Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,085)

Search Parameters:
Keywords = axon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

24 pages, 6639 KiB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Viewed by 120
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

31 pages, 2506 KiB  
Review
Muscarinic Receptor Antagonism and TRPM3 Activation as Stimulators of Mitochondrial Function and Axonal Repair in Diabetic Sensorimotor Polyneuropathy
by Sanjana Chauhan, Nigel A. Calcutt and Paul Fernyhough
Int. J. Mol. Sci. 2025, 26(15), 7393; https://doi.org/10.3390/ijms26157393 - 31 Jul 2025
Viewed by 448
Abstract
Diabetic sensorimotor polyneuropathy (DSPN) is the most prevalent complication of diabetes, affecting nearly half of all persons with diabetes. It is characterized by nerve degeneration, progressive sensory loss and pain, with increased risk of ulceration and amputation. Despite its high prevalence, disease-modifying treatments [...] Read more.
Diabetic sensorimotor polyneuropathy (DSPN) is the most prevalent complication of diabetes, affecting nearly half of all persons with diabetes. It is characterized by nerve degeneration, progressive sensory loss and pain, with increased risk of ulceration and amputation. Despite its high prevalence, disease-modifying treatments for DSPN do not exist. Mitochondrial dysfunction and Ca2+ dyshomeostasis are key contributors to the pathophysiology of DSPN, disrupting neuronal energy homeostasis and initiating axonal degeneration. Recent findings have demonstrated that antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes restoration of mitochondrial function and axon repair in various neuropathies, including DSPN, chemotherapy-induced peripheral neuropathy (CIPN) and HIV-associated neuropathy. Pirenzepine, a selective M1R antagonist with a well-established safety profile, is currently under clinical investigation for its potential to reverse neuropathy. The transient receptor potential melastatin-3 (TRPM3) channel, a Ca2+-permeable ion channel, has recently emerged as a downstream effector of G protein-coupled receptor (GPCR) pathways, including M1R. TRPM3 activation enhanced mitochondrial Ca2+ uptake and bioenergetics, promoting axonal sprouting. This review highlights mitochondrial and Ca2+ signaling imbalances in DSPN and presents M1R antagonism and TRPM3 activation as promising neuro-regenerative strategies that shift treatment from symptom control to nerve restoration in diabetic and other peripheral neuropathies. Full article
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 296
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

