Drug Administration Before or After Exposure to Low Temperatures—Does It Matter for the Therapeutic Effect?
Abstract
1. Introduction
- (1)
- To compare the analgesic effects of TDIFELLK after administration at a normal temperature and in the settings of CE using two administration options—(a) before and (b) after CE;
- (2)
- To compare the effects of TDIFELLK after antagonizing the following:
- Opioid receptors with naloxone;
- Cannabinoid receptor type 1 (CB1) with N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide AM251;
- Serotoninergic receptor 1A (5HT1A) with NAN-190 hydrobromide (NAN).
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Acute Cold Exposure (CE) Protocol
4.3. Drugs and Treatment
4.4. Peptide Synthesis
4.5. Paw-Pressure Test (Randall–Selitto Test)
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AU | arbitrary units |
BAT | brown adipose tissue |
CE | cold exposure |
CABS1 | calcium-binding protein, spermatid-specific 1 |
CIRP | cold-inducible RNA-binding protein |
PD | pharmacodynamics |
PK | pharmacokinetics |
ROS | reactive oxygen species |
SMR1 | protein submandibular rat 1 |
TRX | thioredoxin |
TIS | triisopropylsilane |
TFA | trifluoroacetic acid |
References
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Makinen, T.M.; Hassi, J. Health Problems in Cold Work. Ind. Health 2009, 47, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Faulhaber, M.; Kennedy, M.D. Practicing Sport in Cold Environments: Practical Recommendations to Improve Sport Performance and Reduce Negative Health Outcomes. Int. J. Environ. Res. Public. Health 2021, 18, 9700. [Google Scholar] [CrossRef]
- Zalewski, P.; Klawe, J.J.; Pawlak, J.; Tafil-Klawe, M.; Newton, J. Thermal and Hemodynamic Response to Whole-Body Cryostimulation in Healthy Subjects. Cryobiology 2013, 66, 295–302. [Google Scholar] [CrossRef]
- Hausswirth, C.; Schaal, K.; Le Meur, Y.; Bieuzen, F.; Filliard, J.-R.; Volondat, M.; Louis, J. Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation. PLoS ONE 2013, 8, e72658. [Google Scholar] [CrossRef]
- Dowell, S.F.; Ho, M.S. Seasonality of infectious diseases and severe acute respiratory syndrome—What we don’t know can hurt us. Lancet Infect. Dis. 2004, 4, 704–708. [Google Scholar] [CrossRef]
- Velasquez Hammerle, M.V.; Roy, E.D.; Gerber, A.R.; Tanaka, M.J. Patellofemoral disorders in winter sports. J. Cartil. Jt. Preserv. 2023, 3, 100140. [Google Scholar] [CrossRef]
- Peng, Y.-Y.; Lu, X.-M.; Li, S.; Tang, C.; Ding, Y.; Wang, H.-Y.; Yang, C.; Wang, Y.-T. Effects and Mechanisms of Extremely Cold Environment on Body Response after Trauma. J. Therm. Biol. 2023, 114, 103570. [Google Scholar] [CrossRef]
- Nishiyama, H.; Higashitsuji, H.; Yokoi, H.; Itoh, K.; Danno, S.; Matsuda, T.; Fujita, J. Cloning and Characterization of Human CIRP (Cold-Inducible RNA-Binding Protein) cDNA and Chromosomal Assignment of the Gene. Gene 1997, 204, 115–120. [Google Scholar] [CrossRef]
- Sano, Y.; Shiina, T.; Naitou, K.; Nakamori, H.; Shimizu, Y. Hibernation-Specific Alternative Splicing of the mRNA Encoding Cold-Inducible RNA-Binding Protein in the Hearts of Hamsters. Biochem. Biophys. Res. Commun. 2015, 462, 322–325. [Google Scholar] [CrossRef]
