The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species
Abstract
1. Introduction
2. Harmful Effects of Drought Stress on Plants
3. Drought Stress and Hormonal Influences on Root–Soil Interface Adaptations
4. Role of Endophytes in Drought Tolerance
5. Phytohormone Regulation of Root Development Under Drought
6. Role of Hormones
6.1. Auxin
6.2. Cytokinin
6.3. Gibberellinses
6.4. Abscisic Acid
6.5. Salicylic Acid
6.6. Ethylene
6.7. Brassinosteroids
6.8. Jasmonic Acid
6.9. Peptides
7. Plant Growth-Promoting Rhizobacteria Improve Plant Health
8. Transgenic Approaches
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
ABA | Abscisic acid |
IAA | Indole-3-acetic acid (a form of auxin) |
CKX | Cytokinin oxidase |
GA or GAs | Gibberellins |
SA | Salicylic acid |
JA | Jasmonic acid |
JAs | Jasmonates (includes JA and derivatives) |
LOX | Lipoxygenase |
AOS | Allene oxide synthase |
OPR3 | 12-oxophytodienoate reductase 3 |
MYC2 | (Not an acronym; it is a transcription factor involved in JA signaling) |
CK | Cytokinin |
ROS | Reactive oxygen species |
CAT | Catalase |
SOD | Superoxide dismutase |
APX | Ascorbate peroxidase |
GPX | Glutathione peroxidase |
PRX | Peroxiredoxin |
GSH | Glutathione |
AMF | Arbuscular Mycorrhizal Fungi |
PGPR | Plant growth-promoting rhizobacteria |
H2O2 | Hydrogen peroxide |
RSL4 | Root hair defective six-like 4 (a transcription factor involved in root hair development) |
ARR1/ARR12 | Arabidopsis response regulators (involved in cytokinin signaling) |
FT2 | FLOWERING LOCUS T2 |
HY5 | ELONGATED HYPOCOTYL 5 (photomorphogenesis regulatory factor) |
CRISPR/Cas9 | Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 |
LEA | Late embryogenesis abundant (genes associated with stress tolerance) |
JAZ | Jasmonate ZIM-domain (repressor proteins in JA signaling) |
COI1 | Coronatine-insensitive 1 (receptor in JA pathway) |
JAUP1 | Jasmonic acid upregulated protein 1 |
DSE | Dark septate endophytes |
BRs | Brassinosteroids |
EPF | Epidermal patterning factor |
CK | Cytokinin |
GA2ox4 | Gibberellin 2-oxidase 4 (enzyme involved in GA catabolism) |
References
- Zhang, H.; Ye, S.; Wang, N.; Xu, Z.; Gong, S. Analyses of the bHLH gene family in Populus trichocarpa reveal roles of four PtbHLHs in regulating the drought stress response. Environ. Exp. Bot. 2024, 228, 106046. [Google Scholar] [CrossRef]
- Nyaupane, S.; Poudel, M.R.; Panthi, B.; Dhakal, A.; Paudel, H.; Bhandari, R. Drought stress effect, tolerance, and management in wheat–A review. Cogent Food Agric. 2024, 10, 2296094. [Google Scholar] [CrossRef]
- Farheen, J.; Mansoor, S.; Abideen, Z. Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in mungbean seedlings (Vigna radiata) at salt stress. Pak. J. Bot. 2018, 50, 901–912. [Google Scholar]
- Ahmed, U.; Rao, M.J.; Qi, C.; Xie, Q.; Noushahi, H.A.; Yaseen, M.; Shi, X.; Zheng, B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in Populus under drought stress. Molecules 2021, 26, 5546. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Feng, Q.; Cao, X.; Xing, H.; Shi, Z. Response of Leaf Non-Structural Carbohydrates to Elevation in Dioecious Plants, Populus cathayana and Hippophae rhamnoides. Forests 2025, 16, 246. [Google Scholar] [CrossRef]
- Poudel, D.R.; Chen, H.Y.; KC, M.; Ge, Z.; Bown, H.E.; Ruan, H. Understory vegetation dynamics across a poplar plantation chronosequence in reclaimed coastal saline soil. Forests 2019, 10, 764. [Google Scholar] [CrossRef]
- Biselli, C.; Vietto, L.; Rosso, L.; Cattivelli, L.; Nervo, G.; Fricano, A. Advanced breeding for biotic stress resistance in poplar. Plants 2022, 11, 2032. [Google Scholar] [CrossRef]
- Tahiri, A.; Ait Aabd, N.; Qessaoui, R.; Mimouni, A.; Bouharroud, R. Genetic Diversity and Breeding of Cactus (Opuntia spp.). In Breeding of Ornamental Crops: Potted Plants and Shrubs; Springer: Cham, Switzerland, 2025; pp. 153–193. [Google Scholar]
- Shi, Y.-J.; Mi, J.-X.; Huang, J.-L.; Tian, F.-F.; He, F.; Zhong, Y.; Yang, H.-B.; Wang, F.; Xiao, Y.; Yang, L.-K. A new species of Populus and the extensive hybrid speciation arising from it on the Qinghai-Tibet Plateau. Mol. Phylogenet. Evol. 2024, 196, 108072. [Google Scholar] [CrossRef]
