Special Issue “Cellular Redox Mechanisms in Inflammation and Programmed Cell Death”
1. Introduction
2. An Overview of Published Articles
2.1. Pathways of ROS/RNS-Mediated Cell Signaling
2.2. ROS/RNS-Related Pathological Conditions
2.2.1. Neuronal Disorders
2.2.2. Microbiota-Related Metabolites in Inflammation and Pathologies
2.2.3. Cellular and Tissue Models of Pathologies
2.3. ROS-Mediated Programmed Forms of Cell Death: Apoptosis and Ferroptosis
2.4. Exogenous Antioxidants with Therapeutic Potential
2.5. Macrophages
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
List of Contributions
- Silva, Á.J.C.; De Lavor, M.S.L. Nitroxidative Stress, Cell—Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int. J. Mol. Sci. 2025, 26, 2050. https://doi.org/10.3390/ijms26052050.
- Cao, Y.; Tan, Y.-J.; Huang, D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 10694. https://doi.org/10.3390/ijms251910694.
- Zavadskis, S.; Shiganyan, A.; Müllebner, A.; Oesterreicher, J.; Holnthoner, W.; Duvigneau, J.C.; Kozlov, A.V. Endoplasmic Reticulum Stress Induces Vasodilation in Liver Vessels That Is Not Mediated by Unfolded Protein Response. Int. J. Mol. Sci. 2024, 25, 3865. https://doi.org/10.3390/ijms25073865.
- Vaglio-Garro, A.; Kozlov, A.V.; Smirnova, Y.D.; Weidinger, A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int. J. Mol. Sci. 2024, 25, 2276. https://doi.org/10.3390/ijms25042276.
- Tarbeeva, D.V.; Pislyagin, E.A.; Menchinskaya, E.S.; Berdyshev, D.V.; Krylova, N.V.; Iunikhina, O.V.; Kalinovskiy, A.I.; Shchelkanov, M.Y.; Mishchenko, N.P.; Aminin, D.L.; et al. Polyphenols from Maackia Amurensis Heartwood Protect Neuronal Cells from Oxidative Stress and Prevent Herpetic Infection. Int. J. Mol. Sci. 2024, 25, 4142. https://doi.org/10.3390/ijms25084142.
- Beloborodova, N.; Fadeev, R.; Fedotcheva, N. Influence of Microbiota-Related Metabolites Associated with Inflammation and Sepsis on the Peroxidase Activity of Cyclooxygenase in Healthy Human Monocytes and Acute Monocytic Leukemia Cells. Int. J. Mol. Sci. 2023, 24, 16244. https://doi.org/10.3390/ijms242216244.
- Bestavashvili, A.; Glazachev, O.; Ibragimova, S.; Suvorov, A.; Bestavasvili, A.; Ibraimov, S.; Zhang, X.; Zhang, Y.; Pavlov, C.; Syrkina, E.; et al. Impact of Hypoxia–Hyperoxia Exposures on Cardiometabolic Risk Factors and TMAO Levels in Patients with Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 14498. https://doi.org/10.3390/ijms241914498.
- Assabayev, T.; Han, J.; Bahetijiang, H.; Abdrassilova, V.; Khan, M.A.; Barkema, H.W.; Liu, G.; Kastelic, J.P.; Zhou, X.; Han, B. Selenomethionine Mitigates Effects of Nocardia Cyriacigeorgica-Induced Inflammation, Oxidative Stress, and Apoptosis in Bovine Mammary Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 10976. https://doi.org/10.3390/ijms252010976.
- Gartzke, L.P.; Hendriks, K.D.W.; Hoogstra-Berends, F.; Joschko, C.P.; Strandmoe, A.-L.; Vogelaar, P.C.; Krenning, G.; Henning, R.H. Inhibition of Ferroptosis Enables Safe Rewarming of HEK293 Cells Following Cooling in University of Wisconsin Cold Storage Solution. Int. J. Mol. Sci. 2023, 24, 10939. https://doi.org/10.3390/ijms241310939.
- Suleimanov, S.K.; Efremov, Y.M.; Klyucherev, T.O.; Salimov, E.L.; Ragimov, A.A.; Timashev, P.S.; Vlasova, I.I. Radical-Generating Activity, Phagocytosis, and Mechanical Properties of Four Phenotypes of Human Macrophages. Int. J. Mol. Sci. 2024, 25, 1860. https://doi.org/10.3390/ijms25031860.