16 pages, 12609 KiB  
Article
Direct and Indirect Downstream Pathways That Regulate Repulsive Guidance Effects of FGF3 on Developing Thalamocortical Axons
by Kejuan Li, Jiyuan Li, Qingyi Chen, Yuting Dong, Hanqi Gao and Fang Liu
Int. J. Mol. Sci. 2025, 26(15), 7361; https://doi.org/10.3390/ijms26157361 - 30 Jul 2025
Viewed by 210
Abstract
The thalamus is an important sensory relay station. It integrates all somatic sensory pathways (excluding olfaction) and transmits information through thalamic relay neurons before projecting to the cerebral cortex via thalamocortical axons (TCAs). Emerging evidence has shown that FGF3, a member of the [...] Read more.
The thalamus is an important sensory relay station. It integrates all somatic sensory pathways (excluding olfaction) and transmits information through thalamic relay neurons before projecting to the cerebral cortex via thalamocortical axons (TCAs). Emerging evidence has shown that FGF3, a member of the morphogen family, is an axon guidance molecule that repels TCAs away from the hypothalamus and into the internal capsule so that they subsequently reach different regions of the cortex. However, current studies on FGF-mediated axon guidance predominantly focus on phenomenological observations, with limited exploration of the underlying molecular mechanisms. To address this gap, we investigated both direct and indirect downstream signaling pathways mediating FGF3-dependent chemorepulsion of TCAs at later developmental stages. Firstly, we used pharmacological inhibitors to identify the signaling cascade(s) responsible for FGF3-triggered direct chemorepulsion of TCAs, in vitro and in vivo. Our results demonstrate that the PC-PLC pathway is required for FGF3 to directly stimulate the asymmetrical repellent growth of developing TCAs. Then, we found the FGF3-mediated repulsion can be indirectly induced by Slit1 because the addition of FGF3 in the culture media induced an increase in Slit1 expression in the diencephalon. Furthermore, by using downstream inhibitors, we found that the indirect repulsive effect of FGF3 is mediated through the PI3K downstream pathway of FGFR1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 4087 KiB  
Article
Intranasal Administration of Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Has Therapeutic Effect in Experimental Autoimmune Encephalomyelitis
by Barbara Rossi, Federica Virla, Gabriele Angelini, Ilaria Scambi, Alessandro Bani, Giulia Marostica, Mauro Caprioli, Daniela Anni, Roberto Furlan, Pasquina Marzola, Raffaella Mariotti, Gabriela Constantin, Bruno Bonetti and Ermanna Turano
Cells 2025, 14(15), 1172; https://doi.org/10.3390/cells14151172 - 30 Jul 2025
Viewed by 411
Abstract
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of [...] Read more.
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have clearly shown a therapeutic effect of ASCs. However, controversial data on their efficacy were obtained from I- and II-phase clinical trials in MS patients, highlighting standardization issues and limited data on long-term safety. In this context, ASC-derived extracellular vesicles from (ASC-EVs) represent a safer, more reproducible alternative for EAE and MS treatment. Moreover, their physical characteristics lend themselves to a non-invasive, efficient, and easy handling of intranasal delivery. Using an in vitro setting, we first verified ASC-EVs’ ability to cross the human nasal epithelium under an inflammatory milieu. Magnetic resonance corroborated these data in vivo in intranasally treated MOG35-55-induced EAE mice, showing a preferential accumulation of ASC-EVs in brain-inflamed lesions compared to a stochastic distribution in healthy control mice. Moreover, intranasal treatment of ASC-EVs at the EAE onset led to a long-term therapeutic effect using two different experimental protocols. A marked reduction in T cell infiltration, demyelination, axonal damage, and cytokine production were correlated to EAE amelioration in ASC-EV-treated mice compared to control mice, highlighting the immunomodulatory and neuroprotective roles exerted by ASC-EVs during EAE progression. Overall, our study paves the way for promising clinical applications of self-administered ASC-EV intranasal treatment in CNS disorders, including MS. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

