Butyrylcholinesterase-Loaded Liposomes and Polymersomes: Catalytic Parameters for Three Types of Substrates
Abstract
1. Introduction
2. Results
2.1. Preparation and Characterization of BChE-IRD-Containing Nano-Scavengers
2.2. Kinetic Studies of BChE-Loaded Nano-Systems
| Scavengers | Type of Substrate | kcat, min−1 | Km, μM | kcat/Km × 106, M−1min−1 | Kss, μM | b |
|---|---|---|---|---|---|---|
| Free BChE | BTC | 16,800 ± 2100 | 4.9 ± 1.8 | 3410 ± 1690 | 503 ± 79 | 3.8 ± 0.4 |
| BChE-polymersomes-1 | 10,400 ± 500 | 7.2 ± 0.9 | 1440 ± 30 | 410 ± 25 | 3.5 ± 0.2 | |
| BChE-polymersomes-2 | 10,100 ± 500 | 9.2 ± 1.4 | 1090 ± 220 | 670 ± 40 | 3.7 ± 0.2 | |
| BChE-polymersomes-3 | 13,900 ± 520 | 8.4 ± 0.9 | 1660 ± 240 | 670 ± 30 | 3.4 ± 0.1 | |
| BChE-polymersomes-4 | 12,400 ± 680 | 7.3 ± 0.9 | 1690 ± 320 | 530 ± 50 | 3.0 ± 0.2 | |
| BChE-liposomes-1 | 16,600 ± 1100 | 12.3 ± 1.7 | 1350 ± 270 | 524 ± 68 | 2.6 ± 0.2 | |
| BChE-liposomes-2 | 13,400 ± 1000 | 8.7 ± 1.4 | 1540 ± 350 | 520 ± 76 | 2.7 ± 0.2 | |
| Free BChE * | PhA | 22,630 ± 890 | 5.3 ± 0.6 | 4.28 ± 0.66 | - | - |
| BChE-polymersomes-1 * | 74,760 ± 9840 | 20.8 ± 3.8 | 3.58 ± 1.12 | - | - | |
| Free BChE ** | Aspirin **** | - | - | 0.341 ± 0.015 | - | - |
| BChE-polymersomes-1 ** | - | - | 0.130 ± 0.006 | - | - | |
| BChE-polymersomes-1 *** | - | - | 0.209 ± 0.006 | - | - |
3. Discussion and Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Enzyme
4.3. Preparation of BChE-Containing Nano-Systems
4.3.1. BChE-Containing Polymersomes
4.3.2. BChE-Containing Liposomes
4.4. Physico-Chemical Characteristics of Nano-Systems
4.4.1. Mean Particle Size, Zeta Potential, and Polydispersity
4.4.2. Transmission Electron Microscopy (TEM)
4.4.3. Encapsulation Efficiency (EE, %) and Loading Capacity (LC, %)
4.4.4. Nano-Compartment Membrane Permeability
4.5. Kinetic Studies of Free BChE and BChE-Containing Nano-Systems
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BChE | Butyrylcholinesterase |
| BTC | Butyrylthiocholine iodide |
| E | Enzyme |
| EE | Encapsulation efficiency |
| IRD | Infra-red dye |
| LC | Loading capacity |
| OP | Organophosphate |
| PC | Phosphatidylcholine |
| PEG-b-PPS | Polyethyleneglycol–polysulfide |
| PhA | Phenyl acetate |
| S | Substrate |
References
- Mo, S.; Li, X.; Li, Y.; Leng, Q.; Hu, Y.; Ai, J.; Deng, J.; Li, Z.; Liu, H.; Wang, X. Mimicking the process from secretory vesicles to organelles in eukaryotic cell evolution by clustering enzyme-liposomes in artificial cells. J. Colloid Interface Sci. 2025, 696, 137863. [Google Scholar] [CrossRef]
- Sun, Q.; Shi, J.; Sun, H.; Zhu, Y.; Du, J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023, 24, 4587–4604. [Google Scholar] [CrossRef]
- Rosso, A.P.; Vragovic, M.; Konefal, R.; Jager, E.; Guégan, P.; Tresset, G.; Giacomelli, F.C. Polymer vesicle microreactors produced using permeable polymer blocks: Circumventing complex functionality to impart membrane permeability. J. Colloid Interface Sci. 2026, 702, 139004. [Google Scholar] [CrossRef]
- Maia, R.F.; Vaziri, A.S.; Shahbazi, M.-A.; Santos, H.A. Artificial cells and biomimicry cells: A rising star in the fight against cancer. Mater. Today Bio 2025, 32, 101723. [Google Scholar] [CrossRef]
