Seasonal Variations in Estimated Whole Blood Viscosity Associated with HbA1c: Evidence from Retrospective Pathology Review for Diabetes Management
Abstract
1. Introduction
2. Results
3. Discussion
3.1. Novelty of Findings
3.2. Implications for Clinical Diagnosis and Research
3.3. Strength and Limitation
4. Materials and Methods
- Daylight savings: 1st Sunday of October—1st Sunday of April (1 October–31 March)
- Standard-time: 1st Sunday of April–1st Sunday of October (1 April–30 September)
- Spring: October–December (1 October–31 December)
- Summer: January–March (1 January–31 March)
- Autumn: April–June (1 April–30 June)
- Winter: July–September (1 July–30 September)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowe, G.D.; Lee, A.J.; Rumley, A.; Price, J.F.; Fowkes, F.G. Blood viscosity and risk of cardiovascular events: The Edinburgh Artery Study. Br. J. Haematol. 1997, 96, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Vizza, P.; Cicone, F.; Rubino, M.; Fiorentino, T.V.; Perticone, M.; Mannino, G.C.; Sciacqua, A.; Guzzi, P.H.; Veltri, P.; et al. Elevated whole blood viscosity is associated with an impaired insulin-stimulated myocardial glucose metabolism. Cardiovasc. Diabetol. 2024, 23, 431. [Google Scholar] [CrossRef] [PubMed]
- Dormandy, J.A. Influence of blood viscosity on blood flow and the effect of low molecular weight dextran. BMJ 1971, 4, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.Q.; Cho, D.J.; Rosenson, R.S. Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovasc. Drugs Ther. 2012, 26, 339–348. [Google Scholar] [CrossRef]
- Parkkila, K.; Valtonen, R.I.P.; Hiltunen, L.; Hintsala, H.E.; Jaakkola, J.J.K.; Ikäheimo, T.M. The effects of submaximal exercise and cold exposure on blood coagulation parameters in coronary artery disease patients. BMC Cardiovasc. Disord. 2021, 21, 93. [Google Scholar] [CrossRef]
- Gori, T.; Wild, P.S.; Schnabel, R.; Schulz, A.; Pfeiffer, N.; Blettner, M.; Beutel, M.E.; Forconi, S.; Jung, F.; Lackner, K.J.; et al. The distribution of whole blood viscosity, its determinants and relationship with arterial blood pressure in the community: Cross-sectional analysis from the Gutenberg Health Study. Ther. Adv. Cardiovasc. Dis. 2015, 9, 354–365. [Google Scholar] [CrossRef]
- Naghedi-Baghdar, H.; Nazari, S.-M.; Taghipour, A.; Nematy, M.; Shokri, S.; Mehri, M.-R.; Molkara, T.; Javan, R. Effect of diet on blood viscosity in healthy humans: A systematic review. Electron. Physician 2018, 10, 6563–6570. [Google Scholar] [CrossRef]
- Celik, T.; Balta, S.; Ozturk, C.; Iyisoy, A. Whole Blood Viscosity and Cardiovascular Diseases: A Forgotten Old Player of the Game. Med. Princ. Pract. 2016, 25, 499–500. [Google Scholar] [CrossRef]
- Slyper, A.; Le, A.; Jurva, J.; Gutterman, D. The influence of lipoproteins on whole-blood viscosity at multiple shear rates. Metabolism 2005, 54, 764–768. [Google Scholar] [CrossRef]
- Sloop, G.; Holsworth, R.E.; Weidman, J.J.; St Cyr, J.A. The role of chronic hyperviscosity in vascular disease. Ther. Adv. Cardiovasc. Dis. 2015, 9, 19–25. [Google Scholar] [CrossRef]