8 pages, 192 KiB  
Brief Report
Accuracy and Safety of ChatGPT-3.5 in Assessing Over-the-Counter Medication Use During Pregnancy: A Descriptive Comparative Study
by Bernadette Cornelison, David R. Axon, Bryan Abbott, Carter Bishop, Cindy Jebara, Anjali Kumar and Kristen A. Root
Pharmacy 2025, 13(4), 104; https://doi.org/10.3390/pharmacy13040104 - 30 Jul 2025
Viewed by 536
Abstract
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study [...] Read more.
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study focuses on a chatbot’s ability to accurately provide information regarding OTC medications as it relates to patients that are pregnant. A prospective, descriptive design was used to compare the responses generated by the Chat Generative Pre-Trained Transformer 3.5 (ChatGPT-3.5) to the information provided by UpToDate®. Eighty-seven of the top pharmacist-recommended OTC drugs in the United States (U.S.) as identified by Pharmacy Times were assessed for safe use in pregnancy using ChatGPT-3.5. A piloted, standard prompt was input into ChatGPT-3.5, and the responses were recorded. Two groups independently rated the responses compared to UpToDate on their correctness, completeness, and safety using a 5-point Likert scale. After independent evaluations, the groups discussed the findings to reach a consensus, with a third independent investigator giving final ratings. For correctness, the median score was 5 (interquartile range [IQR]: 5–5). For completeness, the median score was 4 (IQR: 4–5). For safety, the median score was 5 (IQR: 5–5). Despite high overall scores, the safety errors in 9% of the evaluations (n = 8), including omissions that pose a risk of serious complications, currently renders the chatbot an unsafe standalone resource for this purpose. Full article
(This article belongs to the Special Issue AI Use in Pharmacy and Pharmacy Education)
19 pages, 2479 KiB  
Article
Sensitivity of Diffusion Tensor Imaging for Assessing Injury Severity in a Rat Model of Isolated Diffuse Axonal Injury: Comparison with Histology and Neurological Assessment
by Vladislav Zvenigorodsky, Benjamin F. Gruenbaum, Ilan Shelef, Dmitry Frank, Beatris Tsafarov, Shahar Negev, Vladimir Zeldetz, Abed N. Azab, Matthew Boyko and Alexander Zlotnik
Int. J. Mol. Sci. 2025, 26(15), 7333; https://doi.org/10.3390/ijms26157333 - 29 Jul 2025
Viewed by 189
Abstract
Diffuse axonal brain injury (DAI) is a common, debilitating consequence of traumatic brain injury, yet its detection and severity grading remain challenging in clinical and experimental settings. This study evaluated the sensitivity of diffusion tensor imaging (DTI), histology, and neurological severity scoring (NSS) [...] Read more.
Diffuse axonal brain injury (DAI) is a common, debilitating consequence of traumatic brain injury, yet its detection and severity grading remain challenging in clinical and experimental settings. This study evaluated the sensitivity of diffusion tensor imaging (DTI), histology, and neurological severity scoring (NSS) in assessing injury severity in a rat model of isolated DAI. A rotational injury model induced mild, moderate, or severe DAI in male and female rats. Neurological deficits were assessed 48 h after injury via NSS. Magnetic resonance imaging, including DTI metrics, such as fractional anisotropy (FA), relative anisotropy (RA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD), was performed prior to tissue collection. Histological analysis used beta amyloid precursor protein immunohistochemistry. Sensitivity and variability of each method were compared across brain regions and the whole brain. Histology was the most sensitive method, requiring very small groups to detect differences. Anisotropy-based MRI metrics, especially whole-brain FA and RA, showed strong correlations with histology and NSS and demonstrated high sensitivity with low variability. NSS identified injury but required larger group sizes. Diffusivity-based MRI metrics, particularly RD, were less sensitive and more variable. Whole-brain FA and RA were the most sensitive MRI measures of DAI severity and were comparable to histology in moderate and severe groups. These findings support combining NSS and anisotropy-based DTI for non-terminal DAI assessment in preclinical studies. Full article
Show Figures

Figure 1

59 pages, 3467 KiB  
Review
Are Hippocampal Hypoperfusion and ATP Depletion Prime Movers in the Genesis of Alzheimer’s Disease? A Review of Recent Pertinent Observations from Molecular Biology
by Valerie Walker
Int. J. Mol. Sci. 2025, 26(15), 7328; https://doi.org/10.3390/ijms26157328 - 29 Jul 2025
Viewed by 313
Abstract
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown [...] Read more.
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown and under intense investigation. Localization to the hippocampus can now be explained by anatomical features of the blood vessels supplying this region. Blood supply and hence oxygen delivery to the area are jeopardized by poor flow through narrowed arteries. In genomic and metabolomic studies, the respiratory chain and mitochondrial pathways which generate ATP were leading pathways associated with AD. This review explores the notion that ATP depletion resulting from hippocampal hypoperfusion has a prime role in initiating damage. Sections cover sensing of ATP depletion and protective responses, vulnerable processes with very heavy ATP consumption (the malate shuttle, the glutamate/glutamine/GABA (γ-aminobutyric acid) cycle, and axonal transport), phospholipid disturbances and peroxidation by reactive oxygen species, hippocampal perfusion and the effects of hypertension, chronic hypoxia, and arterial vasospasm, and an overview of recent relevant genomic studies. The findings demonstrate strong scientific arguments for the proposal with increasing supportive evidence. These lines of enquiry should be pursued. Full article
Show Figures