- Rosso, A.P.; de Oliveira, F.A.; Guégan, P.; Jager, E.; Giacomelli, F.C. Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories. J. Colloid Interface Sci. 2024, 671, 88–99. [Google Scholar] [CrossRef]
- Zong, W.; Shao, X.; Li, J.; Chai, Y.; Hu, X.; Zhang, X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal. Chem. 2023, 95, 535–549. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, Z.; Gao, Z.; Wan, M.; Zhou, M.; Mao, C.; Shen, J. Artificial Cells: Past, Present and Future. ACS Nano 2022, 16, 15705–15733. [Google Scholar] [CrossRef]
- Jiang, R.; Nilam, M.; Piselli, C.; Winterhalter, M.; Guo, D.; Yu, S.; Hennig, A.; Nau, W.M. Vesicle-Encapsulated Chemosensing Ensembles Allow Monitoring of Transmembrane Uptake Coupled with Enzymatic Reactions. Angew. Chem. Int. Ed. 2025, 64, e202425157. [Google Scholar] [CrossRef]
- Pang, Z.; Cao, Z.; Li, W.; Xu, W.; Zhang, Y.; Zhou, Q.; Pan, J.; Xia, F. Superwettable interface towards biodetection in confined space. Nano Res. 2024, 17, 602–617. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, Y. Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Self-Propulsion to Controllable Navigation. Adv. Ther. 2022, 5, 2100228. [Google Scholar] [CrossRef]
- Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, eaam6431. [Google Scholar] [CrossRef]
- Peng, Z.; Iwabuchi, S.; Izumi, K.; Takiguchi, S.; Yamaji, M.; Fujita, S.; Suzuki, H.; Kambara, F.; Fukasawa, G.; Cooney, A.; et al. Lipid vesicle-based molecular robots. Lab Chip 2024, 24, 996–1029. [Google Scholar] [CrossRef]
- Pashirova, T.; Shaihutdinova, Z.; Mansurova, M.; Kazakova, R.; Shambazova, D.; Bogdanov, A.; Tatarinov, D.; Daudé, D.; Jacquet, P.; Chabrière, E.; et al. Enzyme Nanoreactor for In Vivo Detoxification of Organophosphates. ACS Appl. Mater. Interfaces 2022, 14, 19241–19252. [Google Scholar] [CrossRef]
- Pashirova, T.; Shaihutdinova, Z.; Tatarinov, D.; Mansurova, M.; Kazakova, R.; Bogdanov, A.; Chabrière, E.; Jacquet, P.; Daudé, D.; Akhunzianov, A.A.; et al. Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates. Int. J. Mol. Sci. 2023, 24, 15756. [Google Scholar] [CrossRef]
- Pashirova, T.; Shaihutdinova, Z.; Tatarinov, D.; Titova, A.; Malanyeva, A.; Vasileva, O.; Gabdurakhmanov, K.; Dudnikov, S.; Schopfer, L.M.; Lockridge, O.; et al. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int. J. Biol. Macromol. 2024, 282, 137305. [Google Scholar] [CrossRef]
- Pashirova, T.; Tatarinov, D.; Shaihutdinova, Z.; Malanyeva, A.; Vasileva, O.; Rogov, A.; Evtjugin, V.; Nemtarev, A.; Gabdoulkhakova, A.; Chabrière, E.; et al. Enzyme-containing double layer polymersomes coated by erythrocytes as a biomimetic nanoscavengers for in vivo protection from toxicants. Mater. Adv. 2025, 6, 9516–9527. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Bogdanov, A.; Masson, P. Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging. Chem. Biol. Interact. 2021, 346, 109577. [Google Scholar] [CrossRef]
- Pashirova, T.; Salah-Tazdaït, R.; Tazdaït, D.; Masson, P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int. J. Mol. Sci. 2024, 25, 7822. [Google Scholar] [CrossRef]
- Hajimohammadi, S.; Lockridge, O.; Masson, P. New views on physiological functions and regulation of butyrylcholinesterase and potential therapeutic interventions. Front. Mol. Biosci. 2025, 12, 1625318. [Google Scholar] [CrossRef]