References
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Mackova, V.; Raudenska, M.; Polanska, H.H.; Jakubek, M.; Masarik, M. Navigating the Redox Landscape: Reactive Oxygen Species in Regulation of Cell Cycle. Redox Rep. 2024, 29, 2371173. [Google Scholar] [CrossRef] [PubMed]
- Nauseef, W.M. The Phagocyte NOX2 NADPH Oxidase in Microbial Killing and Cell Signaling. Curr. Opin. Immunol. 2019, 60, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Kettle, A.J.; Ashby, L.V.; Winterbourn, C.C.; Dickerhof, N. Superoxide: The Enigmatic Chemical Chameleon in Neutrophil Biology. Immunol. Rev. 2023, 314, 181–196. [Google Scholar] [CrossRef]
- Winterbourn, C.C. The Biological Chemistry of Hydrogen Peroxide. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 528, pp. 3–25. ISBN 978-0-12-405881-1. [Google Scholar]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Kapralov, A.A.; Yang, Q.; Dar, H.H.; Tyurina, Y.Y.; Anthonymuthu, T.S.; Kim, R.; St. Croix, C.M.; Mikulska-Ruminska, K.; Liu, B.; Shrivastava, I.H.; et al. Redox Lipid Reprogramming Commands Susceptibility of Macrophages and Microglia to Ferroptotic Death. Nat. Chem. Biol. 2020, 16, 278–290. [Google Scholar] [CrossRef]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, 2303259. [Google Scholar] [CrossRef]
- Piacenza, L.; Zeida, A.; Trujillo, M.; Radi, R. The Superoxide Radical Switch in the Biology of Nitric Oxide and Peroxynitrite. Physiol. Rev. 2022, 102, 1881–1906. [Google Scholar] [CrossRef]
- Hossain, M.; Kubes, P. Innate Immune Cells Orchestrate the Repair of Sterile Injury in the Liver and Beyond. Eur. J. Immunol. 2019, 49, 831–841. [Google Scholar] [CrossRef]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Yurkanova, M.D.; Kosheleva, N.V.; Teplova, A.A.; Timashev, P.S.; Vlasova, I.I. Pro-Inflammatory Properties of M1 Phenotypes of Human Macrophages: Prolongation of Myeloperoxidase-Mediated Oxidative Stress. Free Radic. Res. 2025, 59, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Rius-Pérez, S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants 2022, 11, 1394. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Scuto, M.C.; Anfuso, C.D.; Lombardo, C.; Di Fatta, E.; Ferri, R.; Musso, N.; Zerbo, G.; Terrana, M.; Majzúnová, M.; Lupo, G.; et al. Neuronutrition and Nrf2 Brain Resilience Signaling: Epigenomics and Metabolomics for Personalized Medicine in Nervous System Disorders from Bench to Clinic. Int. J. Mol. Sci. 2025, 26, 9391. [Google Scholar] [CrossRef]
- Scuto, M.; Majzúnová, M.; Torcitto, G.; Antonuzzo, S.; Rampulla, F.; Di Fatta, E.; Trovato Salinaro, A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int. J. Mol. Sci. 2024, 25, 12155. [Google Scholar] [CrossRef]
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell. 2024, 187, 235–256. [Google Scholar] [CrossRef]
- Vitale, I.; Pietrocola, F.; Guilbaud, E.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostini, M.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; et al. Apoptotic Cell Death in Disease—Current Understanding of the NCCD 2023. Cell Death Differ 2023, 30, 1097–1154. [Google Scholar] [CrossRef]
- Kagan, V.E.; Tyurina, Y.Y.; Vlasova, I.I.; Kapralov, A.A.; Amoscato, A.A.; Anthonymuthu, T.S.; Tyurin, V.A.; Shrivastava, I.H.; Cinemre, F.B.; Lamade, A.; et al. Redox Epiphospholipidome in Programmed Cell Death Signaling: Catalytic Mechanisms and Regulation. Front. Endocrinol. 2021, 11, 628079. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The Cell Biology of Ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Jeandriens, J.; Parkes, H.G.; So, P.-W. Iron Dyshomeostasis, Lipid Peroxidation and Perturbed Expression of Cystine/Glutamate Antiporter in Alzheimer’s Disease: Evidence of Ferroptosis. Redox Biol. 2020, 32, 101494. [Google Scholar] [CrossRef]
