Analysis of Pro- and Anti-Inflammatory Gene Response Patterns in Patients Receiving Phage Therapy
Abstract
1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Gene Expression Fold Change and Correlations
- Innate immunity receptors and signaling molecules—the panel includes genes encoding pattern recognition receptors, such as Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), as well as the intracellular sensor nucleotide-binding oligomerization domain containing 1 (NOD1), which are crucial for initiating the response to bacterial components. The expression of genes for central signal transduction molecules, myeloid differentiation primary response 88 (MYD88) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), as well as the modulatory Toll-like receptor 10 (TLR10), was also analyzed.
- Cytokines and chemokines shaping the inflammatory response—to evaluate the nature and balance of the immune response, the panel included genes for cytokines with diverse functions:
- Th2-response cytokines, such as interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), which are central to type 2 immunity. IL-4 and IL-13 are essential in the repair of injured tissues, for instance, by activating macrophages and epithelial cells; however, excessive or uncontrolled activity leads to pathological fibrosis. IL-5 is the main factor responsible for recruitment, activation, and promotion of eosinophil survival at the sites of inflammation; therefore, assessing its expression allows for the analysis of the eosinophilic component that is crucial to the pathogenesis of many allergic and inflammatory diseases.
- Pro-inflammatory and cell-mediated response cytokines—the panel included genes for key pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin-1 beta (IL-1β), interleukin-6 (IL-6); cytokines associated with T-cell responses such as interferon-gamma (IFN-γ), interleukin-17A (IL-17A), interleukin-2 (IL-2), and interleukin-21 (IL-21); an important neutrophil chemoattractant, C-X-C motif chemokine ligand 8 (CXCL8); as well as the regulatory interleukin-10 (IL-10) and growth differentiation factor 15 (GDF15).
- Effector molecules and growth factors—the panel was supplemented with genes encoding important effector molecules, including the antimicrobial protein defensin beta 1 (DEFB1) and the enzyme myeloperoxidase (MPO), as well as growth and differentiation factors for immune cells, such as colony-stimulating factor 2 (granulocyte-macrophage) (CSF2).
- PT duration positively correlated with NOD1 in PBMCs (rs = 0.67, p = 0.034), CSF2 in PBMCs (rs = 0.71, p = 0.02), and MYD88 in granulocytes (rs = 0.67, p = 0.034);
- PT duration negatively correlated with GDF15 in granulocytes (rs = −0.75, p = 0.012), NFKB1 in granulocytes (rs = −0.65, p = 0.041), CSF2 in granulocytes (rs = −0.73, p = 0.016), and MPO in granulocytes (rs = −0.81, p = 0.004);
- patients’ age correlated positively with NOD1 in PBMCs (rs = 0.65, p = 0.043), and CSF2 in PBMCs (rs = 0.70, p = 0.025);
- patients’ age correlated negatively with NFKB1 in granulocytes (rs = −0.83, p = 0.029).