- Fetin, P.A.; Zorin, I.M.; Shaihutdinova, Z.M.; Masson, P.; Pashirova, T.N. Polystyrene–Poly(acrylic acid) Block Copolymers for Encapsulation of Butyrylcholinesterase into Injectable Nanoreactors. Biomolecules 2024, 14, 1555. [Google Scholar] [CrossRef]
- Luisi, P.L.; Allegretti, M.; Pereira de Souza, T.; Steiniger, F.; Fahr, A.; Stano, P. Spontaneous Protein Crowding in Liposomes: A New Vista for the Origin of Cellular Metabolism. ChemBioChem 2010, 11, 1989–1992. [Google Scholar] [CrossRef]
- de Souza, T.P.; Fahr, A.; Luisi, P.L.; Stano, P. Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life. J. Mol. Evol. 2014, 79, 179–192. [Google Scholar] [CrossRef]
- Chen, Q.; Schönherr, H.; Vancso, G.J. Block-copolymer vesicles as nanoreactors for enzymatic reactions. Small 2009, 5, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Rausch, K.G.; Schönherr, H.; Vancso, G.J. α-Chymotrypsin-Catalyzed Reaction Confined in Block-Copolymer Vesicles. ChemPhysChem 2010, 11, 3534–3540. [Google Scholar] [CrossRef] [PubMed]
- Walde, P.; Marzetta, B. Bilayer permeability-based substrate selectivity of an enzyme in liposomes. Biotechnol. Bioeng. 1998, 57, 216–219. [Google Scholar] [CrossRef]
- Li, M.; Hanford, M.J.; Kim, J.-W.; Peeples, T.L. Amyloglucosidase enzymatic reactivity inside lipid vesicles. J. Biol. Eng. 2007, 1, 4. [Google Scholar] [CrossRef]
- Varlas, S.; Foster, J.C.; Georgiou, P.G.; Keogh, R.; Husband, J.T.; Williams, D.S.; O’Reilly, R.K. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale 2019, 11, 12643–12654. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Correia, A.; Zhang, H.; Fontana, F.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Santos, H.A. Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle-Like Functions. Adv. Mater. 2017, 29, 1605375. [Google Scholar] [CrossRef]
- Sunami, T.; Hosoda, K.; Suzuki, H.; Matsuura, T.; Yomo, T. Cellular Compartment Model for Exploring the Effect of the Lipidic Membrane on the Kinetics of Encapsulated Biochemical Reactions. Langmuir 2010, 26, 8544–8551. [Google Scholar] [CrossRef]
- Masson, P.; Legrand, P.; Bartels, C.F.; Froment, M.-T.; Schopfer, L.M.; Lockridge, O. Role of Aspartate 70 and Tryptophan 82 in Binding of Succinyldithiocholine to Human Butyrylcholinesterase. Biochemistry 1997, 36, 2266–2277. [Google Scholar] [CrossRef]
- Petrikovics, I.; Papahadjopoulos, D.; Hong, K.; Cheng, T.C.; Baskin, S.I.; Jiang, J.; Jaszberenyi, J.C.; Logue, B.A.; Szilasi, M.; McGuinn, W.D.; et al. Comparing therapeutic and prophylactic protection against the lethal effect of paraoxon. Toxicol. Sci. 2004, 77, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Gao, W.; Wang, F.; Chuluun, E.; Angsantikul, P.; Thamphiwatana, S.; Lu, W.; et al. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano 2015, 9, 6450–6458. [Google Scholar] [CrossRef]
- Zou, S.; Wang, Q.; He, Q.; Liu, G.; Song, J.; Li, J.; Wang, F.; Huang, Y.; Hu, Y.; Zhou, D.; et al. Brain-targeted nanoreactors prevent the development of organophosphate-induced delayed neurological damage. J. Nanobiotechnology 2023, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Gaydess, A.; Duysen, E.; Li, Y.; Gilman, V.; Kabanov, A.; Lockridge, O.; Bronich, T. Visualization of exogenous delivery of nanoformulated butyrylcholinesterase to the central nervous system. Chem. Biol. Interact. 2010, 187, 295–298. [Google Scholar] [CrossRef]