Graphical abstract

16 pages, 1795 KiB  
Article
Hospital Coordination and Protocols Using Serum and Peripheral Blood Cells from Patients and Healthy Donors in a Longitudinal Study of Guillain–Barré Syndrome
by Raquel Díaz, Javier Blanco-García, Javier Rodríguez-Gómez, Eduardo Vargas-Baquero, Carmen Fernández-Alarcón, José Rafael Terán-Tinedo, Lorenzo Romero-Ramírez, Jörg Mey, José de la Fuente, Margarita Villar, Angela Beneitez, María del Carmen Muñoz-Turrillas, María Zurdo-López, Miriam Sagredo del Río, María del Carmen Lorenzo-Lozano, Carlos Marsal-Alonso, Maria Isabel Morales-Casado, Javier Parra-Serrano and Ernesto Doncel-Pérez
Diagnostics 2025, 15(15), 1900; https://doi.org/10.3390/diagnostics15151900 - 29 Jul 2025
Viewed by 228
Abstract
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per [...] Read more.
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per 100,000 people. Although most patients recover, a small proportion do not regain mobility and even remain dependent on mechanical ventilation. In this study, we refer to the analysis of samples collected from GBS patients at different defined time points during hospital recovery and performed by a medical or research group. Methods: The conditions for whole blood collection, peripheral blood mononuclear cell isolation, and serum collection from GBS patients and volunteer donors are explained. Aliquots of these human samples have been used for red blood cell phenotyping, transcriptomic and proteomic analyses, and serum biochemical parameter studies. Results: The initial sporadic preservation of human samples from GBS patients and control volunteers enabled the creation of a biobank collection for current and future studies related to the diagnosis and treatment of GBS. Conclusions: In this article, we describe the laboratory procedures and the integration of a GBS biobank collection, local medical services, and academic institutions collaborating in its respective field. The report establishes the intra-disciplinary and inter-institutional network to conduct long-term longitudinal studies on GBS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

17 pages, 645 KiB  
Review
Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity
by Jeffery L. Twiss and Courtney N. Buchanan
Int. J. Mol. Sci. 2025, 26(15), 7283; https://doi.org/10.3390/ijms26157283 - 28 Jul 2025
Viewed by 264
Abstract
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of [...] Read more.
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of the diverse proteins produced in subcellular compartments. These investigations have also uncovered key molecular mechanisms that regulate mRNA transport, storage, stability, and translation within neurons. The long distances that axons extend render their processes vulnerable, especially when injury necessitates regeneration to restore connectivity. Localized mRNA translation in axons helps initiate and sustain axon regeneration in the peripheral nervous system and promotes axon growth in the central nervous system. Recent and ongoing studies suggest that axonal RNA transport, storage, and stability mechanisms represent promising targets for enhancing regenerative capacity. Here, we summarize critical post-transcriptional regulatory mechanisms, emphasizing translation in the axonal compartment and highlighting potential strategies for the development of new regeneration-promoting therapeutics. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

14 pages, 4627 KiB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 568
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