- Kim, T.-L.; Lim, H.; Denison, M.I.J.; Oh, C. Transcriptomic and physiological analysis reveals genes associated with drought stress responses in Populus alba × Populus glandulosa. Plants 2023, 12, 3238. [Google Scholar] [CrossRef]
- Nahakpam, S.; Shah, K.; Kundu, M.; Heikham, R.S. Role of phytohormones as master regulators during the abiotic stress. In Stress Tolerance in Horticultural Crops; Elsevier: Amsterdam, Netherlands, 2021; pp. 347–369. [Google Scholar]
- Wang, B.; Zhang, J.; Pei, D.; Yu, L. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. Physiol. Plant. 2021, 172, 176–187. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, J.; Fu, X.; Zhao, C.; Zhang, W.; Gao, H.; Zhu, C.; Song, X.; Zhao, Y.; An, Y. PagPXYs improve drought tolerance by regulating reactive oxygen species homeostasis in the cambium of Populus alba × P. glandulosa. Plant Sci. 2024, 344, 112106. [Google Scholar] [CrossRef] [PubMed]
- Reichheld, J.-P.; Dard, A.; Belin, C. Redox Regulation of Plant Development. In Redox Regulation of Differentiation and De-Differentiation; CRC Press: Boca Raton, FL, USA, 2021; pp. 15–36. [Google Scholar]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Gupta, R.; Shokat, S.; Iqbal, N.; Kocsy, G.; Pérez-Pérez, J.M.; Riyazuddin, R. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. Physiol. Plant. 2024, 176, e14388. [Google Scholar] [CrossRef] [PubMed]
- Begna, T. Effects of drought stress on crop production and productivity. Int. J. Res. Stud. Agric. Sci. 2020, 6, 34–43. [Google Scholar]
- Al Hinai, M.S.; Rehman, A.; Siddique, K.H.; Farooq, M. The Role of Trehalose in Improving Drought Tolerance in Wheat. J. Agron. Crop Sci. 2025, 211, e70053. [Google Scholar] [CrossRef]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Buckley, T.N.; Magney, T.S.; Berny Mier y Teran, J.C.; Mills, C.; Palkovic, A.; Parker, T.A.; Pierce, M.A.; Wadhwani, Y.; Wong, C.Y.; Gepts, P. Diversity in stomatal and hydraulic responses to post-flowering drought in common (Phaseolus vulgaris) and tepary (P. acutifolius) beans. Plant Cell Environ. 2025, 48, 51–64. [Google Scholar] [CrossRef]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef]
- Bal, S.K.; Minhas, P.S. Atmospheric stressors: Challenges and coping strategies. In Abiotic Stress Management for Resilient Agriculture; Springer: Singapore, 2017; pp. 9–50. [Google Scholar]
- Hafez, E.; Seleiman, M. Response of barley quality traits, yield and antioxidant enzymes to water-stress and chemical inducers. Int. J. Plant Prod. 2017, 11, 477–490. [Google Scholar]
- Raza, M.A.S.; Muhammad, F.; Farooq, M.; Aslam, M.U.; Akhter, N.; Toleikienė, M.; Binobead, M.A.; Ali, M.A.; Rizwan, M.; Iqbal, R. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): Effect on morpho-physiology, nutrients uptake, grain yield and quality. Sci. Rep. 2025, 15, 5309. [Google Scholar] [CrossRef]
- Naeem, M.Y. The Impact of Drought Stress on the Nutritional Quality of Vegetables. In Drought Stress: Review and Recommendations; Springer: Cham, Switzerland 2025; pp. 143–158. [Google Scholar]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, V.; Rezaeizadeh, A.; Mondak, B.; Rasoulnia, A.; Domínguez-Figueroa, J.; Carrillo, L.; Romero-Hernandez, G.; Medina, J. Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). Plant Cell Rep. 2025, 44, 51. [Google Scholar] [CrossRef]
- Hendrix, S.; Vanbuel, I.; Colemont, J.; Bos Calderó, L.; Hamzaoui, M.A.; Kunnen, K.; Huybrechts, M.; Cuypers, A. Jack of all trades: Reactive oxygen species in plant responses to stress combinations and priming-induced stress tolerance. J. Exp. Bot. 2025, eraf065. [Google Scholar] [CrossRef]
- Jha, Y. Regulation of photosynthesis under stress. In Improving Stress Resilience in Plants; Elsevier: Amsterdam, Netherlands, 2024; pp. 35–48. [Google Scholar]
- Abid, G.; M’hamdi, M.; Mingeot, D.; Aouida, M.; Aroua, I.; Muhovski, Y.; Sassi, K.; Souissi, F.; Mannai, K.; Jebara, M. Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Arch. Agron. Soil. Sci. 2017, 63, 536–552. [Google Scholar] [CrossRef]
- Yan, S.; Weng, B.; Jing, L.; Bi, W.; Yan, D. Adaptive pathway of summer maize under drought stress: Transformation of root morphology and water absorption law. Front. Earth Sci. 2022, 10, 1020553. [Google Scholar] [CrossRef]