2.3. Hierarchical Gene Clustering
2.4. Inter-Patient Variation in FC Expression Profiles
3. Discussion
3.1. Immunologically ‘Quiet’ Systemic Transcriptional Response to Therapeutic Phages
3.2. Heterogeneity of Immune Response
3.3. Study Limitations
3.4. Implications for Future Research
4. Materials and Methods
4.1. Patients
4.2. Isolation of Peripheral Blood Mononuclear Cells and Granulocytes
4.3. RNA Extraction and Gene Expression Quantification
4.4. Statistical Analysis
4.5. Ethics Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRP | C-reactive protein |
| CSF2 | Colony stimulating factor 2 |
| CXCL8 | C-X-C motif chemokine ligand 8 |
| DEFB1 | Defensin beta 1 |
| ESR | Erythrocyte sedimentation rate |
| FC | Fold change |
| GDF15 | Growth differentiation factor 15 |
| HCV | Hepatitis C virus |
| HHV-6 | Human herpesvirus 6 |
| HSV-1 | Herpes simplex virus 1 |
| IFNG | Interferon gamma |
| IL10 | Interleukin 10 |
| IL13 | Interleukin 13 |
| IL17A | Interleukin 17A |
| IL1B | Interleukin 1 beta |
| IL2 | Interleukin 2 |
| IL21 | Interleukin 21 |
| IL4 | Interleukin 4 |
| IL5 | Interleukin 5 |
| IL6 | Interleukin 6 |
| MAPK | Mitogen-activated protein kinase |
| MPO | Myeloperoxidase |
| MYD88 | Myeloid differentiation primary response 88 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NFKB1 | Nuclear factor kappa B subunit 1 gene |
| NOD1 | Nucleotide-binding oligomerization domain-containing protein 1 |
| PFU | Plaque-forming unit |
| PBMC | Peripheral blood mononuclear cell |
| PRRs | Pattern-recognition receptors |
| PT | Phage therapy |
| RCT | Randomized controlled trial |
| RSV | Respiratory syncytial virus |
| TLR | Toll-like receptor |
| TNF | Tumor necrosis factor |
| WBC | White blood cell |
References
- Gajate-Arenas, M.; García-Pérez, O.; Chao-Pellicer, J.; Domínguez-De-Barros, A.; Dorta-Guerra, R.; Lorenzo-Morales, J.; Córdoba-Lanus, E. Differential expression of antiviral and immune-related genes in individuals with COVID-19 asymptomatic or with mild symptoms. Front. Cell Infect. Microbiol. 2023, 13, 1173213. [Google Scholar] [CrossRef] [PubMed]
- Pita-Martínez, C.; Goez-Sanz, C.; Virseda-Berdices, A.; Gonzalez-Praetorius, A.; Mazario-Martín, E.; Rodriguez-Mesa, M.; Quero-Delgado, M.; Matías, V.; Martínez, I.; Resino, S. Reduced antiviral gene expression and elevated CXCL8 expression in peripheral blood are associated with severe hypoxemia in RSV-infected children. Front. Immunol. 2024, 15, 1438630. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.R.; Depla, M.; Freije, C.A.; Gaucher, D.; Mazouz, S.; Boisvert, M.; Bédard, N.; Bruneau, J.; Rice, C.M.; Shoukry, N.H. Longitudinal transcriptomic characterization of the immune response to acute hepatitis C virus infection in patients with spontaneous viral clearance. PLoS Pathog. 2018, 14, e1007290. [Google Scholar] [CrossRef] [PubMed]
- Mayne, M.; Cheadle, C.; Soldan, S.S.; Cermelli, C.; Yamano, Y.; Akhyani, N.; Nagel, J.E.; Taub, D.D.; Becker, K.G.; Jacobson, S. Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: Induction of proinflammatory mechanisms. J. Virol. 2001, 75, 11641–11650. [Google Scholar] [CrossRef]
- Atasheva, S.; Shayakhmetov, D.M. Adenovirus sensing by the immune system. Curr. Opin. Virol. 2016, 21, 109–113. [Google Scholar] [CrossRef]
- Smith, J.B.; Herbert, J.J.; Truong, N.R.; Cunningham, A.L. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front. Immunol. 2022, 13, 936235. [Google Scholar] [CrossRef]