- Fares, A. Winter cardiovascular diseases phenomenon. N. Am. J. Med. Sci. 2013, 5, 266–279. [Google Scholar] [CrossRef]
- Gould, C.F.; Heft-Neal, S.; Heaney, A.K.; Bendavid, E.; Callahan, C.W.; Kiang, M.V.; Graff Zivin, J.; Burke, M. Temperature extremes impact mortality and morbidity differently. Sci. Adv. 2025, 11, eadr3070. [Google Scholar] [CrossRef] [PubMed]
- Abrignani, M.G.; Lombardo, A.; Braschi, A.; Renda, N.; Abrignani, V. Climatic influences on cardiovascular diseases. World J. Cardiol. 2022, 14, 152–169. [Google Scholar] [CrossRef] [PubMed]
- El-Jabali, A.; Abdullah, K.M.; Huynh, N.; Johnson, A.; Mahmood, O. The Influence of Seasonal Variation on Patients with Pulmonary Embolism: A Four-Year Retrospective Analysis. Blood 2024, 144, 5554. [Google Scholar] [CrossRef]
- Marti-Soler, H.; Gonseth, S.; Gubelmann, C.; Stringhini, S.; Bovet, P.; Chen, P.C.; Wojtyniak, B.; Paccaud, F.; Tsai, D.H.; Zdrojewski, T.; et al. Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations. PLoS ONE 2014, 9, e113500. [Google Scholar] [CrossRef]
- Park, S.; Kario, K.; Chia, Y.C.; Turana, Y.; Chen, C.H.; Buranakitjaroen, P.; Nailes, J.; Hoshide, S.; Siddique, S.; Sison, J.; et al. The influence of the ambient temperature on blood pressure and how it will affect the epidemiology of hypertension in Asia. J. Clin. Hypertens. 2020, 22, 438–444. [Google Scholar] [CrossRef]
- Fröhlich, M.; Sund, M.; Russ, S.; Hoffmeister, A.; Fischer, H.G.; Hombach, V.; Koenig, W. Seasonal variations of rheological and hemostatic parameters and acute-phase reactants in young, healthy subjects. Arter. Thromb. Vasc. Biol. 1997, 17, 2692–2697. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Hajat, S.; Haines, A.; Herrett, E.; Wilkinson, P.; Smeeth, L. Short term effects of temperature on risk of myocardial infarction in England and Wales: Time series regression analysis of the Myocardial Ischaemia National Audit Project (MINAP) registry. BMJ 2010, 341, c3823. [Google Scholar] [CrossRef]
- Graham, M.S.; Fletcher, G.L. Blood and plasma viscosity of winter flounder: Influence of temperature, red cell concentration and shear rate. Can. J. Zool 1983, 61, 2344–2350. [Google Scholar] [CrossRef]
- Cinar, Y.; Senyol, A.M.; Duman, K. Blood viscosity and blood pressure: Role of temperature and hyperglycemia. Am. J. Hypertens. 2001, 14, 433–438. [Google Scholar] [CrossRef]
- Ni, W.; Schneider, A.; Wolf, K.; Zhang, S.; Chen, K.; Koenig, W.; Peters, A.; Breitner, S. Short-term effects of cold spells on plasma viscosity: Results from the KORA cohort study in Augsburg, Germany. Environ. Pollut. 2022, 302, 119071. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Igaki, M.; Komatsu, M.; Tanaka, S.-i. Association between Physical Activity and Seasonal Variations in Metabolic and Vascular Function in Adults. Endocrines 2021, 2, 150–159. [Google Scholar] [CrossRef]
