Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy
Abstract
1. Introduction
2. Results
2.1. Preventive Effect of Repeated Oral Administration of a Mixture of Potassium Citrate and Sodium Citrate (K/Na Citrate) on Mechanical Allodynia Induced by PTX in Mice
2.2. Blood Bicarbonate (HCO3−) Concentrations and pH After the Administration of K/Na Citrate
2.3. Comparison of the Effect of Repeated Oral Administration of K/Na Citrate and Sodium Bicarbonate (NaHCO3) on PTX-Induced Mechanical Allodynia
2.4. Effect of Repeated Oral Administration of K/Na Citrate on Spontaneous Firing and Von Frey Filament (vFF)-Evoked Firing Induced by PTX in Superficial Dorsal Horn Neurons
2.5. The Preventive Effect of Repeated Oral Administration of K/Na Citrate on PTX-Induced Mechanical Allodynia and Plasma Citric Acid Levels in Rats
2.6. Effect of Repeated Oral Administration of K/Na Citrate on Plasma Complement Levels
2.7. Na Citrate Prevented the Reduction in Neurite Outgrowth in PTX-Exposed Primary Dorsal Root Ganglion (DRG) Neurons
2.8. Therapeutic Effect of Repeated Oral Administration of K/Na Citrate on PTX-Induced Mechanical Allodynia
3. Discussion
4. Materials and Methods
4.1. Animals
4.1.1. Mice
4.1.2. Rats
4.2. Test Compound
4.3. Animal Models
4.3.1. Mouse Study
4.3.2. Rat Study
4.4. Behavioral Experiments
4.4.1. Mouse Study
4.4.2. Rat Study
4.5. Electrophysiological Recording
4.6. Measurement of Plasma Citric Acid, Blood HCO3−, and pH
4.7. Preventive and Dose-Dependent Effect of K/Na Citrate on Mechanical Allodynia
4.8. Therapeutic Effect of K/Na Citrate on Mechanical Allodynia in PTX-Treated Mice
4.9. Effect of Repeated Oral Administration of K/Na Citrate on the Concentrations of Complement Components, Anaphylatoxins C3a and C5a, in Rat Plasma
4.10. Assessment of Neurite Outgrowth in Primary Adult Rat DRG Cultures
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
CIPN | Chemotherapy-induced peripheral neuropathy |
DRG | Dorsal root ganglion |
ELISA | Enzyme-linked immunosorbent assay |
i.p. | Intraperitoneal |
p.o. | Per os |
SEM | Standard error of the mean |
vFF | von Frey filament |
References
- Badros, A.; Goloubeva, O.; Dalal, J.S.; Can, I.; Thompson, J.; Rapoport, A.P.; Heyman, M.; Akpek, G.; Fenton, R.G. Neurotoxicity of bortezomib therapy in multiple myeloma: A single-center experience and review of the literature. Cancer 2007, 110, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Quasthoff, S.; Hartung, H. Chemotherapy-induced peripheral neuropathy. J. Neurol. 2002, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Barton, D.; Kottschade, L.; Grothey, A.; Loprinzi, C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer 2008, 44, 1507–1515. [Google Scholar] [CrossRef]
- Kanbayashi, Y.; Hosokawa, T.; Okamoto, K.; Konishi, H.; Otsuji, E.; Yoshikawa, T.; Takagi, T.; Taniwaki, M. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anticancer Drugs 2010, 21, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, G.; Alberti, P.; Frigeni, B.; Piatti, M.; Susani, E. Chemotherapy-induced neuropathy. Curr. Treat. Options Neurol. 2011, 13, 180–190. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Qin, R.; Dakhil, S.R.; Fehrenbacher, L.; Flynn, K.A.; Atherton, P.; Seisler, D.; Qamar, R.; Lewis, G.C.; Grothey, A. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J. Clin. Oncol. 2014, 32, 997–1005. [Google Scholar] [CrossRef]