- Feng, K.; Zhang, J.A.; Shen, W.-T.; Leng, T.; Zhou, Z.; Yu, Y.; Gao, W.; Zhang, L. Recent Development of Nanoparticle Platforms for Organophosphate Nerve Agent Detoxification. Langmuir 2025, 41, 2124–2140. [Google Scholar] [CrossRef]
- Zalba, S.; ten Hagen, T.L.M.; Burgui, C.; Garrido, M.J. Stealth nanoparticles in oncology: Facing the PEG dilemma. J. Control. Release 2022, 351, 22–36. [Google Scholar] [CrossRef]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079. [Google Scholar] [CrossRef]
- The benefits and risks of PEGylation in nanomedicine. Nat. Nanotechnol. 2025, 20, 575. [CrossRef] [PubMed]
- Matoori, S. Hallmarks of Polymersome Characterization. ACS Mater. Au 2025, 5, 223–230. [Google Scholar] [CrossRef]
- Matoori, S.; Leroux, J.-C. Twenty-five years of polymersomes: Lost in translation? Mater. Horiz. 2020, 7, 1297–1309. [Google Scholar] [CrossRef]
- Gouveia, M.G.; Wesseler, J.P.; Ramaekers, J.; Weder, C.; Scholten, P.B.V.; Bruns, N. Polymersome-based protein drug delivery—Quo vadis? Chem. Soc. Rev. 2023, 52, 728–778. [Google Scholar] [CrossRef] [PubMed]
- Slezak, A.; Chang, K.; Hossainy, S.; Mansurov, A.; Rowan, S.J.; Hubbell, J.A.; Guler, M.O. Therapeutic synthetic and natural materials for immunoengineering. Chem. Soc. Rev. 2024, 53, 1789–1822. [Google Scholar] [CrossRef]
- Sunami, T.; Ichihashi, N.; Nishikawa, T.; Kazuta, Y.; Yomo, T. Effect of Liposome Size on Internal RNA Replication Coupled with Replicase Translation. ChemBioChem 2016, 17, 1282–1289. [Google Scholar] [CrossRef]
- Belluati, A.; Craciun, I.; Liu, J.; Palivan, C.G. Nanoscale Enzymatic Compartments in Tandem Support Cascade Reactions In Vitro. Biomacromolecules 2018, 19, 4023–4033. [Google Scholar] [CrossRef] [PubMed]
- Alemdar, C.; Gundogdu, D.; Karauzum, A.; Turan, C.; Seza, E.G.; Güray, N.T.; Banerjee, S.; Erel-Goktepe, I. Poly(2-oxazoline) based polymersomes and their hollow multilayer capsules as nano- and micro-reactors for enzymatic reactions. Eur. Polym. J. 2025, 238, 114174. [Google Scholar] [CrossRef]
- Baumann, P.; Spulber, M.; Fischer, O.; Car, A.; Meier, W. Investigation of Horseradish Peroxidase Kinetics in an “Organelle-Like” Environment. Small 2017, 13, 1603943. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Sun, L.; Xu, Y.; Yang, S.; Fan, C.; Li, D. Alleviated Inhibition of Single Enzyme in Confined and Crowded Environment. J. Phys. Chem. Lett. 2019, 10, 82–89. [Google Scholar] [CrossRef]
- Korpidou, M.; Maffeis, V.; Dinu, I.A.; Schoenenberger, C.-A.; Meier, W.P.; Palivan, C.G. Inverting glucuronidation of hymecromone in situ by catalytic nanocompartments. J. Mater. Chem. B 2022, 10, 3916–3926. [Google Scholar] [CrossRef]
- Luna, M.A.; Silber, J.J.; Sereno, L.; Correa, N.M.; Moyano, F. Determining the substrate permeability through the bilayer of large unilamellar vesicles of DOPC. A kinetic study. RSC Adv. 2016, 6, 62594–62601. [Google Scholar] [CrossRef]
- Schumacher, I.; Arad, A.; Margalit, R. Butyrylcholinesterase formulated in liposomes. Biotechnol. Appl. Biochem. 1999, 30, 225–230. [Google Scholar] [CrossRef]