- Lee, B.J.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- De Vita, A.; Belmusto, A.; Di Perna, F.; Tremamunno, S.; De Matteis, G.; Franceschi, F.; Covino, M. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases. J. Clin. Med. 2024, 13, 759. [Google Scholar] [CrossRef]
- Kameneva, M.V.; Watach, M.J.; Borovetz, H.S. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clin. Hemorheol. Microcirc. 1999, 21, 357–363. [Google Scholar]
- Valeanu, L.; Ginghina, C.; Bubenek-Turconi, S. Blood Rheology Alterations in Patients with Cardiovascular Diseases. Rom. J. Anaesth. Intensive Care 2021, 28, 41–46. [Google Scholar]
- Irace, C.; Carallo, C.; Scavelli, F.; De Franceschi, M.S.; Esposito, T.; Gnasso, A. Blood Viscosity in Subjects With Normoglycemia and Prediabetes. Diabetes Care 2014, 37, 488–492. [Google Scholar] [CrossRef]
- Göbel, B.O.; Schulte-Göbel, A.; Weisser, B.; Glänzer, K.; Vetter, H.; Düsing, R. Arterial blood pressure. Correlation with erythrocyte count, hematocrit, and hemoglobin concentration. Am. J. Hypertens. 1991, 4, 14–19. [Google Scholar] [CrossRef]
- Hightower, C.M.; Hightower, J.D.; Vázquez, B.Y.; Intaglietta, M. Seasonal hematocrit variation and health risks in the adult population of Kinshasa, Democratic Republic of Congo. Vasc. Health Risk Manag. 2009, 5, 1001–1005. [Google Scholar] [CrossRef]
- Yoshimura, H. Seasonal Changes in Human Body Fluids. Jpn. J. Physiol. 1958, 8, 165–179. [Google Scholar] [CrossRef]
- Sung, K. Seasonal variation of C-Reactive Protein in apparently healthy Koreans. Int. J. Cardiol. 2006, 107, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Aoyagi, Y. Seasonal variations in physical activity and implications for human health. Eur. J. Appl. Physiol. 2009, 107, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, S.S.; Abdulkreem, E.M.; Alfurayh, M.S.; Ahmed, A.A.; Rikabi, H.A. The Role of HbA1c in the Follow-Up and Control of Diabetes Mellitus. Cureus 2025, 17, e78357. [Google Scholar] [CrossRef] [PubMed]
- Asplund, J. Seasonal Variation of HbA1c in Adult Diabetic Patients. Diabetes Care 1997, 20, 234. [Google Scholar] [CrossRef]
- Gikas, A.; Sotiropoulos, A.; Pastromas, V.; Papazafiropoulou, A.; Apostolou, O.; Pappas, S. Seasonal variation in fasting glucose and HbA1c in patients with type 2 diabetes. Prim. Care Diabetes 2009, 3, 111–114. [Google Scholar] [CrossRef]
- Higgins, T.; Saw, S.; Sikaris, K.; Wiley, C.L.; Cembrowski, G.C.; Lyon, A.W.; Khajuria, A.; Tran, D. Seasonal Variation in Hemoglobin A1c: Is It the Same in Both Hemispheres? J. Diabetes Sci. Technol. 2009, 3, 668–671. [Google Scholar] [CrossRef]
- Sakura, H.; Tanaka, Y.; Iwamoto, Y. Seasonal fluctuations of glycated hemoglobin levels in Japanese diabetic patients. Diabetes Res. Clin. Pract. 2010, 88, 65–70. [Google Scholar] [CrossRef]
- Ahuja, S.; Sugandha, S.; Kumar, R.; Zaheer, S.; Singh, M. Seasonal variation of HbA1c levels in diabetic and non-diabetic patients. Pract. Lab. Med. 2024, 40, e00396. [Google Scholar] [CrossRef]
- Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Assessment of changes in glycaemic control and blood viscosity determinants: Does glycaemia impact on haematocrit, proteinaemia or dyslipidaemia? Med. Sci. 2025, 13, 303. [Google Scholar] [CrossRef]