- Oki, E.; Emi, Y.; Kojima, H.; Higashijima, J.; Kato, T.; Miyake, Y.; Kon, M.; Ogata, Y.; Takahashi, K.; Ishida, H.; et al. Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): A placebo-controlled, double-blind, randomized phase III study. Int. J. Clin. Oncol. 2015, 20, 767–775. [Google Scholar] [CrossRef]
- Hirayama, Y.; Ishitani, K.; Sato, Y.; Iyama, S.; Takada, K.; Murase, K.; Kuroda, H.; Nagamachi, Y.; Konuma, Y.; Fujimi, A.; et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: A pilot randomized trial. Int. J. Clin. Oncol. 2015, 20, 866–871. [Google Scholar] [CrossRef]
- Vo, T.; Rice, A.S.C.; Dworkin, R.H. Nonsteroidal anti-inflammatory drugs for neuropathic pain: How do we explain continued widespread use? Pain 2009, 143, 169–171. [Google Scholar] [CrossRef]
- Takenaka, M.; Iida, H.; Matsumoto, S.; Yamaguchi, S.; Yoshimura, N.; Miyamoto, M. Successful treatment by adding duloxetine to pregabalin for peripheral neuropathy induced by paclitaxel. Am. J. Hosp. Palliat. Care 2013, 30, 734–736. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.D.; Michalak, J.C.; Sloan, J.A.; Loprinzi, C.L.; Soori, G.S.; Nikcevich, D.A.; Warner, D.O.; Novotny, P.; Kutteh, L.A.; Wong, G.Y.; et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: A phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 2007, 110, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, M.; Ooshiro, M.; Moriyama, A.; Sugishita, Y.; Kadoya, K.; Sato, A.; Kitahara, T.; Takagi, R.; Urita, T.; Yoshida, Y.; et al. Efficacy and tolerability of controlled-release oxycodone for oxaliplatin-induced peripheral neuropathy and the extension of FOLFOX therapy in advanced colorectal cancer patients. Support. Care Cancer 2014, 22, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yoon, S.Y.; Zhang, H.; Dougherty, P.M. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J. Pain 2012, 13, 293–303. [Google Scholar] [CrossRef]
- Ruiz-Medina, J.; Baulies, A.; Bura, S.A.; Valverde, O. Paclitaxel-induced neuropathic pain is age dependent and devolves on glial response. Eur. J. Pain 2013, 17, 75–85. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; de Carvalho-Barbosa, M.; Kavelaars, A.; Heijnen, C.J.; Albrecht, P.J.; Dougherty, P.M. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J. Pain 2016, 17, 775–786. [Google Scholar] [CrossRef]
- Miyamoto, K.; Ishikura, K.I.; Kume, K.; Ohsawa, M. Astrocyte-neuron lactate shuttle sensitizes nociceptive transmission in the spinal cord. Glia 2019, 67, 27–36. [Google Scholar] [CrossRef]
- Gauchan, P.; Andoh, T.; Kato, A.; Sasaki, A.; Kuraishi, Y. Effects of the prostaglandin E1 analog limaprost on mechanical allodynia caused by chemotherapeutic agents in mice. J. Pharmacol. Sci. 2009, 109, 469–472. [Google Scholar] [CrossRef]
- Reeh, P.W.; Steen, K.H. Tissue acidosis in nociception and pain. Prog. Brain Res. 1996, 113, 143–151. [Google Scholar] [CrossRef]
- Heming, T.A.; Davé, S.K.; Tuazon, D.M.; Chopra, A.K.; Peterson, J.W.; Bidani, A. Effects of extracellular pH on tumour necrosis factor-α production by resident alveolar macrophages. Clin. Sci. 2001, 101, 267–274. [Google Scholar] [CrossRef]
- Opie, L.H.; Owen, P.; Riemersma, R.A. Relative rates of oxidation of glucose and free fatty acids by ischaemic and nonischaemic myocardium after coronary artery ligation in the dog. Eur. J. Clin. Investig. 1973, 3, 419–435. [Google Scholar] [CrossRef]