- Duvigneau, J.C.; Luís, A.; Gorman, A.M.; Samali, A.; Kaltenecker, D.; Moriggl, R.; Kozlov, A.V. Crosstalk between Inflammatory Mediators and Endoplasmic Reticulum Stress in Liver Diseases. Cytokine 2019, 124, 154577. [Google Scholar] [CrossRef]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic Reticulum Stress Signalling—From Basic Mechanisms to Clinical Applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef]
- Gundersen, V.; Storm-Mathisen, J.; Bergersen, L.H. Neuroglial Transmission. Physiol. Rev. 2015, 95, 695–726. [Google Scholar] [CrossRef]
- Isaev, N.K.; Andreeva, N.A.; Stel’mashuk, E.V.; Zorov, D.B. Role of Mitochondria in the Mechanisms of Glutamate Toxicity. Biochemistry 2005, 70, 611–618. [Google Scholar] [CrossRef]
- Fitzpatrick, F. Cyclooxygenase Enzymes: Regulation and Function. Carr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef]
- Faki, Y.; Er, A. Different Chemical Structures and Physiological/Pathological Roles of Cyclooxygenases. Rambam Maimonides Med. J. 2021, 12, e0003. [Google Scholar] [CrossRef]

| Contribution/ Sections in Chapter 2. | Cells/Model | ROS, RNS Activation | Pathology/ Problem | ROS/RNS Detection | A Form of Cell Death | Antioxidants/ Effectors |
|---|---|---|---|---|---|---|
| (contr. 1) Review Silva et al. Section 2.1, Section 2.2.1, Section 2.4, and Section 2.5 | neurons and glial cells (including microglia) | - | neuronal pain | review of all RONS, their chemistry and origins, mechanisms | - | manganese porphyrins |
| (contr. 2) Cao et al. Section 2.1, Section 2.4 and Section 2.5 | RAW 264.7 macrophages | LPS | inflammation | DCFH-DA, mtROS—MitoSOX red; MDA | - | 5,6-dihydroxy flavone |
| (contr. 3) Zavadskis et al. Section 2.1 and Section 2.2.3 | precisely cut liver slices HUVECs | NO release: tunicamycin acetylcholine | tunicamycin effects on liver | chemiluminescence DAF-FM | NO-dependent vasodilation | |
| (contr. 4) Review Vaglio-Garro et al. Section 2.2.1 and Section 2.3 | neurons, astrocytes | mitochondria disfunctions | brain pathologies | ferroptosis | ||
| (contr. 5) Tarbeeva et al. Section 2.2.1, Section 2.2.3, Section 2.3, and Section 2.4 | neuro-2a cells Vero cells | 6-OHDA, paraquat; HSV-1 virus | neurotoxicity | DCFH-DA | apoptosis | polyphenols from amurensis heartwood (Maksar®) |
| (contr. 6) Beloborodova et al. Section 2.2.2 | COX Lysates of THP- 1, monocytes | sepsis | COX activity, TMPD | microbiota metabolites | ||
| (contr. 7) Bestavashvili et al. Section 2.2.2 | a prospective randomized study, TMAO is a risk factor of CVDs | hypoxic–hyperoxic exposures | cardiovascular diseases and metabolic syndrome | hyperoxia activates the antioxidant defense systems of cells | ||
| (cont. 8) Assabayev et al. Section 2.2.3, Section 2.3 and Section 2.4 | mammary epithelial cells (bMECs) | Nocardia cyriacigeorgica | bovine mastitis | DCFH-DA | apoptosis | seleno methionine |
| (contr. 9) Gartzke Section 2.3 | Human Embryonic Kidney (HEK) 293 cells | cell cooling- rewarming | cell preservation | Western blot against 4HNE and MDA measurements | ferroptosis | ferrostatin-1, 6-chromanol SUL150— mitochondrial functions |
| (contr. 10) Suleimanov Section 2.5 | myeloid-derived macrophages | PMA, opsonized zymosan | Inflammation | chemiluminescence Amplex red |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vlasova, I.I. Special Issue “Cellular Redox Mechanisms in Inflammation and Programmed Cell Death”. Int. J. Mol. Sci. 2026, 27, 274. https://doi.org/10.3390/ijms27010274
Vlasova II. Special Issue “Cellular Redox Mechanisms in Inflammation and Programmed Cell Death”. International Journal of Molecular Sciences. 2026; 27(1):274. https://doi.org/10.3390/ijms27010274
Chicago/Turabian StyleVlasova, Irina I. 2026. "Special Issue “Cellular Redox Mechanisms in Inflammation and Programmed Cell Death”" International Journal of Molecular Sciences 27, no. 1: 274. https://doi.org/10.3390/ijms27010274
APA StyleVlasova, I. I. (2026). Special Issue “Cellular Redox Mechanisms in Inflammation and Programmed Cell Death”. International Journal of Molecular Sciences, 27(1), 274. https://doi.org/10.3390/ijms27010274