- Nishikawa, T.; Miyamatsu, N.; Higashiyama, A.; Kubota, Y.; Nishida, Y.; Hirata, T.; Hirata, A.; Miyazaki, J.; Sugiyama, D.; Kuwabara, K.; et al. Seasonal variation in vascular dehydration risk: Insights from the Kobe Orthopedic and Biomedical Epidemiologic (KOBE) study. Environ. Health Prev. Med. 2024, 29, 62. [Google Scholar] [CrossRef]
- Sawka, M.N.; Convertino, V.A.; Eichner, E.R.; Schnieder, S.M.; Young, A.J. Blood volume: Importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med. Sci. Sports Exerc. 2000, 32, 332–348. [Google Scholar] [CrossRef]
- Larcan, A.; Stoltz, J.F.; Gaillard, S. Blood viscosity. Measurement and applications (hyper—And hypoviscosity syndromes) (author’s transl). Nouv. Presse Med. 1981, 10, 1411–1415. [Google Scholar]
- Doi, T.; Sakurai, M.; Hamada, K.; Matsumoto, K.; Yanagisawa, K.; Kikuchi, N.; Morimoto, T.; Greenleaf, J.E. Plasma volume and blood viscosity during 4 h sitting in a dry environment: Effect of prehydration. Aviat. Space Environ. Med. 2004, 75, 500–504. [Google Scholar]
- Nwose, E.U.; Richards, R.S. Whole blood viscosity extrapolation formula: Note on appropriateness of units. N. Am. J. Med. Sci. 2011, 3, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Bissinger, R.; Shamaa, H.; Patel, S.; Bourne, L.; Artunc, F.; Qadri, S.M. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. Pathophysiology 2023, 30, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Drugs affecting HbA1c levels. Indian J. Endocrinol. Metab. 2012, 16, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Thirup, P. Haematocrit: Within-subject and seasonal variation. Sports Med. 2003, 33, 231–243. [Google Scholar] [CrossRef]
- Reinhart, W.H. Molecular biology and self-regulatory mechanisms of blood viscosity: A review. Biorheology 2001, 38, 203–212. [Google Scholar] [CrossRef]
- Bhak, Y.; Tenesa, A. Mendelian randomization study of whole blood viscosity and cardiovascular diseases. PLoS ONE 2024, 19, e0294095. [Google Scholar] [CrossRef]
- Nwose, E.U.; Butkowski, E.; Cann, N.G. Whole blood viscosity determination in diabetes management: Perspective in practice. N. Am. J. Med. Sci. 2009, 1, 110–113. [Google Scholar]
- Nwose, E.U. Whole blood viscosity assessment issues V: Prevalence in hypercreatinaemia, hyperglycaemia and hyperlipidaemia. N. Am. J. Med. Sci. 2010, 2, 403–408. [Google Scholar] [CrossRef]
- Nwose, E.U.; Cann, N.G.; Butkowski, E. Whole blood viscosity assessment issues III: Association with international normalized ratio and thrombocytopenia. N. Am. J. Med. Sci. 2010, 2, 301–305. [Google Scholar] [PubMed]