- Sun, L.; Dong, X.; Song, X. PtrABR1 increases tolerance to drought stress by enhancing lateral root formation in Populus trichocarpa. Int. J. Mol. Sci. 2023, 24, 13748. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; Venditti, A.; Zahra, N.; Siddique, K.H.; Farooq, M. Plant Adaptation to Drought Stress: The Role of Anatomical and Morphological Characteristics in Maintaining the Water Status. J. Soil. Sci. Plant Nutr. 2024, 25, 409–427. [Google Scholar] [CrossRef]
- Hu, M.; Zou, B.; Huang, Z.; Wang, S.; Su, X.; Ding, X.; Zheng, G.; Chen, H.Y. Fine root biomass and necromass dynamics of Chinese fir plantations and natural secondary forests in subtropical China. For. Ecol. Manag. 2021, 496, 119413. [Google Scholar] [CrossRef]
- Huaraca Huasco, W.; Riutta, T.; Girardin, C.A.; Hancco Pacha, F.; Puma Vilca, B.L.; Moore, S.; Rifai, S.W.; del Aguila-Pasquel, J.; Araujo Murakami, A.; Freitag, R. Fine root dynamics across pantropical rainforest ecosystems. Glob. Change Biol. 2021, 27, 3657–3680. [Google Scholar] [CrossRef] [PubMed]
- Endo, I.; Kobatake, M.; Tanikawa, N.; Nakaji, T.; Ohashi, M.; Makita, N. Anatomical patterns of condensed tannin in fine roots of tree species from a cool-temperate forest. Ann. Bot. 2021, 128, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, Y.; Sheng, J.; Yuan, Y.; Zhang, W.H.; Bai, W. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 2022, 234, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.L.; Clemmensen, K.E.; Michelsen, A.; Jonasson, S.; Ström, L. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden. Arct. Antarct. Alp. Res. 2008, 40, 171–180. [Google Scholar] [CrossRef]
- Zadworny, M.; McCormack, M.L.; Mucha, J.; Reich, P.B.; Oleksyn, J. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol. 2016, 212, 389–399. [Google Scholar] [CrossRef]
- Malhotra, A.; Brice, D.J.; Childs, J.; Graham, J.D.; Hobbie, E.A.; Vander Stel, H.; Feron, S.C.; Hanson, P.J.; Iversen, C.M. Peatland warming strongly increases fine-root growth. Proc. Natl. Acad. Sci. USA 2020, 117, 17627–17634. [Google Scholar] [CrossRef]
- Reingwirtz, I.; Uretsky, J.; Cuneo, I.F.; Knipfer, T.; Reyes, C.; Walker, M.A.; McElrone, A.J. Inherent and stress-induced responses of fine root morphology and anatomy in commercial grapevine rootstocks with contrasting drought resistance. Plants 2021, 10, 1121. [Google Scholar] [CrossRef]
- George, T.S.; Bulgarelli, D.; Carminati, A.; Chen, Y.; Jones, D.; Kuzyakov, Y.; Schnepf, A.; Wissuwa, M.; Roose, T. Bottom-up perspective–The role of roots and rhizosphere in climate change adaptation and mitigation in agroecosystems. Plant Soil. 2024, 500, 297–323. [Google Scholar] [CrossRef]
- Chai, Y.N.; Schachtman, D.P. Root exudates impact plant performance under abiotic stress. Trends Plant Sci. 2022, 27, 80–91. [Google Scholar] [CrossRef]
- Tak, Y.; Yadav, V.K.; Gautam, C.; Kumar, R.; Kaur, M. Drought stress alleviation in plants by soil microbial interactions. In Microbiological Activity for Soil and Plant Health Management; Springer: Singapore, 2021; pp. 133–159. [Google Scholar]
- Gamalero, E.; Glick, B.R. Recent advances in bacterial amelioration of plant drought and salt stress. Biology 2022, 11, 437. [Google Scholar] [CrossRef]
- Rahim, R.; Jahromi, O.E.; Amelung, W.; Kroener, E. Rhizosheath formation depends on mucilage concentration and water content. Plant Soil. 2024, 495, 649–661. [Google Scholar] [CrossRef]
- Yıldırım, K.; Yağcı, A.; Sucu, S.; Tunç, S. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol. Biochem. 2018, 127, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Gupta, S.K.; Dwivedi, V.; Chattopadhyay, D. Lignin deposition in chickpea root xylem under drought. Plant Signal. Behav. 2020, 15, 1754621. [Google Scholar] [CrossRef] [PubMed]
- White III, R.A.; Rivas-Ubach, A.; Borkum, M.I.; Köberl, M.; Bilbao, A.; Colby, S.M.; Hoyt, D.W.; Bingol, K.; Kim, Y.-M.; Wendler, J.P. The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere 2017, 3, 212–221. [Google Scholar] [CrossRef]
- Kang, J.; Peng, Y.; Xu, W. Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 2022, 23, 9310. [Google Scholar] [CrossRef]
- Kundu, A.; Vadassery, J. Molecular mechanisms of Piriformospora indica mediated growth promotion in plants. Plant Signal. Behav. 2022, 17, 2096785. [Google Scholar] [CrossRef]