- Schwaiger, M.; Neese, R.A.; Araujo, L.; Wyns, W.; Wisneski, J.A.; Sochor, H.; Swank, S.; Kulber, D.; Selin, C.; Phelps, M.; et al. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium. J. Am. Coll. Cardiol. 1989, 13, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Eshima, K.; Ishida, T. Neutralization of acidic tumor microenvironment (tme) with daily oral dosing of sodium potassium citrate (K/Na citrate) increases therapeutic effect of anti-cancer agent in pancreatic cancer xenograft mice model. Biol. Pharm. Bull. 2021, 44, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Renschler, M.F.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Ueno, H.; Ikeda, M.; Ueno, M.; Mizuno, N.; Ioka, T.; Omuro, Y.; Nakajima, E.T.; Furuse, J. Phase I/II study of nab-paclitaxel plus gemcitabine for chemotherapy-naive Japanese patients with metastatic pancreatic cancer. Cancer Chemother. Pharmacol. 2016, 77, 595–603. [Google Scholar] [CrossRef]
- Mizuta, T.; Miyake, N.; Shika, K. General pharmacological study of citrate citric acid combination (Uralyt-U®). Oyo Yakuri Pharmacometr. 1981, 21, 715–730. [Google Scholar]
- Cristiano, C.; Giorgio, C.; Cocchiaro, P.; Boccella, S.; Cesta, M.C.; Castelli, V.; Liguori, F.M.; Cuozzo, M.R.; Brandolini, L.; Russo, R.; et al. Inhibition of C5aR1 as a promising approach to treat taxane-induced neuropathy. Cytokine 2023, 171, 156370. [Google Scholar] [CrossRef]
- Xu, J.; Huang, P.; Bie, B.; Dai, Y.; Ben-Salem, S.; Borjini, N.; Zhang, L.; Chen, J.; Olman, M.; Cheng, J.; et al. Complement receptor C3aR1 contributes to paclitaxel-induced peripheral neuropathic pain in mice and rats. J. Immunol. 2023, 211, 1736–1746. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Xie, M.; Li, Y.; Huang, P.; Saunders, T.L.; Fox, D.A.; Rosenquist, R.; Lin, F. Role of complement in a rat model of paclitaxel-induced peripheral neuropathy. J. Immunol. 2018, 200, 4094–4101. [Google Scholar] [CrossRef]
- Starke, A.; Corsenca, A.; Kohler, T.; Knubben, J.; Kraenzlin, M.; Uebelhart, D.; Wüthrich, R.P.; von Rechenberg, B.; Müller, R.; Ambühl, P.M. Correction of metabolic acidosis with potassium citrate in renal transplant patients and its effect on bone quality. Clin. J. Am. Soc. Nephrol. 2012, 7, 1461–1472. [Google Scholar] [CrossRef]
- McNaughton, L.; Cedaro, R. Sodium citrate ingestion and its effects on maximal anaerobic exercise of different durations. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 36–41. [Google Scholar] [CrossRef]
- Remer, T. ACID-BASE IN RENAL FAILURE: Influence of diet on acid-base balance. Semin. Dial. 2000, 13, 221–226. [Google Scholar] [CrossRef]
- Sabboh, H.; Besson, C.; Tressol, J.C.; Rémésy, C.; Demigné, C. Excess casein in the diet is not the unique cause of low-grade metabolic acidosis: Role of a deficit in potassium citrate in a rat model. Ann. Nutr. Metab. 2006, 50, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kopel, J.J.; Bhutia, Y.D.; Sivaprakasam, S.; Ganapathy, V. Consequences of NaCT/SLC13A5/mINDY deficiency: Good versus evil, separated only by the blood-brain barrier. Biochem. J. 2021, 478, 463–486. [Google Scholar] [CrossRef] [PubMed]
- Mycielska, M.E.; Patel, A.; Rizaner, N.; Mazurek, M.P.; Keun, H.; Patel, A.; Ganapathy, V.; Djamgoz, M.B.A. Citrate transport and metabolism in mammalian cells: Prostate epithelial cells and prostate cancer. Bioessays 2009, 31, 10–20. [Google Scholar] [CrossRef]