- Rana, S.; Jogi, M.K.; Choudhary, S.; Thakur, R.; Sahoo, G.C.; Joshi, V. Unraveling the Intricacies of Cold-Inducible RNA-Binding Protein: A Comprehensive Review. Cell Stress. Chaperones 2024, 29, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Jaggi, A.S.; Singh, N. Pharmacological investigations on adaptation in rats subjected to cold water immersion stress. Physiol. Behav. 2011, 103, 321–329. [Google Scholar] [CrossRef] [PubMed]
- St. Laurent, C.D.; St. Laurent, K.E.; Mathison, R.D.; Befus, A.D. Calcium-Binding Protein, Spermatid-Specific 1 Is Expressed in Human Salivary Glands and Contains an Anti-Inflammatory Motif. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R569–R575. [Google Scholar] [CrossRef] [PubMed]
- Dery, R.E.; Ulanova, M.; Puttagunta, L.; Stenton, G.R.; James, D.; Merani, S.; Mathison, R.; Davison, J.; Befus, A.D. Frontline: Inhibition of Allergen-Induced Pulmonary Inflammation by the Tripeptide feG: A Mimetic of a Neuro-Endocrine Pathway. Eur. J. Immunol. 2004, 34, 3315–3325. [Google Scholar] [CrossRef]
- Eberhardt, J.M.; DeClue, A.E.; Reinero, C.R. Chronic Use of the Immunomodulating Tripeptide feG-COOH in Experimental Feline Asthma. Vet. Immunol. Immunopathol. 2009, 132, 175–180. [Google Scholar] [CrossRef]
- Elder, A.S.F.; Bersten, A.D.; Saccone, G.T.P.; Dixon, D.-L. Prevention and Amelioration of Rodent Endotoxin-Induced Lung Injury with Administration of a Novel Therapeutic Tripeptide feG. Pulm. Pharmacol. Ther. 2013, 26, 167–171. [Google Scholar] [CrossRef]
- Elder, A.S.F.; Bersten, A.D.; Saccone, G.T.P.; Dixon, D.-L. Tripeptide feG Prevents and Ameliorates Acute Pancreatitis-Associated Acute Lung Injury in a Rodent Model. Chest 2013, 143, 371–378. [Google Scholar] [CrossRef]
- John, S.M.; Bao, F.; Chen, Y.; Mathison, R.D.; Weaver, L.C. Effects of a Novel Tripeptide on Neurological Outcomes after Spinal Cord Injury. NeuroReport 2006, 17, 1793. [Google Scholar] [CrossRef]
- Rifai, Y.; Elder, A.S.F.; Carati, C.J.; Hussey, D.J.; Li, X.; Woods, C.M.; Schloithe, A.C.; Thomas, A.C.; Mathison, R.D.; Davison, J.S.; et al. The Tripeptide Analog feG Ameliorates Severity of Acute Pancreatitis in a Caerulein Mouse Model. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1094–G1099. [Google Scholar] [CrossRef]
- Ritz, T.; Rosenfield, D.; St Laurent, C.D.; Trueba, A.F.; Werchan, C.A.; Vogel, P.D.; Auchus, R.J.; Reyes-Serratos, E.; Befus, A.D. A Novel Biomarker Associated with Distress in Humans: Calcium-Binding Protein, Spermatid-Specific 1 (CABS1). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R1004–R1016. [Google Scholar] [CrossRef]
- Kim, J.S.; Iremonger, K.J. Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol. Metab. 2019, 30, 11. [Google Scholar] [CrossRef] [PubMed]
- Young, B.A. Cold Stress as It Affects Animal Production. J. Anim. Sci. 1981, 52, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Pilcher, J.J.; Nadler, E.; Busch, C. Effects of Hot and Cold Temperature Exposure on Performance: A Meta-Analytic Review. Ergonomics 2002, 45, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Selman, C.; Grune, T.; Stolzing, A.; Jakstadt, M.; McLaren, J.S.; Speakman, J.R. The Consequences of Acute Cold Exposure on Protein Oxidation and Proteasome Activity in Short-Tailed Field Voles, Microtus Agrestis. Free Radic. Biol. Med. 2002, 33, 259–265. [Google Scholar] [CrossRef]