- Nwose, E.U.; Richards, R.S. Whole blood viscosity issues VII: The correlation with leucocytosis and implication on leukapheresis. N. Am. J. Med. Sci. 2010, 2, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Nwose, E.U.; Bwititi, P.T. Correlation between blood coagulation profile and viscosity: Clinical laboratory observational study. Med. Sci. 2025, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ye, J.; Zheng, W.; Qiao, P.; Gu, H.; Qin, W.; He, X. The impact of gender differences on the clinical characteristics of critically ill patients with venous thromboembolism: A retrospective, observational study. Medicine 2024, 103, e38423. [Google Scholar] [CrossRef]
- Perez Rogers, A.; Estes, M. Hyperviscosity syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kyelu, B.A.; Bwititi, P.T.; Kauter, K.; Nwose, E.U. Commentary: Heart–brain interaction in cardiogenic dementia: Pathophysiology and therapeutic potential. Front. Cardiovasc. Med. 2025, 11, 1479675. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, G.; Liang, Y.; He, S.; Lyu, M.; Zhu, Y. Heart-brain interaction in cardiogenic dementia: Pathophysiology and therapeutic potential. Front. Cardiovasc. Med. 2024, 11, 1304864. [Google Scholar] [CrossRef]
- Zaitoon, H.; Khalil, H.; Cohen-Sela, E.; Eyal, O.; Interator, H.; Oren, A.; Laurian, I.; Dorfman, A.; Chorna, E.; Lebenthal, Y.; et al. Seasonal variations in HbA1c and body composition: A Sex-specific analysis in adolescents with type 1 diabetes. Diabetes/Metab. Res. Rev. 2025, 41, e70047. [Google Scholar] [CrossRef]
- Libruder, C.; Yaari, R.; Fluss, R.; Hershkovitz, Y.; Ram, A.; Tanne, D.; Huppert, A.; Zucker, I. Age-dependent seasonality in the incidence of stroke: A 21-year population-based study. Eur. Stroke J. 2024, 9, 460–467. [Google Scholar] [CrossRef]
- Torn, E.H.M.; van Zaane, B.; van der Kaaij, N.P.; Vernooij, L.M.; Heida, J.F.; van Klei, W.A.; Immink, R.V. Cerebrovascular regulation during increases in systemic blood flow and systemic vascular resistance. J. Appl. Physiol. 2025, 139, 1694–1702. [Google Scholar] [CrossRef]
- Beaudin, A.E.; Prsa, A.J.; Hanly, P.J.; Raneri, J.K.; Pun, M.; Mitsis, G.D.; Poulin, M.J. Dynamic cerebral autoregulation in healthy males during sleep accompanied by intermittent hypoxia. J. Appl. Physiol. 2025, 139, 1492–1504. [Google Scholar] [CrossRef]
- Santhakumar, S.; Stephen, L.; Barade, A.; Kulkarni, U.; George, B.; Edison, E.S. Dysregulation of iron homeostasis in β-Thalassemia and impaired neutrophil activity. Thalass. Rep. 2025, 15, 4. [Google Scholar] [CrossRef]
- Mohamed, H.; Abbas, A.M.; Huneif, M.A.; Alqahtani, S.M.; Ahmed, A.M.; Babker, A.M.A.; Elagab, E.A.M.; Haris, P.I. Influence of Ramadan fasting on hemoglobin A1C, lipid profile, and body mass index among type 2 Diabetic Patients in Najran City, Saudi Arabia. Open Access Maced. J. Med. Sci. 2021, 9, 318–325. [Google Scholar] [CrossRef]
- Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Blood viscosity changes in diabetes mellitus: A 20-year bibliometric review and future directions. Cureus 2024, 16, e64211. [Google Scholar] [CrossRef]
- Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Retrospective study of biochemical and haematological changes in diabetes mellitus: The protocol. In Protocolio; Springer Nature: Berlin/Heidelberg, Germany. [CrossRef]