- Hassan, S.S.; Zhao, J.; Tahir, S.; Khan, I.; Yang, G.; Zhao, B. Optimizing Ge Enrichment in Lyophyllum decastes Fermentation for Enhanced Biological Activity. Fermentation 2024, 10, 641. [Google Scholar] [CrossRef]
- Sun, C.; Johnson, J.M.; Cai, D.; Sherameti, I.; Oelmüller, R.; Lou, B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 2010, 167, 1009–1017. [Google Scholar] [CrossRef]
- Badar, A.; Aqueel, R.; Nawaz, A.; Ijaz, U.Z.; Malik, K.A. Microbiota transplantation for cotton leaf curl disease suppression—Core microbiome and transcriptome dynamics. Commun. Biol. 2025, 8, 380. [Google Scholar] [CrossRef]
- Hilszczańska, D. Endophytes–characteristics and possibilities of application in forest management. Leśne Pr. Badaw. 2016, 77, 276–282. [Google Scholar] [CrossRef]
- Hassani, D.; Khalid, M.; Huang, D.; Zhang, Y.-D. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L. Acta Biochim. Biophys. Sin. 2019, 51, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Zin, N.A.; Badaluddin, N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- El_Komy, M.H.; Saleh, A.A.; Eranthodi, A.; Molan, Y.Y. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol. J. 2015, 31, 50. [Google Scholar] [CrossRef]
- Cai, F.; Yu, G.; Wang, P.; Wei, Z.; Fu, L.; Shen, Q.; Chen, W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 2013, 73, 106–113. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, Z.; Liu, S.; Ge, T.; Jing, H.; Li, B.; Liu, Q.; Lynn, T.M.; Wu, J.; Kuzyakov, Y. Microbial utilization of rice root exudates: 13 C labeling and PLFA composition. Biol. Fertil. Soils 2016, 52, 615–627. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Alfaro-Cuevas, R.; López-Bucio, J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol. Plant-Microbe Interact. 2014, 27, 503–514. [Google Scholar] [CrossRef]
- Salvi, P.; Manna, M.; Kaur, H.; Thakur, T.; Gandass, N.; Bhatt, D.; Muthamilarasan, M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 2021, 40, 1305–1329. [Google Scholar] [CrossRef]
- Swain, R.; Sahoo, S.; Behera, M.; Rout, G.R. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Front. Plant Sci. 2023, 14, 1104874. [Google Scholar] [CrossRef]
- Ranjan, A.; Sinha, R.; Lal, S.K.; Bishi, S.K.; Singh, A.K. Phytohormone signalling and cross-talk to alleviate aluminium toxicity in plants. Plant Cell Rep. 2021, 40, 1331–1343. [Google Scholar] [CrossRef]
- Li, S.; Yuan, J.; Zhou, F.; Liu, Y.; Xie, H.; Jia, W.; Chao, Y.; Han, L. Modulating ABA-dependent growth and development by overexpressing cytochrome P450 ABA 8′-hydroxylase in Medicago truncatula. Environ. Exp. Bot. 2025, 229, 106060. [Google Scholar] [CrossRef]
- Stec, N.; Banasiak, J.; Jasiński, M. Abscisic acid-an overlooked player in plant-microbe symbioses formation? Acta Biochim. Pol. 2016, 63, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novák, O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 2014, 105, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xu, J.; Qi, J.; Lu, X.; Liu, Y.; Xiong, J.; Yu, W.; Li, C. Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment. Plant Cell Rep. 2025, 44, 70. [Google Scholar] [CrossRef]
- Kamran, M.; Danish, M.; Saleem, M.H.; Malik, Z.; Parveen, A.; Abbasi, G.H.; Jamil, M.; Ali, S.; Afzal, S.; Riaz, M. Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere 2021, 263, 128169. [Google Scholar] [CrossRef]
- Zeng, D.; Dai, L.-J.; Li, X.; Li, W.; Qu, G.-Z.; Li, S. Genome-Wide Identification of the ERF Transcription Factor Family for Structure Analysis, Expression Pattern, and Response to Drought Stress in Populus alba × Populus glandulosa. Int. J. Mol. Sci. 2023, 24, 3697. [Google Scholar] [CrossRef]
- Wang, S.; Fan, Y.; Du, S.; Zhao, K.; Liu, Q.; Yao, W.; Zheng, T.; Han, Y. PtaERF194 inhibits plant growth and enhances drought tolerance in poplar. Tree Physiol. 2022, 42, 1678–1692. [Google Scholar] [CrossRef]
- Pan, H.; He, Z.; Liu, L.; Cai, R.; Huang, H.; Xie, X.; Cao, X.; Li, Y.; Qiu, W.; Lu, Z. A Genome-Wide Characterization of Receptor-like Cytoplasmic Kinase IV Subfamily Members in Populus deltoides Identifies the Potential Role of PdeCRCK6 in Plant Osmotic Stress Responses. Plants 2024, 13, 3371. [Google Scholar] [CrossRef]