- Venditti, P.; De Rosa, R.; Portero-Otin, M.; Pamplona, R.; Di Meo, S. Cold-Induced Hyperthyroidism Produces Oxidative Damage in Rat Tissues and Increases Susceptibility to Oxidants. Int. J. Biochem. Cell Biol. 2004, 36, 1319–1331. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liang, X.; Yang, Z.; Peng, Y.; Zhang, Y.; Nin, X.; Zhang, K.; Ji, J.; Wang, T.; et al. Blood redistribution preferentially protects vital organs under hypoxic stress in Pelteobagrus vachelli. Aquat. Toxicol. 2023, 258, 106498. [Google Scholar] [CrossRef]
- Alba, B.K.; Castellani, J.W.; Charkoudian, N. Cold-Induced Cutaneous Vasoconstriction in Humans: Function, Dysfunction and the Distinctly Counterproductive. Exp. Physiol. 2019, 104, 1202–1214. [Google Scholar] [CrossRef]
- Browning, K.N.; Travagli, R.A. Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions. Compr. Physiol. 2014, 4, 1339–1368. [Google Scholar] [CrossRef]
- Zaninovich, A.A.; Rebagliati, I.; Raices, M.; Ricci, C.; Hagmuller, K. Mitochondrial Respiration in Muscle and Liver from Cold-Acclimated Hypothyroid Rats. J. Appl. Physiol. (1985) 2003, 95, 1584–1590. [Google Scholar] [CrossRef]
- Foster, D.O.; Frydman, M.L. Tissue Distribution of Cold-Induced Thermogenesis in Conscious Warm- or Cold-Acclimated Rats Reevaluated from Changes in Tissue Blood Flow: The Dominant Role of Brown Adipose Tissue in the Replacement of Shivering by Nonshivering Thermogenesis. Can. J. Physiol. Pharmacol. 1979, 57, 257–270. [Google Scholar] [CrossRef]
- Eaton, D.L.; Gallagher, E.P. 1.01—General Overview of Toxicology. In Comprehensive Toxicology, 2nd ed.; McQueen, C.A., Ed.; Elsevier: Oxford, UK, 2010; pp. 1–46. ISBN 978-0-08-046884-6. [Google Scholar]
- Herman, T.F.; Santos, C. First-Pass Effect. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Wilson, T.E.; Ray, C.A. Effect of thermal stress on the vestibulosympathetic reflexes in humans. J. Appl. Physiol. 2004, 97, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Tollund, C.; Yoshiga, C.C.; Dawson, E.A.; Nissen, P.; Secher, N.H.; Crandall, C.G. Effects of heat and cold stress on central vascular pressure relationships during orthostasis in humans. J. Physiol. 2007, 585, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Matz, J.M.; Blake, M.J.; Tatelman, H.M.; Lavoi, K.P.; Holbrook, N.J. Characterization and Regulation of Cold-Induced Heat Shock Protein Expression in Mouse Brown Adipose Tissue. Am. J. Physiol. 1995, 269, R38–R47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, S.; Zhao, R.; Xiong, C.; Huang, Y.; Zhang, M.; Wang, Y. Multi-Layer Regulation of Postprandial Triglyceride Metabolism in Response to Acute Cold Exposure. J. Lipid Res. 2025, 66, 100751. [Google Scholar] [CrossRef]
- Amir, S.; Brown, Z.W.; Amit, Z. The role of endorphins in stress: Evidence and speculations. Neurosci. Biobehav. Rev. 1980, 4, 1–77. [Google Scholar] [CrossRef]
- Hazel, J.R. Effects of Temperature on the Structure and Metabolism of Cell Membranes in Fish. Am. J. Physiol. 1984, 246, R460–R470. [Google Scholar] [CrossRef]
- Glodosky, N.C.; Cuttler, C.; McLaughlin, R.J. A review of the effects of acute and chronic cannabinoid exposure on the stress response. Front. Neuroendocrinol. 2021, 63, 100945. [Google Scholar] [CrossRef]