- Nwose, E.U. Cardiovascular risk assessment and support—Whole blood viscosity assessment issues I: Extrapolation chart and reference values. N. Am. J. Med. Sci. 2010, 2, 165–169. [Google Scholar]
- Nwose, E.U.; Richards, R.S.; Butkowski, E.; Cann, N. Position paper for health authorities: Archived clinical pathology data—Treasure to revalue and appropriate. Afr. J. Med. Med. Sci. 2010, 39, 311–315. [Google Scholar]
| Variables Continuous | N | Min | Max | Mean | Std Dev |
|---|---|---|---|---|---|
| HbA1c levels | 21,016 | 2.40 | 21.90 | 6.85 | 1.77 |
| Serum protein levels g/L | 21,011 | 34 | 138 | 71.56 | 5.74 |
| Haematocrit (decimal fraction) | 21,016 | 0.13 | 0.66 | 0.42 | 0.04 |
| Estimated whole blood viscosity | 21,011 | 8.99 | 25.82 | 16.89 | 1.23 |
| Random blood glucose level | 5452 | 0.60 | 86.30 | 9.61 | 6.99 |
| Fasting blood glucose level | 12,384 | 0.40 | 34.20 | 7.49 | 3.20 |
| Variable | Group * | Mean | Std. Deviation | N | p Value |
|---|---|---|---|---|---|
| HbA1c | 1 | 6.8439 | 1.73342 | 10,041 | 0.500 |
| 2 | 6.8604 | 1.79619 | 10,974 | ||
| Serum Protein | 1 | 71.26 | 5.789 | 10,039 | 0.000 |
| 2 | 71.83 | 5.677 | 10,971 | ||
| Haematocrit | 1 | 0.42128 | 0.044685 | 10,041 | 0.000 |
| 2 | 0.42529 | 0.044880 | 10,974 | ||
| eWBV | 1 | 16.81838 | 1.226140 | 10,039 | 0.000 |
| 2 | 16.96229 | 1.225274 | 10,971 |
| Variables | Seasons (Groups) | Mean | Std. Deviation | N |
|---|---|---|---|---|
| HbA1c (p < 0.20) | 3 Spring | 6.870 | 1.753 | 4668 |
| 4 Summer | 6.821 | 1.716 | 5373 | |
| 5 Autumn | 6.840 | 1.762 | 5163 | |
| 6 Winter | 6.878 | 1.826 | 5812 | |
| Serum Protein (p < 0.001) | 3 Spring | 71.425 | 5.957 | 4667 |
| 4 Summer | 71.123 | 5.637 | 5372 | |
| 5 Autumn | 71.469 | 5.596 | 5162 | |
| 6 Winter | 72.149 | 5.730 | 5810 | |
| Haematocrit (p < 0.001) | 3 Spring | 0.422 | 0.045 | 4668 |
| 4 Summer | 0.421 | 0.044 | 5373 | |
| 5 Autumn | 0.425 | 0.045 | 5163 | |
| 6 Winter | 0.425 | 0.045 | 5812 | |
| eWBV (p < 0.001) | 3 Spring | 16.854 | 1.266 | 4667 |
| 4 Summer | 16.787 | 1.189 | 5372 | |
| 5 Autumn | 16.903 | 1.215 | 5162 | |
| 6 Winter | 17.015 | 1.232 | 5810 |
| Dependent Variable | (I) ** | (J) ** | I − J * | Sig. | 95% Confidence Interval | |
|---|---|---|---|---|---|---|
| Lower Bound | Upper Bound | |||||
| HbA1c levels | 3 | 4 | 0.0491 | 0.165 | −0.0202 | 0.1184 |
| 5 | 0.0299 | 0.402 | −0.04 | 0.0998 | ||
| 6 | −0.0088 | 0.799 | −0.0769 | 0.0592 | ||
| 4 | 3 | −0.0491 | 0.165 | −0.1184 | 0.0202 | |
| 5 | −0.0192 | 0.577 | −0.0867 | 0.0483 | ||
| 6 | −0.0579 | 0.083 | −0.1235 | 0.0076 | ||
| 5 | 3 | −0.0299 | 0.402 | −0.0998 | 0.04 | |
| 4 | 0.0192 | 0.577 | −0.0483 | 0.0867 | ||
| 6 | −0.0387 | 0.252 | −0.105 | 0.0275 | ||
| 6 | 3 | 0.0088 | 0.799 | −0.0592 | 0.0769 | |
| 4 | 0.0579 | 0.083 | −0.0076 | 0.1235 | ||
| 5 | 0.0387 | 0.252 | −0.0275 | 0.105 | ||
| Estimated whole blood viscosity | 3 | 4 | 0.06666 | 0.007 | 0.01862 | 0.11471 |
| 5 | −0.04867 | 0.049 | −0.09717 | −0.00018 | ||
| 6 | −0.16114 | <0.001 | −0.20833 | −0.11395 | ||
| 4 | 3 | −0.06666 | 0.007 | −0.11471 | −0.01862 | |