- Zou, Y.; Ding, M.; Zheng, Y.; Dai, G.; Wang, T.; Zhu, C.; Yan, Y.; Xu, J.; Wang, R.; Chen, Z. Peripheral blood cytokine expression levels and their clinical significance in children with influenza. Transl. Pediatr. 2025, 14, 286–297. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Kasprzak, H.; Letkiewicz, S.; Rogóż, P.; Żaczek, M.; Thomas, J.; Górski, A. Pharmacokinetic and Pharmacodynamic Obstacles for Phage Therapy From the Perspective of Clinical Practice. Clin. Infect. Dis. 2023, 77, S395–S400. [Google Scholar] [CrossRef]
- Górski, A.; Międzybrodzki, R.; Borysowski, J.; Dąbrowska, K.; Wierzbicki, P.; Ohams, M.; Korczak-Kowalska, G.; Olszowska-Zaremba, N.; Łusiak-Szelachowska, M.; Kłak, M.; et al. Phage as a modulator of immune responses: Practical implications for phage therapy. Adv. Virus. Res. 2012, 83, 41–71. [Google Scholar]
- Souza, E.B.; Pinto, A.R.; Fongaro, G. Bacteriophages as Potential Clinical Immune Modulators. Microorganisms 2023, 11, 2222. [Google Scholar] [CrossRef]
- Federici, S.; Nobs, S.P.; Elinav, E. Phages and their potential to modulate the microbiome and immunity. Cell Mol. Immunol. 2021, 18, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Bichet, M.C.; Chin, W.H.; Richards, W.; Lin, Y.W.; Avellaneda-Franco, L.; Hernandez, C.A.; Oddo, A.; Chernyavskiy, O.; Hilsenstein, V.; Neild, A.; et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. IScience 2021, 24, 102287. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Borysowski, J.; Miȩdzybrodzki, R. Bacteriophage Interactions with Epithelial Cells: Therapeutic Implications. Front. Microbiol. 2021, 11, 631161. [Google Scholar] [CrossRef] [PubMed]
- Podlacha, M.; Gaffke, L.; Grabowski, Ł.; Mantej, J.; Grabski, M.; Pierzchalska, M.; Pierzynowska, K.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat. Commun. 2024, 15, 2274. [Google Scholar] [CrossRef]
- Lehti, T.A.; Pajunen, M.I.; Skog, M.S.; Finne, J. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat. Commun. 2017, 8, 1915. [Google Scholar] [CrossRef]
- Miernikiewicz, P.; Dąbrowska, K. Endocytosis of Bacteriophages. Curr. Opin. Virol. 2022, 52, 229–235. [Google Scholar] [CrossRef]
- Van Belleghem, J.D.; Clement, F.; Merabishvili, M.; Lavigne, R.; Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 2017, 7, 8004. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Zaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Kłak, M.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Szufnarowski, K.; Jończyk-Matysiak, E.; et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014, 27, 295–304. [Google Scholar] [CrossRef]
- Gogokhia, L.; Buhrke, K.; Bell, R.; Hoffman, B.; Brown, D.G.; Hanke-Gogokhia, C.; Ajami, N.J.; Wong, M.C.; Ghazaryan, A.; Valentine, J.F.; et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe 2019, 25, 285–299.e8. [Google Scholar] [CrossRef]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Górski, A.; Międzybrodzki, R.; Jończyk-Matysiak, E.; Kniotek, M.; Letkiewicz, S. Therapeutic Phages as Modulators of the Immune Response: Practical Implications. Clin. Infect. Dis. 2023, 77, 433–439. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Luca, F.D.; Camporeale, V.; Leccese, G.; Cuttano, R.; Troise, D.; Infante, B.; Stallone, G.; Netti, G.S.; Ranieri, E. From Senescent Cells to Systemic Inflammation: The Role of Inflammaging in Age-Related Diseases and Kidney Dysfunction. Cells 2025, 14, 1831. [Google Scholar] [CrossRef] [PubMed]