- Roufogalis, B.D.; Beauregard, G. Role of Phospholipid (Cardiolipin) in the Modulation of Substrate and Inhibitor Interactions with Erythrocyte Acetylcholinesterase. Mol. Pharmacol. 1979, 16, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Masson, P.; Shaihutdinova, Z.; Lockridge, O. Drug and pro-drug substrates and pseudo-substrates of human butyrylcholinesterase. Biochem. Pharmacol. 2023, 218, 115910. [Google Scholar] [CrossRef]
- Masson, P.; Froment, M.-T.; Fortier, P.-L.; Visicchio, J.-E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta-Protein Struct. Mol. Enzymol. 1998, 1387, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Shajhutdinova, Z.; Pashirova, T.; Masson, P. Kinetic Processes in Enzymatic Nanoreactors for In Vivo Detoxification. Biomedicines 2022, 10, 784. [Google Scholar] [CrossRef] [PubMed]






| Nanoscavengers | Zaver, nm | Size, nm | PDI | ξ, mV | EE, % | LC, % | |
|---|---|---|---|---|---|---|---|
| Int. | Num | ||||||
| BChE-polymersomes-1 | 126 ± 1 | 122 ± 16 | 68 ± 15 | 0.17 ± 0.02 | −7.8 ± 0.5 | 88 ± 1 | 2.8 ± 0.1 |
| BChE-polymersomes-1 * | 106 ± 1 | 91 ± 7 | 44 ± 9 | 0.33 ± 0.01 | −8.1 ± 0.4 | - | - |
| BChE-polymersomes-2 | 127 ± 1 | 122 ± 19 | 79 ± 19 | 0.15 ± 0.01 | −32.8 ± 0.3 | 95 ± 1 | 3.0 ± 0.1 |
| BChE-polymersomes-2 * | 124 ± 1 | 122 ± 18 | 68 ± 15 | 0.14 ± 0.02 | −29.5 ± 0.3 | - | - |
| BChE-polymersomes-3 | 126 ± 2 | 144 ± 6 | 70 ± 4 | 0.22 ± 0.01 | −10.6 ± 1.4 | 92 ± 1 | 3.0 ± 0.4 |
| BChE-polymersomes-3 * | 124 ± 2 | 142 ± 14 | 38 ± 8 | 0.32 ± 0.02 | −9.0 ± 1.0 | - | - |
| BChE-polymersomes-4 | 100 ± 2 | 91 ± 12 | 51 ± 12 | 0.21 ± 0.01 | −7.3 ± 0.6 | 95 ± 2 | 3.0 ± 0.1 |
| BChE-polymersomes-4 * | 125 ± 2 | 122 ± 12 | 59 ± 12 | 0.25 ± 0.01 | −11.8 ± 1.8 | - | - |
| BChE-liposomes-1 | 130 ± 1 | 145 ± 1 | 91 ± 3 | 0.09 ± 0.01 | −19.9 ± 0.4 | 85 ± 3 | 1.1 ± 0.04 |
| BChE-liposomes-1 * | - | 91 ± 4; 396 ± 63 | 59 ± 13 | 0.54 ± 0.01 | −16.1 ± 0.8 | - | - |
| BChE-liposomes-2 | 145 ± 1 | 161 ± 1 | 107 ± 3 | 0.11 ± 0.01 | −17.8 ± 0.2 | 77 ± 3 | 1.0 ± 0.04 |
| BChE-liposomes-2 * | Not stable | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shaihutdinova, Z.; Batasheva, S.; Masson, P.; Pashirova, T. Butyrylcholinesterase-Loaded Liposomes and Polymersomes: Catalytic Parameters for Three Types of Substrates. Int. J. Mol. Sci. 2026, 27, 190. https://doi.org/10.3390/ijms27010190
Shaihutdinova Z, Batasheva S, Masson P, Pashirova T. Butyrylcholinesterase-Loaded Liposomes and Polymersomes: Catalytic Parameters for Three Types of Substrates. International Journal of Molecular Sciences. 2026; 27(1):190. https://doi.org/10.3390/ijms27010190
Chicago/Turabian StyleShaihutdinova, Zukhra, Svetlana Batasheva, Patrick Masson, and Tatiana Pashirova. 2026. "Butyrylcholinesterase-Loaded Liposomes and Polymersomes: Catalytic Parameters for Three Types of Substrates" International Journal of Molecular Sciences 27, no. 1: 190. https://doi.org/10.3390/ijms27010190
APA StyleShaihutdinova, Z., Batasheva, S., Masson, P., & Pashirova, T. (2026). Butyrylcholinesterase-Loaded Liposomes and Polymersomes: Catalytic Parameters for Three Types of Substrates. International Journal of Molecular Sciences, 27(1), 190. https://doi.org/10.3390/ijms27010190

