An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal
Abstract
1. Introduction
2. Results
2.1. Assessment of m6A Levels and Key RNA Methylation/Demethylation Enzymes in the Prefrontal Cortex
2.2. Assessment of m6A Levels and Key RNA Methylation/Demethylation Enzymes in the Hippocampus
2.3. Assessment of m6A Levels and Key RNA Methylation/Demethylation Enzymes in the Striatum
2.4. Assessment of m6A Levels and Key RNA Methylation/Demethylation Enzymes in the Cerebellum
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Morphine Treatment
4.3. Sample Preparation
4.4. RNA and Protein Isolation
4.5. Assessment of m6A RNA Modification
4.6. Western Blotting
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C | control |
FTO | fat mass and obesity-associated gene |
METTL3 | methyltransferase-like 3 |
METTL14 | methyltransferase-like 14 |
MW | morphine withdrawal |
m⁶A | N6-methyladenosine |
SAM | S-adenosyl methionine |
TBS | Tris-buffered saline |
1D | 1 day |
1W | 1 week |
4W | 4 weeks |
12W | 12 weeks |
References
- Jang, K.-H.; Heras, C.R.; Lee, G. m6A in the Signal Transduction Network. Mol. Cells 2022, 45, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.; Qi, Z.; Sang, Y.; Liu, Y.; Xu, B.; Liu, W.; Xu, Z.; Deng, Y. The Role of mRNA m 6 A Methylation in the Nervous System. Cell Biosci. 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Lugoboni, M.; Junion, G. m6A RNA Modification in Transcription Regulation. Transcription 2021, 12, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The Role of m6A Modification in the Biological Functions and Diseases. Sig. Transduct. Target. Ther. 2021, 6, 74. [Google Scholar] [CrossRef]
- Agarwala, S.D.; Blitzblau, H.G.; Hochwagen, A.; Fink, G.R. RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast. PLoS Genet. 2012, 8, e1002732. [Google Scholar] [CrossRef]
- Bokar, J.A.; Shambaugh, M.E.; Polayes, D.; Matera, A.G.; Rottman, F.M. Purification and cDNA Cloning of the AdoMet-Binding Subunit of the Human mRNA (N6-Adenosine)-Methyltransferase. RNA 1997, 3, 1233–1247. [Google Scholar]
- Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; et al. A METTL3–METTL14 Complex Mediates Mammalian Nuclear RNA N 6-Adenosine Methylation. Nat. Chem. Biol. 2014, 10, 93–95. [Google Scholar] [CrossRef]
- Schwartz, S.; Mumbach, M.R.; Jovanovic, M.; Wang, T.; Maciag, K.; Bushkin, G.G.; Mertins, P.; Ter-Ovanesyan, D.; Habib, N.; Cacchiarelli, D.; et al. Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Rep. 2014, 8, 284–296. [Google Scholar] [CrossRef]
- Pendleton, K.E.; Chen, B.; Liu, K.; Hunter, O.V.; Xie, Y.; Tu, B.P.; Conrad, N.K. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 2017, 169, 824–835. [Google Scholar] [CrossRef]
- Patil, D.P.; Chen, C.-K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. m6A RNA Methylation Promotes XIST-Mediated Transcriptional Repression. Nature 2016, 537, 369–373. [Google Scholar] [CrossRef]
- Wen, J.; Lv, R.; Ma, H.; Shen, H.; He, C.; Wang, J.; Jiao, F.; Liu, H.; Yang, P.; Tan, L.; et al. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol. Cell 2018, 69, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Doxtader, K.A.; Nam, Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell 2016, 63, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Bokar, J.A.; Rath-Shambaugh, M.E.; Ludwiczak, R.; Narayan, P.; Rottman, F. Characterization and Partial Purification of mRNA N6-Adenosine Methyltransferase from HeLa Cell Nuclei. Internal mRNA Methylation Requires a Multisubunit Complex. J. Biol. Chem. 1994, 269, 17697–17704. [Google Scholar] [CrossRef]