- Nadal, X.; La Porta, C.; Bura, S.A.; Maldonado, R. Involvement of the opioid and cannabinoid systems in pain control: New insights from knockout studies. Eur. J. Pharmacol. 2013, 716, 142–157. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Z.; Li, A.; Xue, J. Effects of Hypothermia and Cerebral Ischemia on Cold-Inducible RNA-Binding Protein mRNA Expression in Rat Brain. Brain Res. 2010, 1347, 104–110. [Google Scholar] [CrossRef]
- Valic, Z.; Palada, I.; Bakovic, D.; Valic, M.; Mardesic-Brakus, S.; Dujic, Z. Muscle Oxygen Supply during Cold Face Immersion in Breath-Hold Divers and Controls. Aviat. Space Environ. Med. 2006, 77, 1224–1229. [Google Scholar]
- Li, S.; Zhang, Z.; Xue, J.; Liu, A.; Zhang, H. Cold-Inducible RNA Binding Protein Inhibits H2O2-Induced Apoptosis in Rat Cortical Neurons. Brain Res. 2012, 1441, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Fregly, M.J.; Rossi, F.; Van Bergen, P.; Brummermann, M.; Cade, R. Effect of chronic treatment with losartan potassium (DuP 753) on the elevation of blood pressure during chronic exposure of rats to cold. Pharmacology 1993, 46, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Loh, R.K.C.; Formosa, M.F.; Eikelis, N.; Bertovic, D.A.; Anderson, M.J.; Barwood, S.A.; Nanayakkara, S.; Cohen, N.D.; La Gerche, A.; Reutens, A.T.; et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: A randomised, controlled trial in humans. Diabetologia 2018, 61, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.; Donegan, J.J.; Morilak, D.A. Chronic Intermittent Cold Stress Sensitizes Neuro-Immune Reactivity in the Rat Brain. Psychoneuroendocrinology 2011, 36, 1164–1174. [Google Scholar] [CrossRef]
- Nasu, T.; Kainuma, R.; Ota, H.; Mizumura, K.; Taguchi, T. Increased nociceptive behaviors and spinal c-Fos expression in the formalin test in a rat repeated cold stress model. Neurosci. Res. 2024, 198, 30–38. [Google Scholar] [CrossRef]
- Degirmenci, M.D.; Çalıskan, H.; Günes, E. Effects of chronic intermittent cold stress on anxiety-depression-like behaviors in adolescent rats. Behav. Brain Res. 2024, 472, 115130. [Google Scholar] [CrossRef]
- Kpemissi, M.; Potarniche, A.-V.; Lawson-Evi, P.; Metowogo, K.; Melila, M.; Dramane, P.; Taulescu, M.; Chandramohan, V.; Suhas, D.S.; Puneeth, T.A.; et al. Nephroprotective effect of Combretum micranthum G. Don in nicotinamide-streptozotocin induced diabetic nephropathy in rats: In-vivo and in-silico experiments. J. Ethnopharmacol. 2020, 261, 113133. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, X.; Lan, L.; Yu, W.; Qiu, R.; Wu, J.; Teng, C.; Huang, L.; Yu, C.; Zeng, Y. Protective effects of Liupao tea against high-fat diet/cold exposure-induced irritable bowel syndrome in rats. Heliyon 2023, 9, e16613. [Google Scholar] [CrossRef]
- Solinas, M.; Justinova, Z.; Goldberg, S.R.; Tanda, G. Anandamide Administration Alone and after Inhibition of Fatty Acid Amide Hydrolase (FAAH) Increases Dopamine Levels in the Nucleus Accumbens Shell in Rats. J. Neurochem. 2006, 98, 408–419. [Google Scholar] [CrossRef]
- da Veiga, M.A.L.C.; Fonseca Bloise, F.; Costa-E-Sousa, R.H.; Souza, L.L.; Almeida, N.A.D.S.; Oliveira, K.J.; Pazos-Moura, C.C. Acute Effects of Endocannabinoid Anandamide and CB1 Receptor Antagonist, AM251 in the Regulation of Thyrotropin Secretion. J. Endocrinol. 2008, 199, 235–242. [Google Scholar] [CrossRef]