- St Laurent, G.; Shtokalo, D.; Tackett, M.R.; Yang, Z.; Vyatkin, Y.; Milos, P.M.; Seilheimer, B.; McCaffrey, T.A.; Kapranov, P. On the importance of small changes in RNA expression. Methods 2013, 63, 18–24. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Ahmad, H.I.; Jabbar, A.; Mushtaq, N.; Javed, Z.; Hayyat, M.U.; Bashir, J.; Naseeb, I.; Abideen, Z.U.; Ahmad, N.; Chen, J. Immune Tolerance vs. Immune Resistance: The Interaction between Host and Pathogens in Infectious Diseases. Front. Vet. Sci. 2022, 9, 827407. [Google Scholar] [CrossRef]
- Hu, X.; Chakravarty, S.D.; Ivashkiv, L.B. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol. Rev. 2008, 226, 41–56. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.J.; Koh, H.S.; Jang, T.Y.; Park, H.E.; Kim, J.Y. Reactive oxygen species enhance TLR10 expression in the human monocytic cell line THP-1. Int. J. Mol. Sci. 2010, 11, 3769–3782. [Google Scholar] [CrossRef]
- Oosting, M.; Cheng, S.C.; Bolscher, J.M.; Vestering-Stenger, R.; Plantinga, T.S.; Verschueren, I.C.; Arts, P.; Garritsen, A.; van Eenennaam, H.; Sturm, P.; et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc. Natl. Acad. Sci. USA 2014, 111, 4478–4484. [Google Scholar] [CrossRef]
- Hess, N.J.; Felicelli, C.; Grage, J.; Tapping, R.I. TLR10 suppresses the activation and differentiation of monocytes with effects on DC-mediated adaptive immune responses. J. Leucoc. Biol. 2017, 101, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Dąbrowska, K.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Łusiak-Szelachowska, M.; Jończyk-Matysiak, E.; Borysowski, J. Phages and immunomodulation. Future Microbiol. 2017, 12, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Yap, G.S. Emerging Roles of Growth Differentiation Factor 15 in Immunoregulation and Pathogenesis. J. Immunol. 2023, 210, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Higashi, N.; Bang, K.; Gesser, B.; Lund, M.; Thestrup-Pedersen, K. Cytokine expression of skin T-lymphocytes from patients with atopic dermatitis. Acta Derm.-Venereol. 2001, 81, 3–7. [Google Scholar] [CrossRef]
- Allen, J.E. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu. Rev. Immunol. 2023, 41, 229–254. [Google Scholar] [CrossRef]
- Ballinger, M.N.; Paine, R.; Serezani, C.H.C.; Aronoff, D.M.; Choi, E.S.; Standiford, T.J.; Toews, G.B.; Moore, B.B. Role of granulocyte macrophage colony-stimulating factor during gram-negative lung infection with Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol. 2006, 34, 766–774. [Google Scholar] [CrossRef]
- Chen, J.; Feng, G.; Guo, Q.; Wardenburg, J.B.; Lin, S.; Inoshima, I.; Deaton, R.; Yuan, J.X.; Garcia, J.G.; Machado, R.F.; et al. Transcriptional events during the recovery from MRSA lung infection: A mouse pneumonia model. PLoS ONE 2013, 8, e70176. [Google Scholar] [CrossRef]
- Tripp, R.A.; Moore, D.; Barskey, A., 4th; Jones, L.; Moscatiello, C.; Keyserling, H.; Anderson, L.J. Peripheral blood mononuclear cells from infants hospitalized because of respiratory syncytial virus infection express T helper-1 and T helper-2 cytokines and CC chemokine messenger RNA. J. Infect. Dis. 2002, 185, 1388–1394. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.; Crosby, S.D.; Storch, G.A. Gene expression profiles in febrile children with defined viral and bacterial infection. Proc. Natl. Acad. Sci. USA 2013, 110, 12792–12797. [Google Scholar] [CrossRef]
- Qi, L.; Wang, Y.; Wang, H.; Deng, J. Adenovirus 7 Induces Interlukin-6 Expression in Human Airway Epithelial Cells via p38/NF-κB Signaling Pathway. Front. Immunol. 2020, 11, 551413. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K.M.; Lee, S.G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; et al. COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory Signaling That Mimics Bacterial Sepsis. J. Korean Med. Sci. 2020, 35, e343. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Stanley, G.L.; Kortright, K.E.; Vill, A.C.; Modak, M.; Ott, I.M.; Sun, Y.; Würstle, S.; Grun, C.N.; Kazmierczak, B.I.; et al. Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis. Nat. Med. 2025, 31, 1494–1501. [Google Scholar] [CrossRef]
- Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol.–Head Neck Surg. 2019, 145, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Villegas, G.; Alcántara-Lozano, G.I.; Cuicapuza, D.; Laureano, R.; Ayzanoa, B.; Tsukayama, P.; Tamariz, J. In Vivo Evaluation of Phage Therapy against Klebsiella pneumoniae Using the Galleria mellonella Model and Molecular Characterization of a Novel Drulisvirus Phage Species. Microbiol. Spectr. 2025, 13, e0114524. [Google Scholar] [CrossRef]
- Li, S.; Wei, B.; Xu, L.; Cong, C.; Murtaza, B.; Wang, L.; Li, X.; Li, J.; Xu, M.; Yin, J.; et al. In vivo efficacy of phage cocktails against carbapenem resistance Acinetobacter baumannii in the rat pneumonia model. J. Virol. 2024, 98, e0046724. [Google Scholar] [CrossRef]
- Wen, C.; Chang, C.; Chen, C.; Peng, J.; Huang, H.; Chuang, P.; Chen, C.; Tsai, J. Age-dependent messenger RNA expression of toll-like receptor 4 and intercellular adhesion molecule-1 in peripheral blood mononuclear cells. Eur. J. Clin. Investig. 2021, 51, e13522. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef]
- Cavaliere, C.; Seys, S.F.; de Kinderen, J.; Bettio, G.; Andrianakis, A.; Alobid, I.; Hellings, P.W.; Van Gerven, L.; Hox, V.; Hopkins, C.; et al. Characterization of Chronic Rhinosinusitis Patients Based on Markers of Type 2 Inflammation: Findings From the European CRS Outcome Registry (CHRINOSOR). Clin. Transl. Allergy 2025, 15, e70095. [Google Scholar] [CrossRef]
- Krut, O.; Bekeredjian-Ding, I. Contribution of the Immune Response to Phage Therapy. J. Immunol. 2018, 200, 3037–3044. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: A multicentre, multinational, retrospective observational study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef]
- Hu, T.; Liu, C.H.; Lei, M.; Zeng, Q.; Li, L.; Tang, H.; Zhang, N. Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct. Target. Ther. 2024, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Pincus, N.B.; Reckhow, J.D.; Saleem, D.; Jammeh, M.L.; Datta, S.K.; Myles, I.A. Strain Specific Phage Treatment for Staphylococcus aureus Infection Is Influenced by Host Immunity and Site of Infection. PLoS ONE 2015, 10, e0124280. [Google Scholar] [CrossRef] [PubMed]
- Viola, M.F.; Boeckxstaens, G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol. Motil. 2020, 32, e13843. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.D.; Smythies, L.E.; Shen, R.; Greenwell-Wild, T.; Gliozzi, M.; Wahl, S.M. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 2011, 4, 31–42. [Google Scholar] [CrossRef]
- Matzinger, P. The danger model: A renewed sense of self. Science 2002, 296, 301–305. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Jeong, H.; Chae, J.S.; Kim, Y.S.; Lee, J.G.; Cho, Y.; Lee, J.H. Hyporesponsiveness of natural killer cells and im-paired inflammatory responses in critically ill patients. BMC Immunol. 2017, 18, 48. [Google Scholar] [CrossRef]
- Weissfuss, C.; Hoffmann, K.; Behrendt, U.; Bürkle, M.; Twamley, S.G.; Korf, I.H.E.; Ahrens, K.; Rohde, C.; Zobel, C.M.; Debarbieux, L.; et al. Neutrophils, not macrophages, aid phage-mediated control of pulmonary Pseudomonas aeruginosa infection. Front. Immunol. 2025, 16, 1681461. [Google Scholar] [CrossRef]
- Hallas, J.; Pottegård, A. Use of self-controlled designs in pharmacoepidemiology. J. Intern. Med. 2014, 275, 581–589. [Google Scholar] [CrossRef]
- Gagne, J.J.; Thompson, L.; O’Keefe, K.; Kesselheim, A.S. Innovative research methods for studying treatments for rare diseases: Methodological review. BMJ 2014, 349, g6802. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Verbeken, G. Magistral Phage Preparations: Is This the Model for Everyone? Clin. Infect. Dis. 2023, 77, S360–S369. [Google Scholar] [CrossRef] [PubMed]
- Serwer, P.; Wright, E.T.; De La Chapa, J.; Gonzales, C.B. Basics for Improved Use of Phages for Therapy. Antibiotics 2021, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, K.; Miernikiewicz, P.; Piotrowicz, A.; Hodyra, K.; Owczarek, B.; Lecion, D.; Kaźmierczak, Z.; Letarov, A.; Górski, A. Immunogenicity studies of proteins forming the T4 phage head surface. J. Virol. 2014, 88, 12551–12557. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, G.; Perry, M.R.; Ward, S.; Brett, S.J.; Castello-Cortes, A.; Brunner, M.D.; Panoskaltsis, N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 2006, 355, 1018–1028. [Google Scholar] [CrossRef]
- Uyttebroek, S.; Chen, B.; Onsea, J.; Ruythooren, F.; Debaveye, Y.; Devolder, D.; Spriet, I.; Depypere, M.; Wagemans, J.; Lavigne, R.; et al. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet. Infect. Dis. 2022, 22, e208–e220. [Google Scholar] [CrossRef]
- Chaudhary, N.; Kaur, H.; Modgil, V.; Singh, D.; Maurya, R.K.; Mohan, B.; Taneja, N. In vitro and In vivo evaluation of phage-antibiotic synergy for the treatment of urinary tract infections. Microb. Pathog. 2025, 208, 108005. [Google Scholar] [CrossRef]
- Żaczek, M.; Górski, A.; Weber-Dąbrowska, B.; Letkiewicz, S.; Fortuna, W.; Rogóż, P.; Pasternak, E.; Międzybrodzki, R. A Thorough Synthesis of Phage Therapy Unit Activity in Poland-Its History, Milestones and International Recognition. Viruses 2022, 14, 1170. [Google Scholar] [CrossRef]
- English, D.; Andersen, B.R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J. Immunol. Methods 1974, 5, 249–252. [Google Scholar] [CrossRef]
- Brousseau, P.; Payette, Y.; Tryphonas, H.; Blakley, B.; Boermans, H.; Flipo, D.; Fournier, M. Manual of Immunological Methods; CRC Press: Boca Raton, FL, USA, 1999; pp. 27–31. [Google Scholar]
- Jahanmehr, S.A.; Hyde, K.; Geary, C.G.; Cinkotai, K.I.; Maciver, J.E. Simple technique for fluorescence staining of blood cells with acridine orange. J. Clin. Pathol. 1987, 40, 926–929. [Google Scholar] [CrossRef]
- Balter, M.L.; Chen, A.I.; Colinco, C.A.; Gorshkov, A.; Bixon, B.; Martin, V.; Fromholtz, A.; Maguire, T.J.; Yarmush, M.L. Differential Leukocyte Counting via Fluorescent Detection and Image Processing on a Centrifugal Microfluidic Platform. Anal. Methods 2016, 8, 8272–8279. [Google Scholar] [CrossRef]
- Dalman, M.R.; Deeter, A.; Nimishakavi, G.; Duan, Z.H. Fold change and p-value cutoffs significantly alter microarray interpreta-tions. BMC Bioinform. 2012, 13, 11. [Google Scholar] [CrossRef]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N., Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef]
- Zhang, J.D.; Ruschhaupt, M.; Biczok, R. ddCt Method for qRT–PCR Data Analysis. 2025. Available online: https://bioconductor.posit.co/packages/3.22/bioc/vignettes/ddCt/inst/doc/rtPCR.pdf (accessed on 18 December 2025).




| Patient No. | Gender | Age (years) | Pathogens (Targets for PT) | Diagnosis | Route of Administration of the Phage Preparation | Before PT | During PT | Day of PT | Clinical Effect of PT | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| WBC (×1000/µL) | CRP (mg/L) | ESR (mm/h) | WBC (×1000/µL) | CRP (mg/L) | ESR (mm/h) | ||||||||
| 1 | F | 33 | E. coli | Chronic urinary tract infection. Neurogenic bladder. | Oral | 7.8 | 7.14 | 12 | 9.4 | 29.7 | 44 | 21 | F |
| 2 | M | 38 | E. hormaechei | Right hip infection | Oral | 3.9 | 7.7 | 21 | 5 | 6.7 | 16 | 25 | F |
| 3 | M | 71 | K. pneumoniae | Chronic bacterial prostatitis | Intrarectal | 5.5 | 1.4 | 3 | nd | nd | nd | 22 | C |
| 4 | M | 27 | S. aureus | Atopic dermatitis complicated by bacterial infection | Oral Topical | 10.1 | 2.8 | 35 | 10 | 1 | 25 | 21 | C |
| 5 | M | 21 | P. aeruginosa | Bronchitis. Kartagener’s syndrome. | Oral Inhalation | 7.68 | 1 | 13 | 11.91 | 14.27 | 9 | 13 | F |
| 6 | F | 57 | S. aureus | Chronic rhinosinusitis | Nasal drops Inhalation | 8.17 | nd | 18 | 7.85 | 6.9 | 12 | 21 | C |
| 7 | F | 26 | P. aeruginosa S. aureus E. coli | Otitis externa (bilateral) | Topical | 6.8 | 3 | 15 | 6.25 | 2.9 | nd | 14 | E |
| 8 | M | 79 | S. aureus | Surgical site infection after hernia mesh reapir. Diabetes t. II. | Oral Topical | 6.94 | 9.5 | 16 | 7.35 | 9.3 | 13 | 29 | D |
| 9 | F | 67 | P. aeruginosa S. aureus | Chronic leg ulcer | Topical | 3.83 | 2.35 | 51 | 5.47 | 5.39 | 53 | 15 | G |
| 10 | F | 64 | P. aeruginosa | Diabetic foot. Rheumatoid arthritis. | Oral Topical | 7.61 | 84.1 | 60 | 9.01 | 61.5 | 32 | 14 | C |
| Pos. | Gene | PBMC | Granulocytes | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Median | Min | Max | Mean | Median | Min | Max | ||
| 1 | TNF | 1.48 | 1.15 | 0.36 | 5.35 | 1.14 | 0.87 | 0.36 | 3.27 |
| 2 | IL1B | 3.50 | 1.28 | 0.14 | 15.30 | 1.20 | 0.95 | 0.45 | 3.21 |
| 3 | IL17A | 6.49 | 1.97 | 0.05 | 48.67 | 1.95 | 0.64 | 0.12 | 10.33 |
| 4 | IL2 | 4.17 | 2.77 | 0.03 | 23.26 | 1.07 | 0.86 | 0.17 | 2.90 |
| 5 | IL6 | 5.23 | 1.51 | 0.14 | 32.11 | 1.56 | 0.92 | 0.12 | 4.24 |
| 6 | IL21 | 2.38 | 1.06 | 0.30 | 13.78 | 1.58 | 0.89 | 0.41 | 5.75 |
| 7 | IFNG | 1.73 | 1.24 | 0.11 | 7.21 | 2.07 | 1.45 | 0.17 | 5.89 |
| 8 | CXCL8 | 2.18 | 2.04 | 0.04 | 4.70 | 0.93 | 0.87 | 0.09 | 3.12 |
| 9 | CSF2 | 1.92 | 1.25 | 0.15 | 6.97 | 1.74 | 1.23 | 0.23 | 4.31 |
| 10 | MPO | 2.44 | 1.14 | 0.30 | 10.87 | 2.44 | 0.76 | 0.19 | 12.76 |
| 11 | NFKB1 | 1.09 | 1.18 | 0.72 | 1.42 | 0.98 | 0.88 | 0.78 | 1.94 |
| 12 | NOD1 | 1.32 | 0.95 | 0.40 | 3.62 | 1.53 | 0.83 | 0.38 | 6.23 |
| 13 | MYD88 | 1.17 | 1.12 | 0.69 | 1.84 | 1.01 | 0.97 | 0.57 | 1.65 |
| 14 | TLR2 | 1.11 | 0.93 | 0.70 | 1.91 | 0.92 | 0.89 | 0.25 | 2.21 |
| 15 | TLR4 | 1.13 | 1.20 | 0.79 | 1.40 | 0.89 | 0.96 | 0.41 | 1.34 |
| 16 | TLR10 | 1.20 | 1.21 | 0.32 | 2.24 | 1.07 | 0.85 | 0.50 | 2.93 |
| 17 | GDF15 | 2.59 | 1.26 | 0.20 | 11.09 | 2.37 | 1.25 | 0.21 | 9.05 |
| 18 | DEFB1 | 3.84 | 1.26 | 0.14 | 18.85 | 3.78 | 0.78 | 0.24 | 13.91 |
| 19 | IL5 | 4.67 | 1.95 | 0.08 | 31.67 | 1.74 | 1.35 | 0.17 | 4.40 |
| 20 | IL13 | 5.13 | 1.78 | 0.02 | 27.19 | 1.60 | 0.87 | 0.12 | 6.84 |
| 21 | IL4 | 4.25 | 1.63 | 0.04 | 28.74 | 2.18 | 0.88 | 0.16 | 8.13 |
| 22 | IL10 | 4.67 | 1.65 | 0.15 | 31.12 | 1.97 | 1.11 | 0.25 | 5.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kasprzak, H.; Przybylski, M.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Bubak, B.; Górski, A.; Międzybrodzki, R. Analysis of Pro- and Anti-Inflammatory Gene Response Patterns in Patients Receiving Phage Therapy. Int. J. Mol. Sci. 2026, 27, 172. https://doi.org/10.3390/ijms27010172
Kasprzak H, Przybylski M, Fortuna W, Letkiewicz S, Rogóż P, Bubak B, Górski A, Międzybrodzki R. Analysis of Pro- and Anti-Inflammatory Gene Response Patterns in Patients Receiving Phage Therapy. International Journal of Molecular Sciences. 2026; 27(1):172. https://doi.org/10.3390/ijms27010172
Chicago/Turabian StyleKasprzak, Hubert, Maciej Przybylski, Wojciech Fortuna, Sławomir Letkiewicz, Paweł Rogóż, Barbara Bubak, Andrzej Górski, and Ryszard Międzybrodzki. 2026. "Analysis of Pro- and Anti-Inflammatory Gene Response Patterns in Patients Receiving Phage Therapy" International Journal of Molecular Sciences 27, no. 1: 172. https://doi.org/10.3390/ijms27010172
APA StyleKasprzak, H., Przybylski, M., Fortuna, W., Letkiewicz, S., Rogóż, P., Bubak, B., Górski, A., & Międzybrodzki, R. (2026). Analysis of Pro- and Anti-Inflammatory Gene Response Patterns in Patients Receiving Phage Therapy. International Journal of Molecular Sciences, 27(1), 172. https://doi.org/10.3390/ijms27010172