- Trewick, S.C.; Henshaw, T.F.; Hausinger, R.P.; Lindahl, T.; Sedgwick, B. Oxidative Demethylation by Escherichia coli AlkB Directly Reverts DNA Base Damage. Nature 2002, 419, 174–178. [Google Scholar] [CrossRef]
- Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 Facilitates Translation and Decay of N6-Methyladenosine-Modified RNA. Cell Res. 2017, 27, 315–328. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N 6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature 2014, 505, 117–120. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [Google Scholar] [CrossRef] [PubMed]
- Dhote, V.; Sweeney, T.R.; Kim, N.; Hellen, C.U.; Pestova, T.V. Roles of Individual Domains in the Function of DHX29, an Essential Factor Required for Translation of Structured Mammalian mRNAs. Proc. Natl. Acad. Sci. USA 2012, 109, E3150–E3159. [Google Scholar] [CrossRef]
- Hartmann, A.M.; Nayler, O.; Schwaiger, F.W.; Obermeier, A.; Stamm, S. The Interaction and Colocalization of Sam68 with the Splicing-Associated Factor YT521-B in Nuclear Dots Is Regulated by the Src Family Kinase P59fyn. Mol. Biol. Cell 1999, 10, 3909–3926. [Google Scholar] [CrossRef]
- Kretschmer, J.; Rao, H.; Hackert, P.; Sloan, K.E.; Höbartner, C.; Bohnsack, M.T. The m6A Reader Protein YTHDC2 Interacts with the Small Ribosomal Subunit and the 5′–3′ Exoribonuclease XRN1. RNA 2018, 24, 1339–1350. [Google Scholar] [CrossRef]
- Wojtas, M.N.; Pandey, R.R.; Mendel, M.; Homolka, D.; Sachidanandam, R.; Pillai, R.S. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol. Cell 2017, 68, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Livneh, I.; Moshitch-Moshkovitz, S.; Amariglio, N.; Rechavi, G.; Dominissini, D. The m6A Epitranscriptome: Transcriptome Plasticity in Brain Development and Function. Nat. Rev. Neurosci. 2020, 21, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.-P.; Chen, J.-A. The m6A Epitranscriptome on Neural Development and Degeneration. J. Biomed. Sci. 2021, 28, 40. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Weng, Y.-L.; Lu, Z.; Liu, Y.; Lu, Z.; Li, J.; Hao, P.; Zhang, Y.; Zhang, F.; et al. m6A Facilitates Hippocampus-Dependent Learning and Memory through YTHDF1. Nature 2018, 563, 249–253. [Google Scholar] [CrossRef]
- Widagdo, J.; Wong, J.J.-L.; Anggono, V. The m6A-Epitranscriptome in Brain Plasticity, Learning and Memory. Sem. Cell Dev. Biol. 2022, 125, 110–121. [Google Scholar] [CrossRef]
- Engel, M.; Eggert, C.; Kaplick, P.M.; Eder, M.; Röh, S.; Tietze, L.; Namendorf, C.; Arloth, J.; Weber, P.; Rex-Haffner, M.; et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron 2018, 99, 389–403. [Google Scholar] [CrossRef]
- Barbon, A.; Magri, C. RNA Editing and Modifications in Mood Disorders. Genes 2020, 11, 872. [Google Scholar] [CrossRef]
- Fan, Y.; Yan, D.; Ma, L.; Liu, X.; Luo, G.; Hu, Y.; Kou, X. ALKBH5 Is a Prognostic Factor and Promotes the Angiogenesis of Glioblastoma. Sci. Rep. 2024, 14, 1303. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hong, Y.; Xu, Z.; Weng, Z.; Yang, Y.; Jin, D.; Chen, Z.; Zhou, X.; Xu, Z.; Fei, F.; et al. ALKBH5 Acts a Tumor-Suppressive Biomarker and Is Associated with Immunotherapy Response in Hepatocellular Carcinoma. Sci. Rep. 2025, 15, 55. [Google Scholar] [CrossRef]
- Wei, C.; Wang, B.; Peng, D.; Zhang, X.; Li, Z.; Luo, L.; He, Y.; Liang, H.; Du, X.; Li, S.; et al. Pan-Cancer Analysis Shows That ALKBH5 Is a Potential Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Front. Immunol. 2022, 13, 849592. [Google Scholar]
- Tang, B.; Yang, Y.; Kang, M.; Wang, Y.; Wang, Y.; Bi, Y.; He, S.; Shimamoto, F. M 6 A Demethylase ALKBH5 Inhibits Pancreatic Cancer Tumorigenesis by Decreasing WIF-1 RNA Methylation and Mediating Wnt Signaling. Mol. Cancer 2020, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Shao, W.; Jiang, Y.; Wang, X.; Liu, Y.; Liu, X. FTO Expression Is Associated with the Occurrence of Gastric Cancer and Prognosis. Oncol. Rep. 2017, 38, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Geng, W.; Guo, H.; Wang, Z.; Xu, K.; Chen, C.; Wang, S. Emerging Role of RNA Methyltransferase METTL3 in Gastrointestinal Cancer. J. Hematol. Oncol. 2020, 13, 57. [Google Scholar] [CrossRef]
- Xue, A.; Huang, Y.; Li, M.; Wei, Q.; Bu, Q. Comprehensive Analysis of Differential m6A RNA Methylomes in the Hippocampus of Cocaine-Conditioned Mice. Mol. Neurobiol. 2021, 58, 3759–3768. [Google Scholar] [CrossRef]
- Wu, X.; Wu, C.; Zhou, T. No Significant Change of N6-Methyladenosine Modification Landscape in Mouse Brain after Morphine Exposure. Brain Behav. 2024, 14, e3350. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, K.R.; Daws, S.E. Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures. Mol. Neurobiol. 2024, 61, 10684–10704. [Google Scholar] [CrossRef]
- Egervari, G.; Landry, J.; Callens, J.; Fullard, J.F.; Roussos, P.; Keller, E.; Hurd, Y.L. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol. Psychiatry 2017, 81, 585–594. [Google Scholar] [CrossRef]
- Chen, W.-S.; Xu, W.-J.; Zhu, H.-Q.; Gao, L.; Lai, M.-J.; Zhang, F.-Q.; Zhou, W.-H.; Liu, H.-F. Effects of Histone Deacetylase Inhibitor Sodium Butyrate on Heroin Seeking Behavior in the Nucleus Accumbens in Rats. Brain Res. 2016, 1652, 151–157. [Google Scholar] [CrossRef]
- Sheng, J.; gang Lv, Z.; Wang, L.; Zhou, Y.; Hui, B. Histone H3 Phosphoacetylation Is Critical for Heroin-Induced Place Preference. Neuroreport 2011, 22, 575–580. [Google Scholar] [CrossRef]
- Nielsen, D.A.; Yuferov, V.; Hamon, S.; Jackson, C.; Ho, A.; Ott, J.; Kreek, M.J. Increased OPRM1 DNA Methylation in Lymphocytes of Methadone-Maintained Former Heroin Addicts. Neuropsychopharmacology 2009, 34, 867–873. [Google Scholar] [CrossRef]
- Schuster, R.; Kleimann, A.; Rehme, M.-K.; Taschner, L.; Glahn, A.; Groh, A.; Frieling, H.; Lichtinghagen, R.; Hillemacher, T.; Bleich, S.; et al. Elevated Methylation and Decreased Serum Concentrations of BDNF in Patients in Levomethadone Compared to Diamorphine Maintenance Treatment. Eur. Arch. Psych. Clin. Neurosci. 2017, 267, 33–40. [Google Scholar] [CrossRef]
- Ammon-Treiber, S.; Höllt, V. Morphine-Induced Changes of Gene Expression in the Brain. Addict. Biol. 2005, 10, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Gago, B.; Suárez-Boomgaard, D.; Fuxe, K.; Brené, S.; Reina-Sánchez, M.D.; Rodríguez-Pérez, L.M.; Agnati, L.F.; de la Calle, A.; Rivera, A. Effect of Acute and Continuous Morphine Treatment on Transcription Factor Expression in Subregions of the Rat Caudate Putamen. Marked Modulation by D4 Receptor Activation. Brain Res. 2011, 1407, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Tsai, R.-Y.; Sung, Y.-T.; Chen, I.-J.; Tu, T.-Y.; Mao, Y.-Y.; Wong, C.-S. Melatonin Regulation of Transcription in the Reversal of Morphine Tolerance: Microarray Analysis of Differential Gene Expression. Int. J. Mol. Med. 2019, 43, 791–806. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.A.; Nestler, E.J.; Zachariou, V. Regulation of Gene Expression by Chronic Morphine and Morphine Withdrawal in the Locus Ceruleus and Ventral Tegmental Area. J. Neurosci. 2005, 25, 6005–6015. [Google Scholar] [CrossRef]
- Nutt, D.J.; King, L.A.; Phillips, L.D. Drug Harms in the UK: A Multicriteria Decision Analysis. Lancet 2010, 376, 1558–1565. [Google Scholar] [CrossRef]
- Masserman, J.H.; Wikler, A. Effects of Morphine on Learned Adaptive Behavior and Experimental Neuroses in Cats. Arch. Neurol. Psychiatry 1942, 48, 447–458. [Google Scholar]
- Bourova, L.; Vosahlikova, M.; Kagan, D.; Dlouha, K.; Novotny, J.; Svoboda, P. Long-Term Adaptation to High Doses of Morphine Causes Desensitization of Mu-OR- and Delta-OR-Stimulated G-Protein Response in Forebrain Cortex but Does Not Decrease the Amount of G-Protein Alpha Subunits. Med. Sci. Monit. 2010, 16, BR260–BR270. [Google Scholar]
- Ouyang, H.; Zhang, J.; Chi, D.; Zhang, K.; Huang, Y.; Huang, J.; Huang, W.; Bai, X. The YTHDF1–TRAF6 Pathway Regulates the Neuroinflammatory Response and Contributes to Morphine Tolerance and Hyperalgesia in the Periaqueductal Gray. J. Neuroinflam. 2022, 19, 310. [Google Scholar] [CrossRef]
- Gipson, C.D.; Dunn, K.E.; Bull, A.; Ulangkaya, H.; Hossain, A. Establishing Preclinical Withdrawal Syndrome Symptomatology Following Heroin Self-Administration in Male and Female Rats. Exp. Clin. Psychopharmacol. 2021, 29, 636–649. [Google Scholar] [CrossRef]
- Knuckles, P.; Carl, S.H.; Musheev, M.; Niehrs, C.; Wenger, A.; Bühler, M. RNA Fate Determination through Cotranscriptional Adenosine Methylation and Microprocessor Binding. Nat. Struct Mol. Biol. 2017, 24, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Blaze, J.; Browne, C.J.; Futamura, R.; Javidfar, B.; Zachariou, V.; Nestler, E.J.; Akbarian, S. tRNA Epitranscriptomic Alterations Associated with Opioid-Induced Reward-Seeking and Long-Term Opioid Withdrawal in Male Mice. Neuropsychopharmacology 2024, 49, 1276–1284. [Google Scholar] [CrossRef]
- Hess, M.E.; Brüning, J.C. The Fat Mass and Obesity-Associated (FTO) Gene: Obesity and Beyond? Biochim. Biophys. Acta—Mol. Basis Dis. 2014, 1842, 2039–2047. [Google Scholar] [CrossRef]
- Sun, H.-L.; Zhu, A.C.; Gao, Y.; Terajima, H.; Fei, Q.; Liu, S.; Zhang, L.; Zhang, Z.; Harada, B.T.; He, Y.-Y.; et al. Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Mol. Cell 2020, 80, 633–647.e7. [Google Scholar] [CrossRef]
- Abdulmalek, S.; Hardiman, G. Genetic and Epigenetic Studies of Opioid Abuse Disorder—The Potential for Future Diagnostics. Expert Rev. Mol. Diagb. 2023, 23, 361–373. [Google Scholar] [CrossRef]
- Anderson, E.M.; Taniguchi, M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front. Mol. Neurosci. 2022, 15, 828055. [Google Scholar] [CrossRef] [PubMed]
- Browne, C.J.; Godino, A.; Salery, M.; Nestler, E.J. Epigenetic Mechanisms of Opioid Addiction. Biol. Psychiatry 2020, 87, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.D.; Manners, M.T.; Heller, E.A.; Blendy, J.A. Adolescent Oxycodone Exposure Inhibits Withdrawal-Induced Expression of Genes Associated with the Dopamine Transmission. Addict. Biol. 2021, 26, e12994. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Guo, M.; Zheng, X.; Ali, S.; Huang, H.; Zhang, L.; Wang, S.; Huang, Y.; Qie, S.; et al. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. J. 2019, 10, 2355–2363. [Google Scholar] [CrossRef]