- Zhou, M.; Cheng, H.; Chiang, V.L.; Li, W.; Yang, C.; Wang, C. PtrbZIP3 transcription factor regulates drought tolerance of Populus trichocarpa. Environ. Exp. Bot. 2023, 208, 105231. [Google Scholar] [CrossRef]
- Xu, R.; Liu, W.-G.; Huang, T.-W.; Li, B.-R.; Dai, H.-X.; Yang, X.-D. Drought stress-induced the formation of heteromorphic leaves of Populus euphratica Oliv: Evidence from gene transcriptome. Front. Plant Sci. 2023, 14, 1194169. [Google Scholar] [CrossRef]
- Tikhomirova, T.S.; Krutovsky, K.V.; Shestibratov, K.A. Molecular traits for adaptation to drought and salt stress in birch, oak and poplar species. Forests 2022, 14, 7. [Google Scholar] [CrossRef]
- Han, Y.; Lou, X.; Zhang, W.; Xu, T.; Tang, M. Arbuscular mycorrhizal fungi enhanced drought resistance of Populus cathayana by regulating the 14-3-3 family protein genes. Microbiol. Spectr. 2022, 10, e0245621. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.; Chu, J.; Shi, W.; Luo, Z.-B. Physiological and transcriptomic regulation of Populus simonii fine roots exposed to a heterogeneous phosphorus environment in soil. Environ. Exp. Bot. 2024, 219, 105646. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.; Jin, H.; Li, J.; Song, T.; Chen, Y.; Yuan, Y.; Hu, H.; Li, R.; Wu, Z. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int. J. Mol. Sci. 2024, 25, 10052. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.R.; Bicalho, E.M.; Pereira, E.G.; Guilherme, L.R.G.; Marchiori, P.E.R. Drought tolerance: A perspective about leaf venation and the role of auxin. Theor. Exp. Plant Physiol. 2025, 37, 11. [Google Scholar] [CrossRef]
- Liu, S.J.; Zhang, H.; Jin, X.T.; Niu, M.X.; Feng, C.H.; Liu, X.; Liu, C.; Wang, H.L.; Yin, W.; Xia, X. PeFUS3 Drives Lateral Root Growth Via Auxin and ABA Signalling Under Drought Stress in Populus. Plant Cell Environ. 2025, 48, 664–681. [Google Scholar] [CrossRef]
- Xin, H.; Li, L.; Chen, Z.; Hong, X.; Wang, S.; Wang, J. Genome-wide analysis of the poplar homeobox gene family and the identification of PtHB180 as an important regulator of plant developmental processes and drought stress response. Ind. Crops Prod. 2024, 215, 118713. [Google Scholar] [CrossRef]
- Song, Q.; He, F.; Kong, L.; Yang, J.; Wang, X.; Zhao, Z.; Zhang, Y.; Xu, C.; Fan, C.; Luo, K. The IAA17. 1/HSFA5a module enhances salt tolerance in Populus tomentosa by regulating flavonol biosynthesis and ROS levels in lateral roots. New Phytol. 2024, 241, 592–606. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef]
- Ndayambaza, B.; Si, J.; Zhao, X.; Zhao, Y.; Zhou, D.; Jia, B.; Zhu, X.; Liu, Z.; Bai, X.; Wang, B. Comprehensive Genomic Analysis of Trihelix Transcription Factor Genes and Their Expression Underlying Abiotic Stress in Euphrates Poplar (Populus euphratica). Plants 2025, 14, 662. [Google Scholar] [CrossRef]
- Li, W.; Herrera-Estrella, L.; Tran, L.-S.P. The Yin–Yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci. 2016, 21, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 2012, 17, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Pospíšilová, H.; Jiskrova, E.; Vojta, P.; Mrizova, K.; Kokáš, F.; Čudejková, M.M.; Bergougnoux, V.; Plíhal, O.; Klimešová, J.; Novák, O. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol. 2016, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J.A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int. J. Mol. Sci. 2022, 23, 1933. [Google Scholar] [CrossRef]
- Gao, S.; Xiao, Y.; Xu, F.; Gao, X.; Cao, S.; Zhang, F.; Wang, G.; Sanders, D.; Chu, C. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol. 2019, 224, 202–215. [Google Scholar] [CrossRef]
- Ramireddy, E.; Hosseini, S.A.; Eggert, K.; Gillandt, S.; Gnad, H.; von Wirén, N.; Schmülling, T. Root engineering in barley: Increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol. 2018, 177, 1078–1095. [Google Scholar] [CrossRef]
- Kang, S.-M.; Hamayun, M.; Khan, M.A.; Iqbal, A.; Lee, I.-J. Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. J. Appl. Bot. Food Qual. 2019, 92, 172–178. [Google Scholar]
- He, Z.; Zhang, P.; Jia, H.; Zhang, S.; Nishawy, E.; Sun, X.; Dai, M. Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 2024, 1, 100029. [Google Scholar] [CrossRef]
- Song, Q.; Kong, L.; Yang, J.; Lin, M.; Zhang, Y.; Yang, X.; Wang, X.; Zhao, Z.; Zhang, M.; Pan, J. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism. Plant J. 2024, 118, 42–57. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Z.; Feng, Q.; Long, T.; Ding, J.; Shu, P.; Deng, H.; Yu, P.; Tan, W.; Liu, S. Elongated Hypocotyl 5a modulates Flowering Locus T2 and gibberellin levels to control dormancy and bud break in poplar. Plant Cell 2024, 36, 1963–1984. [Google Scholar] [CrossRef]
- Lamlom, S.F.; Abdelghany, A.M.; Farouk, A.; Alwakel, E.S.; Makled, K.M.; Bukhari, N.A.; Hatamleh, A.A.; Ren, H.; El-Sorady, G.A.; Shehab, A. Biochemical and yield response of spring wheat to drought stress through gibberellic and abscisic acids. BMC Plant Biol. 2025, 25, 5. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhou, F.; Chen, Y.; Wu, H.; Yin, T. Genome-wide analysis of the expansin gene family in Populus and characterization of expression changes in response to phytohormone (abscisic acid) and abiotic (low-temperature) stresses. Int. J. Mol. Sci. 2023, 24, 7759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Wang, X.; Han, X.; An, Y.; Lin, S.; Shen, C.; Wen, J.; Liu, C.; Yin, W. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. New Phytol. 2020, 227, 407–426. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, J.; Arrojo, M.; Paz, E.; Paramo, M.; Costas, J. Identification of relevant hub genes for early intervention at gene coexpression modules with altered predicted expression in schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 98, 109815. [Google Scholar] [CrossRef]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic acid biosynthesis in plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef]
- Xiao, L.; Du, Q.; Fang, Y.; Quan, M.; Lu, W.; Wang, D.; Si, J.; El-Kassaby, Y.A.; Zhang, D. Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in Populus. Tree Physiol. 2021, 41, 2198–2215. [Google Scholar] [CrossRef]
- La, V.H.; Lee, B.-R.; Zhang, Q.; Park, S.-H.; Islam, M.T.; Kim, T.-H. Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic. Environ. Biotechnol. 2019, 60, 31–40. [Google Scholar] [CrossRef]
- Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Khan, M.A.; Lee, I.-J. An endophytic fungus Gliocladium cibotii regulates metabolic and antioxidant system of Glycine max and Helianthus annuus under heat stress. Pol. J. Environ. Stud. 2021, 30, 1631–1640. [Google Scholar]
- Ji, Y.; Lang, D.; Xu, Z.; Ma, X.; Bai, Q.; Zhang, W.; Zhang, X.; Zhao, Q. Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk. Plant Physiol. Biochem. 2025, 220, 109560. [Google Scholar] [CrossRef]
- Dolgikh, V.A.; Pukhovaya, E.M.; Zemlyanskaya, E.V. Shaping ethylene response: The role of EIN3/EIL1 transcription factors. Front. Plant Sci. 2019, 10, 1030. [Google Scholar] [CrossRef]
- Pandey, B.K.; Bennett, M.J. Uncovering root compaction response mechanisms: New insights and opportunities. J. Exp. Bot. 2024, 75, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Yang, F.; Chai, S.; Wang, L.; de Dios, V.R.; Tan, W.; Yao, Y. Ethylene activates poplar defense against Dothiorella gregaria Sacc by regulating reactive oxygen species accumulation. Physiol. Plant. 2022, 174, e13726. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Guoqin, H.; Nawaz, M.; Shah, A.N.; Khan, T.A.; Haq, M.I.U.; Noor, M.A.; Ping, Z.; Qin, L.; Mostafa, Y.S. The role of brassinosteroids in plant physiological and molecular responses to counter salt stress and ensure food security: A review and future perspectives. Turk. J. Agric. For. 2025, 49, 1–23. [Google Scholar] [CrossRef]
- Sahni, S.; Prasad, B.D.; Liu, Q.; Grbic, V.; Sharpe, A.; Singh, S.P.; Krishna, P. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci. Rep. 2016, 6, 28298. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, S.; Tang, H.; Yao, X. Molecular cloning and characterization of a brassinosteriod biosynthesis-related gene PtoCYP90D1 from Populus tomentosa. BMC Genom. 2024, 25, 1047. [Google Scholar]
- Han, G.-Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 2017, 68, 1323–1331. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Lu, C.; Ding, J.; Park, H.K.; Feng, H. High intensity ultrasound as a physical elicitor affects secondary metabolites and antioxidant capacity of tomato fruits. Food Control 2020, 113, 107176. [Google Scholar] [CrossRef]
- Rao, S.; Tian, Y.; Zhang, C.; Qin, Y.; Liu, M.; Niu, S.; Li, Y.; Chen, J. The JASMONATE ZIM-domain–OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. J. Exp. Bot. 2023, 74, 443–457. [Google Scholar] [CrossRef]
- Marqués-Gálvez, J.E.; Pandharikar, G.; Basso, V.; Kohler, A.; Lackus, N.D.; Barry, K.; Keymanesh, K.; Johnson, J.; Singan, V.; Grigoriev, I.V. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. New Phytol. 2024, 242, 658–674. [Google Scholar] [CrossRef]
- Takahashi, F.; Hanada, K.; Kondo, T.; Shinozaki, K. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr. Opin. Plant Biol. 2019, 51, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Nir, I.; Moshelion, M.; Weiss, D. The A rabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ. 2014, 37, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Wu, S.J.; Peng, Y.S.; Liu, R.N.; Chen, X.; Zhao, P.; Xu, P.; Zhu, J.B.; Jiao, G.L.; Pei, Y. Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol. J. 2016, 14, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Rawal, H.; Nautiyal, Y.; Sharma, B.; Tiwari, S. Microbial Inoculants and Their Role in Abiotic Stress Management. In Microbial Inoculants: Applications for Sustainable Agriculture; Springer: Singapore, 2024; pp. 163–201. [Google Scholar]
- Kumar, M.; Gupta, A.; Vandana, P.; Tiwari, L.D.; Patel, M.K.; Siddique, K.H. Recent advances of plant growth-promoting rhizobacteria (PGPR)-mediated drought and waterlogging stress tolerance in plants for sustainable agriculture. In Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration; Elsevier: Amsterdam, Netherlands, 2024; pp. 315–344. [Google Scholar]
- Milazzo, C.; Zulak, K.G.; Muria-Gonzalez, M.J.; Jones, D.; Power, M.; Bransgrove, K.; Bunce, M.; Lopez-Ruiz, F.J. High-throughput metabarcoding characterizes fungal endophyte diversity in the phyllosphere of a barley crop. Phytobiomes J. 2021, 5, 316–325. [Google Scholar] [CrossRef]
- Gazis, R.; Chaverri, P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol. 2010, 3, 240–254. [Google Scholar] [CrossRef]
- Marčiulynienė, D.; Marčiulynas, A.; Lynikienė, J.; Vaičiukynė, M.; Gedminas, A.; Menkis, A. DNA-metabarcoding of belowground fungal communities in bare-root forest nurseries: Focus on different tree species. Microorganisms 2021, 9, 150. [Google Scholar] [CrossRef]
- Ruotsalainen, A.L.; Kauppinen, M.; Wäli, P.R.; Saikkonen, K.; Helander, M.; Tuomi, J. Dark septate endophytes: Mutualism from by-products? Trends Plant Sci. 2022, 27, 247–254. [Google Scholar] [CrossRef]
- Vaitiekūnaitė, D.; Kuusienė, S.; Beniušytė, E. Oak (Quercus robur) associated endophytic Paenibacillus sp. promotes poplar (Populus spp.) root growth in vitro. Microorganisms 2021, 9, 1151. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 2018, 217, 34–50. [Google Scholar] [CrossRef]
- Chen, X.; Marszałkowska, M.; Reinhold-Hurek, B. Jasmonic acid, not salicyclic acid restricts endophytic root colonization of rice. Front. Plant Sci. 2020, 10, 1758. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M.D.; Vangronsveld, J.; Newman, L.; Monchy, S. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 2010, 6, e1000943. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Woo, S.Y.; Kim, S.H.; Khaine, I.; Kwak, M.J.; Lee, H.K.; Lee, T.Y.; Lee, W.Y. Effects of increased soil fertility and plant growth-promoting rhizobacteria inoculation on biomass yield, energy value, and physiological response of poplar in short-rotation coppices in a reclaimed tideland: A case study in the Saemangeum area of Korea. Biomass Bioenergy 2017, 107, 29–38. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, X.; Yu, Y.; Li, C.; Zhang, Z.; Wang, F. Nanotechnology strategies for plant genetic engineering. Adv. Mater. 2022, 34, 2106945. [Google Scholar] [CrossRef]
- Ramkumar, T.; Lenka, S.; Arya, S.; Bansal, K. Biolistic DNA Delivery in Plants; Humana: New York, NY, USA, 2020. [Google Scholar]
- Xu, N.; Kang, M.; Zobrist, J.D.; Wang, K.; Fei, S.-z. Genetic transformation of recalcitrant upland switchgrass using morphogenic genes. Front. Plant Sci. 2022, 12, 781565. [Google Scholar] [CrossRef]
- Du, N.; Liu, X.; Li, Y.; Chen, S.; Zhang, J.; Ha, D.; Deng, W.; Sun, C.; Zhang, Y.; Pijut, P.M. Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tissue Organ Cult. (PCTOC) 2012, 108, 181–189. [Google Scholar] [CrossRef]
- Pavlichenko, V.V.; Protopopova, M.V. Simplified Method for Agrobacterium-Mediated Genetic Transformation of Populus x berolinensis K. Koch. Methods Protoc. 2024, 7, 12. [Google Scholar] [CrossRef]
- Maheshwari, P.; Kovalchuk, I. Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front. Plant Sci. 2016, 7, 296. [Google Scholar] [CrossRef]
- Roca Paixão, J.F.; Gillet, F.-X.; Ribeiro, T.P.; Bournaud, C.; Lourenço-Tessutti, I.T.; Noriega, D.D.; Melo, B.P.d.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci. Rep. 2019, 9, 8080. [Google Scholar] [CrossRef]
- Tahir, S.; Hassan, S.S.; Yang, L.; Ma, M.; Li, C. Detection Methods for Pine Wilt Disease: A Comprehensive Review. Plants 2024, 13, 2876. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, M.M.; Farooq, Z.; Ahmed, S.R.; Ijaz, A.; Anwar, Z.; Abbas, H.; Tariq, M.S.; Tariq, H.; Mustafa, M. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol. J. 2023, 18, 2200642. [Google Scholar] [CrossRef] [PubMed]
- Azeez, A.; Busov, V. CRISPR/Cas9-mediated single and biallelic knockout of poplar STERILE APETALA (PopSAP) leads to complete reproductive sterility. Plant Biotechnol. J. 2021, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Geng, Y.; Yao, J.; Fu, C.; Lu, M.; Wang, C.; Du, J. Efficient genome editing in Populus using CRISPR/Cas12a. Front. Plant Sci. 2020, 11, 593938. [Google Scholar] [CrossRef]
- Basu, U.; Riaz Ahmed, S.; Bhat, B.A.; Anwar, Z.; Ali, A.; Ijaz, A.; Gulzar, A.; Bibi, A.; Tyagi, A.; Nebapure, S.M. A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Front. Genet. 2023, 13, 866976. [Google Scholar] [CrossRef]
Hormones | Stress Resilience Mechanism | Mode of Action | Species | References |
---|---|---|---|---|
Auxin | Facilitates root elongation and promotes lateral root development. | Facilitates root development and enhances water absorption. | Populus alba | [72] |
Cytokinins | Preserves shoot meristem functionality during stress. | Modulates nutrition distribution, postpones aging. | Populus tremula | [73] |
Gibberellins | Regulates growth to optimize water conservation. | Inhibits stem elongation under drought conditions. | Populus deltoides | [74] |
Abscisic acid (ABA) | Modulates stomatal closure to minimize water loss. | Stimulates the expression of stress-responsive genes. | Populus trichocarpa | [75] |
Salicylic acid (SA) | Improves antioxidant defense mechanisms. | Reduces the oxidative damage. | Populus euphratica | [76] |
Ethylene | Regulates root structure in water-scarce environments. | Facilitates the development of adventitious roots. | Populus nigra | [77] |
Brassinosteroids | Enhances photosynthetic efficacy under stress conditions. | Stabilizes membranes and modulates reactive oxygen species levels. | Populus cathayana | [78] |
Jasmonic acid (JA) | Enhances structural resilience against desiccation. | Induces stress-related protein synthesis. | Populus simonii | [79] |
Peptides | Improves signals for stress adaptation. | Regulates metabolic and hormonal pathways. | Populus tomentosa | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Tahir, S.; Hassan, S.S.; Lu, M.; Wang, X.; Quyen, L.T.Q.; Zhang, W.; Chen, S. The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species. Int. J. Mol. Sci. 2025, 26, 3884. https://doi.org/10.3390/ijms26083884
Ali S, Tahir S, Hassan SS, Lu M, Wang X, Quyen LTQ, Zhang W, Chen S. The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species. International Journal of Molecular Sciences. 2025; 26(8):3884. https://doi.org/10.3390/ijms26083884
Chicago/Turabian StyleAli, Sajid, Sana Tahir, Syed Shaheer Hassan, Meiqi Lu, Xinyu Wang, Lai Thi Quynh Quyen, Wenbo Zhang, and Su Chen. 2025. "The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species" International Journal of Molecular Sciences 26, no. 8: 3884. https://doi.org/10.3390/ijms26083884
APA StyleAli, S., Tahir, S., Hassan, S. S., Lu, M., Wang, X., Quyen, L. T. Q., Zhang, W., & Chen, S. (2025). The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species. International Journal of Molecular Sciences, 26(8), 3884. https://doi.org/10.3390/ijms26083884