| 5 | −0.11534 | <0.001 | −0.16213 | −0.06854 | ||
| 6 | −0.22781 | <0.001 | −0.27325 | −0.18236 | ||
| 5 | 3 | 0.04867 | 0.049 | 0.00018 | 0.09717 | |
| 4 | 0.11534 | <0.001 | 0.06854 | 0.16213 | ||
| 6 | −0.11247 | <0.001 | −0.15839 | −0.06655 | ||
| 6 | 3 | 0.16114 | <0.001 | 0.11395 | 0.20833 | |
| 4 | 0.22781 | <0.001 | 0.18236 | 0.27325 | ||
| 5 | 0.11247 | <0.001 | 0.06655 | 0.15839 | ||
| Dependent Variable | (I) ** | (J) ** | I − J * | Sig. | 95% Confidence Interval | |
|---|---|---|---|---|---|---|
| Lower Bound | Upper Bound | |||||
| Serum protein levels g/L | 3 | 4 | 0.30 | 0.008 | 0.08 | 0.53 |
| 5 | −0.04 | 0.716 | −0.27 | 0.18 | ||
| 6 | −0.72 | <0.001 | −0.94 | −0.5 | ||
| 4 | 3 | −0.30 | 0.008 | −0.53 | −0.08 | |
| 5 | −0.34 | 0.002 | −0.56 | −0.13 | ||
| 6 | −1.03 | <0.001 | −1.24 | −0.81 | ||
| 5 | 3 | 0.04 | 0.716 | −0.18 | 0.27 | |
| 4 | 0.34 | 0.002 | 0.13 | 0.56 | ||
| 6 | −0.68 | <0.001 | −0.9 | −0.47 | ||
| 6 | 3 | 0.72 | <0.001 | 0.5 | 0.94 | |
| 4 | 1.03 | <0.001 | 0.81 | 1.24 | ||
| 5 | 0.68 | <0.001 | 0.47 | 0.9 | ||
| Haematocrit level in decimal fraction | 3 | 4 | 0.00128 | 0.153 | −0.00048 | 0.00304 |
| 5 | −0.00347 | <0.001 | −0.00524 | −0.00169 | ||
| 6 | −0.00317 | <0.001 | −0.0049 | −0.00145 | ||
| 4 | 3 | −0.00128 | 0.153 | −0.00304 | 0.00048 | |
| 5 | −0.00474 | <0.001 | −0.00646 | −0.00303 | ||
| 6 | −0.00445 | <0.001 | −0.00611 | −0.00279 | ||
| 5 | 3 | 0.00347 | <0.001 | 0.00169 | 0.00524 | |
| 4 | 0.00474 | <0.001 | 0.00303 | 0.00646 | ||
| 6 | 0.00029 | 0.733 | −0.00139 | 0.00197 | ||
| 6 | 3 | 0.00317 | <0.001 | 0.00145 | 0.0049 | |
| 4 | 0.00445 | <0.001 | 0.00279 | 0.00611 | ||
| 5 | −0.00029 | 0.733 | −0.00197 | 0.00139 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mbah, J.I.; Bwititi, P.T.; Ong, L.K.; Gyawali, P.; Nwose, E.U. Seasonal Variations in Estimated Whole Blood Viscosity Associated with HbA1c: Evidence from Retrospective Pathology Review for Diabetes Management. Int. J. Mol. Sci. 2026, 27, 368. https://doi.org/10.3390/ijms27010368
Mbah JI, Bwititi PT, Ong LK, Gyawali P, Nwose EU. Seasonal Variations in Estimated Whole Blood Viscosity Associated with HbA1c: Evidence from Retrospective Pathology Review for Diabetes Management. International Journal of Molecular Sciences. 2026; 27(1):368. https://doi.org/10.3390/ijms27010368
Chicago/Turabian StyleMbah, Jovita I., Phillip T. Bwititi, Lin K. Ong, Prajwal Gyawali, and Ezekiel U. Nwose. 2026. "Seasonal Variations in Estimated Whole Blood Viscosity Associated with HbA1c: Evidence from Retrospective Pathology Review for Diabetes Management" International Journal of Molecular Sciences 27, no. 1: 368. https://doi.org/10.3390/ijms27010368
APA StyleMbah, J. I., Bwititi, P. T., Ong, L. K., Gyawali, P., & Nwose, E. U. (2026). Seasonal Variations in Estimated Whole Blood Viscosity Associated with HbA1c: Evidence from Retrospective Pathology Review for Diabetes Management. International Journal of Molecular Sciences, 27(1), 368. https://doi.org/10.3390/ijms27010368