- Kanarik, M.; Liiver, K.; Norden, M.; Teino, I.; Org, T.; Laugus, K.; Shimmo, R.; Karelson, M.; Saarma, M.; Harro, J. RNA m6A Methyltransferase Activator Affects Anxiety-Related Behaviours, Monoamines and Striatal Gene Expression in the Rat. Acta Neuropsychiatr. 2024, 37, e52. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Aromolaran, K.A.; Zukin, R.S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection. Nat. Rev. Neurosci. 2017, 18, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dou, X.; Liu, J.; Xiao, Y.; Zhang, Z.; Hayes, L.; Wu, R.; Fu, X.; Ye, Y.; Yang, B.; et al. Globally Reduced N6-Methyladenosine (m6A) in C9ORF72-ALS/FTD Dysregulates RNA Metabolism and Contributes to Neurodegeneration. Nat. Neurosci. 2023, 26, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Qu, Y.; Mu, D. The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic Targets. Biomolecules 2023, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Huang, L.; Xia, Y.; Cheng, S.; Yang, C.; Chen, C.; Zou, Z.; Wang, X.; Tian, X.; Jiang, X.; et al. Analysis of m6A Modification Regulators in the Substantia Nigra and Striatum of MPTP-Induced Parkinson’s Disease Mice. Neurosci. Lett. 2022, 791, 136907. [Google Scholar] [CrossRef]
- Hearing, M.; Graziane, N.; Dong, Y.; Thomas, M.J. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol. Sci. 2018, 39, 276–294. [Google Scholar] [CrossRef]
- Lu, W.; Yang, X.; Zhong, W.; Chen, G.; Guo, X.; Ye, Q.; Xu, Y.; Qi, Z.; Ye, Y.; Zhang, J.; et al. METTL14-Mediated m6A Epitranscriptomic Modification Contributes to Chemotherapy-Induced Neuropathic Pain by Stabilizing GluN2A Expression via IGF2BP2. J. Clin. Investig. 2024, 134, e174847. [Google Scholar] [CrossRef]
- Fang, X.; Li, M.; Yu, T.; Liu, G.; Wang, J. Reversible N6-Methyladenosine of RNA: The Regulatory Mechanisms on Gene Expression and Implications in Physiology and Pathology. Genes Dis. 2020, 7, 585–597. [Google Scholar] [CrossRef]
- Christie, M.J. Cellular Neuroadaptations to Chronic Opioids: Tolerance, Withdrawal and Addiction. Br. J. Pharmacol. 2008, 154, 384–396. [Google Scholar] [CrossRef]
- Moreno-Rius, J. Opioid Addiction and the Cerebellum. Neurosci. Biobehav. Rev. 2019, 107, 238–251. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent). Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5439. [Google Scholar] [CrossRef]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Meth. Mol. Biol 1994, 32, 5–8. [Google Scholar]
- Hejnova, L.; Hronova, A.; Drastichova, Z.; Novotny, J. Long-Term Administration of Morphine Specifically Alters the Level of Protein Expression in Different Brain Regions and Affects the Redox State. Open Life Sci. 2024, 19, 20220858. [Google Scholar] [CrossRef] [PubMed]
- Ihnatovych, I.; Hejnová, L.; Kostrnová, A.; Mares, P.; Svoboda, P.; Novotný, J. Maturation of Rat Brain Is Accompanied by Differential Expression of the Long and Short Splice Variants of G(s)Alpha Protein: Identification of Cytosolic Forms of G(s)Alpha. J. Neurochem. 2001, 79, 88–97. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hronova, A.; Pritulova, E.; Hejnova, L.; Novotny, J. An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. Int. J. Mol. Sci. 2025, 26, 4371. https://doi.org/10.3390/ijms26094371
Hronova A, Pritulova E, Hejnova L, Novotny J. An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. International Journal of Molecular Sciences. 2025; 26(9):4371. https://doi.org/10.3390/ijms26094371
Chicago/Turabian StyleHronova, Anna, Eliska Pritulova, Lucie Hejnova, and Jiri Novotny. 2025. "An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal" International Journal of Molecular Sciences 26, no. 9: 4371. https://doi.org/10.3390/ijms26094371
APA StyleHronova, A., Pritulova, E., Hejnova, L., & Novotny, J. (2025). An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. International Journal of Molecular Sciences, 26(9), 4371. https://doi.org/10.3390/ijms26094371