16 pages, 1269 KiB  
Article
The Association of Axonal Damage Biomarkers and Osteopontin at Diagnosis Could Be Useful in Newly Diagnosed MS Patients
by Eleonora Virgilio, Chiara Puricelli, Nausicaa Clemente, Valentina Ciampana, Ylenia Imperatore, Simona Perga, Sveva Stangalini, Elena Boggio, Alice Appiani, Casimiro Luca Gigliotti, Umberto Dianzani, Cristoforo Comi and Domizia Vecchio
Neurol. Int. 2025, 17(7), 110; https://doi.org/10.3390/neurolint17070110 - 17 Jul 2025
Viewed by 281
Abstract
(1) Background: Multiple sclerosis (MS) is a biologically highly heterogeneous disease and has poor predictability at diagnosis. Moreover, robust data indicate that early disease activity strongly correlates with future disability. Therefore, there is a need for strong and reliable biomarkers from diagnosis to [...] Read more.
(1) Background: Multiple sclerosis (MS) is a biologically highly heterogeneous disease and has poor predictability at diagnosis. Moreover, robust data indicate that early disease activity strongly correlates with future disability. Therefore, there is a need for strong and reliable biomarkers from diagnosis to characterize and identify patients who require highly effective disease-modifying treatments (DMTs). Several biomarkers are promising, particularly neurofilament light chains (NFLs), but the relevance of others is less consolidated. (2) Methods: We evaluated a panel of axonal damage and inflammatory biomarkers in cerebrospinal fluid (CSF) and matched serum obtained from a cohort of 60 newly diagnosed MS patients. Disability at diagnosis, negative prognostic factors, and the initial DMT prescribed were carefully recorded. (3) Results: We observed correlations between different axonal biomarkers: CSF and serum NFL versus CSF total tau; and between the inflammatory marker osteopontin (OPN) and axonal biomarkers CSF p-Tau, CSF total tau, and serum NFL. CSF and serum NFL and total tau, as well as CSF OPN, positively correlated with EDSS at diagnosis. Moreover, CSF and serum NFL levels were increased in patients with gadolinium-enhancing lesions (p = 0.01 and p = 0.04, respectively) and in those treated with highly effective DMT (p = 0.049). Furthermore, CSF OPN and both CSF and serum NFL levels significantly differentiated patients based on EDSS, with a combined ROC AUC of 0.88. We calculated and internally validated biomarker (in particular serum NFL) thresholds that significantly identified patients with higher disability. Finally, CSF OPN levels and dissemination in the spinal cord were significant predictors of EDSS at diagnosis. (4) Conclusions: These preliminary exploratory data confirm the pathological interconnection between inflammation and axonal damage from early disease stages, contributing to early disability. Follow-up data, such as longitudinal disability scores, repeated serum measurements, a healthy control group, and external validation of our results, are needed. We suggest that combining several fluid biomarkers may improve the clinical characterization of patients. Full article
Show Figures

Figure 1

21 pages, 4209 KiB  
Article
The Upregulation of L1CAM by SVHRSP Mitigates Neuron Damage, Spontaneous Seizures, and Cognitive Dysfunction in a Kainic Acid-Induced Rat Model of Epilepsy
by Zhen Li, Biying Ge, Haoqi Li, Chunyao Huang, Yunhan Ji, Melitta Schachner, Shengming Yin, Sheng Li and Jie Zhao
Biomolecules 2025, 15(7), 1032; https://doi.org/10.3390/biom15071032 - 17 Jul 2025
Viewed by 473
Abstract
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective [...] Read more.
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective potential. This study evaluated the anti-epileptic effects of SVHRSP in a kainic acid (KA)-induced TLE rat model. Our results demonstrated that SVHRSP (0.81 mg/kg/day) reduced the frequency and severity of spontaneous seizures. Behavioral tests showed improved cognitive performance in the novel object recognition, object location, and T-maze tasks, as well as reduced anxiety-like behavior in the open-field test. Moreover, SVHRSP mitigated hippocampal neuronal loss and glial activation. Transcriptomic analysis indicated that SVHRSP upregulates genes involved in adhesion molecule-triggered and axon guidance pathways. Western blotting and immunofluorescence further confirmed that SVHRSP restored dendritic (MAP2), axonal (NFL), and synaptic (PSD95) marker expression, elevated the functionally important L1CAM fragment (L1-70), and increased myelin basic protein-induced serine protease activity responsible for L1-70 generation. Blockade of L1CAM expression diminished the neuroprotective effects of SVHRSP, suggesting a critical role for L1CAM-mediated synapse functions. This study is the first to reveal the therapeutic potential of SVHRSP in TLE via L1CAM-associated mechanisms. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop