host Factors Promoting the LTR Retrotransposon Life Cycle in Plant Cells: Current Knowledge and Future Directions. Int. J. Mol. Sci. 2026, 27, 374. https://doi.org/10.3390/ijms27010374
Merkulov P, Polkhovskiy A, Kamarauli E, Tiurin K, Soloviev A, Kirov I. Host Factors Promoting the LTR Retrotransposon Life Cycle in Plant Cells: Current Knowledge and Future Directions. International Journal of Molecular Sciences. 2026; 27(1):374. https://doi.org/10.3390/ijms27010374
Chicago/Turabian StyleMerkulov, Pavel, Alexander Polkhovskiy, Elizaveta Kamarauli, Kirill Tiurin, Alexander Soloviev, and Ilya Kirov. 2026. "Host Factors Promoting the LTR Retrotransposon Life Cycle in Plant Cells: Current Knowledge and Future Directions" International Journal of Molecular Sciences 27, no. 1: 374. https://doi.org/10.3390/ijms27010374
APA StyleMerkulov, P., Polkhovskiy, A., Kamarauli, E., Tiurin, K., Soloviev, A., & Kirov, I. (2026). Host Factors Promoting the LTR Retrotransposon Life Cycle in Plant Cells: Current Knowledge and Future Directions. International Journal of Molecular Sciences, 27(1), 374. https://doi.org/10.3390/ijms27010374