- Randall, L.O.; Selitto, J.J. A Method for Measurement of Analgesic Activity on Inflamed Tissue. Arch. Int. Pharmacodyn. Ther. 1957, 111, 409–419. [Google Scholar] [PubMed]
No | Group | Treatment |
---|---|---|
1 | Control | This group was not exposed to cold and was treated with saline |
2 | TDIFELLK | Animals in the group were injected intraperitoneally (i.p.) with TDIFELL (2 mg/kg) |
3 | CE | Animals in the group were exposed to cold for 1 h (1 h) in a cold chamber (4 °C) |
4 | TDIFELLK +CE | Animals in the group were injected i.p. with TDIFELL (2 mg/kg), after which they were exposed to 1 h CE |
5 | CE + TDIFELLK | Animals in the group were exposed to 1h CE, after which they were injected i.p. with TDIFELL (2 mg/kg) |
6 | Nal + TDIFELLK | Animals in the group were injected i.p. with the combination naloxone (Nal, opioid receptors antagonist; 1 mg/kg) and TDIFELL (2 mg/kg) |
7 | Nal + TDIFELLK + CE | Animals in the group were injected i.p. with the combination Nal (1 mg/kg) + TDIFELL (2 mg/kg), after which they were exposed to 1 h CE |
8 | CE + Nal + TDIFELLK | Animals in the group were exposed to 1 h CE, after which they were injected i.p. with the combination Nal (1 mg/kg) + TDIFELL (2 mg/kg) |
9 | AM + TDIFELLK | Animals in the group were injected i.p. with the combination АМ251 (AM, cannabinoid receptor type 1 antagonist; 1.25 mg/kg) + TDIFELL (2 mg/kg) |
10 | AM + TDIFELLK + CE | Animals in the group were injected i.p. with the combination AM (1.25 mg/kg) + TDIFELL (2 mg/kg), after which they were exposed to 1 h CE |
11 | CE + AM + TDIFELLK | Animals in the group were exposed to 1 h CE, after which they were injected i.p. with the combination АМ (1.25 mg/kg) + TDIFELL (2 mg/kg) |
12 | NAN + TDIFELLK | Animals in the group were injected i.p. with the combination NAN-190 (NAN, 5HT1A receptor antagonist; 1 mg/kg) + TDIFELL (2 mg/kg) |
13 | NAN + TDIFELLK + CE | Animals in the group were injected i.p. with the combination NAN (1 mg/kg) + TDIFELL (2 mg/kg), after which they were exposed to 1 h CE |
14 | CE + NAN + TDIFELLK | Animals in the group were exposed to 1 h CE, after which they were injected i.p. with the combination NAN (1 mg/kg) + TDIFELL (2 mg/kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezirci, K.; Borisova, B.; Papadakis, K.; Danalev, D.; Nocheva, H. Drug Administration Before or After Exposure to Low Temperatures—Does It Matter for the Therapeutic Effect? Int. J. Mol. Sci. 2025, 26, 3883. https://doi.org/10.3390/ijms26083883
Bezirci K, Borisova B, Papadakis K, Danalev D, Nocheva H. Drug Administration Before or After Exposure to Low Temperatures—Does It Matter for the Therapeutic Effect? International Journal of Molecular Sciences. 2025; 26(8):3883. https://doi.org/10.3390/ijms26083883
Chicago/Turabian StyleBezirci, Kadir, Boryana Borisova, Konstantinos Papadakis, Dancho Danalev, and Hristina Nocheva. 2025. "Drug Administration Before or After Exposure to Low Temperatures—Does It Matter for the Therapeutic Effect?" International Journal of Molecular Sciences 26, no. 8: 3883. https://doi.org/10.3390/ijms26083883
APA StyleBezirci, K., Borisova, B., Papadakis, K., Danalev, D., & Nocheva, H. (2025). Drug Administration Before or After Exposure to Low Temperatures—Does It Matter for the Therapeutic Effect? International Journal of Molecular Sciences, 26(8), 3883. https://doi.org/10.3390/ijms26083883