- Krukowski, K.; Eijkelkamp, N.; Laumet, G.; Hack, C.E.; Li, Y.; Dougherty, P.M.; Heijnen, C.J.; Kavelaars, A. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J. Neurosci. 2016, 36, 11074–11083. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, A.; Jekich, B.M.; Sloane, E.M.; Mahoney, J.H.; Langer, S.J.; Milligan, E.D.; Martin, D.; Maier, S.F.; Johnson, K.W.; Leinwand, L.A.; et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun. 2007, 21, 686–698. [Google Scholar] [CrossRef]
- Janes, K.; Wahlman, C.; Little, J.W.; Doyle, T.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 2015, 44, 91–99. [Google Scholar] [CrossRef]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef]
- Makker, P.G.; Duffy, S.S.; Lees, J.G.; Perera, C.J.; Tonkin, R.S.; Butovsky, O.; Park, S.B.; Goldstein, D.; Moalem-Taylor, G. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLOS ONE 2017, 12, e0170814. [Google Scholar] [CrossRef]
- Song, W.C.; Sarrias, M.R.; Lambris, J.D. Complement and innate immunity. Immunopharmacology 2000, 49, 187–198. [Google Scholar] [CrossRef]
- Jang, J.H.; Clark, D.J.; Li, X.; Yorek, M.S.; Usachev, Y.M.; Brennan, T.J. Nociceptive sensitization by complement C5a and C3a in mouse. Pain 2010, 148, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Lindsay, T.F.; Ortiz, F.; Yeh, C.G.; Hechtman, H.B.; Moore, F.D., Jr. Soluble complement receptor type 1 ameliorates the local and remote organ injury after intestinal ischemia-reperfusion in the rat. J. Immunol. 1992, 149, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Brus, F.; van Oeveren, W.; Okken, A.; Bambang, S.O. Activation of circulating polymorphonuclear leukocytes in preterm infants with severe idiopathic respiratory distress syndrome. Pediatr. Res. 1996, 39, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, J.; Wagner, M.H.; Strauss, E.; Obladen, M. Complement and contact activation in term neonates after fetal acidosis. Arch. Dis. Child. Fetal Neonatal Ed. 1998, 78, F125–F128. [Google Scholar] [CrossRef]
- Horstick, G.; Heimann, A.; Götze, O.; Hafner, G.; Berg, O.; Böhmer, P.; Becker, P.; Darius, H.; Rupprecht, H.J.; Loos, M.; et al. Intracoronary application of C1 esterase inhibitor improves cardiac function and reduces myocardial necrosis in an experimental model of ischemia and reperfusion. Circulation 1997, 95, 701–708. [Google Scholar] [CrossRef]
- Morita, Y.; Ikeguchi, H.; Nakamura, J.; Hotta, N.; Yuzawa, Y.; Matsuo, S. Complement activation products in the urine from proteinuric patients. J. Am. Soc. Nephrol. 2000, 11, 700–707. [Google Scholar] [CrossRef]
- Emeis, M.; Sonntag, J.; Willam, C.; Strauss, E.; Walka, M.M.; Obladen, M. Acidosis activates complement system in vitro. Mediat. Inflamm. 1998, 7, 417–420. [Google Scholar] [CrossRef]
- Sahenk, Z.; Barohn, R.; New, P.; Mendell, J.R. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch. Neurol. 1994, 51, 726–729. [Google Scholar] [CrossRef]
- Boehmerle, W.; Huehnchen, P.; Peruzzaro, S.; Balkaya, M.; Endres, M. Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57BL/6 mice. Sci. Rep. 2014, 4, 6370. [Google Scholar] [CrossRef]
- Siau, C.; Xiao, W.; Bennett, G.J. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: Loss of epidermal innervation and activation of Langerhans cells. Exp. Neurol. 2006, 201, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Gornstein, E.; Schwarz, T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014, 76, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P.M. Intraepidermal nerve fiber loss corresponds to the development of Taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011, 152, 308–313. [Google Scholar] [CrossRef]
- Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of aucubin inhibits paclitaxel-induced mechanical allodynia via the inhibition of endoplasmic reticulum stress in peripheral Schwann cells. Biol. Pharm. Bull. 2017, 40, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Warwick, C.A.; Keyes, A.L.; Woodruff, T.M.; Usachev, Y.M. The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J. Biol. Chem. 2021, 297, 101085. [Google Scholar] [CrossRef]
- Andoh, T.; Fukutomi, D.; Uta, D.; Kuraishi, Y. Prophylactic repetitive treatment with the herbal medicine Kei-kyoh-zoh-soh-oh-shin-bu-toh attenuates oxaliplatin-induced mechanical allodynia by decreasing spinal astrocytes. Evid. Based Complement. Altern. Med. 2019, 2019, 4029694. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef]
- Ishikawa, T.; Uta, D.; Okuda, H.; Potapenko, I.; Hori, K.; Kume, T.; Ozaki, N. Combined experiments with in vivo fiber photometry and behavior tests can facilitate the measurement of neuronal activity in the primary somatosensory cortex and hyperalgesia in an inflammatory pain mice model. Biol. Pharm. Bull. 2024, 47, 591–599. [Google Scholar] [CrossRef]
- Uta, D.; Inami, Y.; Fukushima, M.; Kume, T. Light-touch-induced after discharge firing in the superficial spinal dorsal horn neurons in hairless mice with irritant contact dermatitis. Biol. Pharm. Bull. 2022, 45, 1678–1683. [Google Scholar] [CrossRef]
- Uta, D.; Tsuboshima, K.; Nishijo, H.; Mizumura, K.; Taguchi, T. Neuronal sensitization and synaptic facilitation in the superficial dorsal horn of a rat reserpine-induced pain model. Neuroscience 2021, 479, 125–139. [Google Scholar] [CrossRef]
- Uta, D.; Koga, K.; Furue, H.; Imoto, K.; Yoshimura, M. L-bupivacaine inhibition of nociceptive transmission in rat peripheral and dorsal horn neurons. Anesthesiology 2021, 134, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Perner, C.; Sokol, C.L. Protocol for dissection and culture of murine dorsal root ganglia neurons to study neuropeptide release. STAR Protoc. 2021, 2, 100333. [Google Scholar] [CrossRef] [PubMed]
- Mecklenburg, J.; Zou, Y.; Wangzhou, A.; Garcia, D.; Lai, Z.; Tumanov, A.V.; Dussor, G.; Price, T.J.; Akopian, A.N. Transcriptomic sex differences in sensory neuronal populations of mice. Sci. Rep. 2020, 10, 15278. [Google Scholar] [CrossRef]
- Calcutt, N.A.; Smith, D.R.; Frizzi, K.; Sabbir, M.G.; Chowdhury, S.K.; Mixcoatl-Zecuatl, T.; Saleh, A.; Muttalib, N.; Van der Ploeg, R.; Ochoa, J.; et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J. Clin. Investig. 2017, 127, 608–622. [Google Scholar] [CrossRef]
- Ho, S.Y.; Chao, C.Y.; Huang, H.L.; Chiu, T.W.; Charoenkwan, P.; Hwang, E. NeurphologyJ: An automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinform. 2011, 12, 230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uta, D.; Nakamura, H.; Maruo, K.; Matsumura, K.; Usami, Y.; Kume, T. Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2025, 26, 3329. https://doi.org/10.3390/ijms26073329
Uta D, Nakamura H, Maruo K, Matsumura K, Usami Y, Kume T. Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy. International Journal of Molecular Sciences. 2025; 26(7):3329. https://doi.org/10.3390/ijms26073329
Chicago/Turabian StyleUta, Daisuke, Hideki Nakamura, Kengo Maruo, Kanoko Matsumura, Yohei Usami, and Toshiaki Kume. 2025. "Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy" International Journal of Molecular Sciences 26, no. 7: 3329. https://doi.org/10.3390/ijms26073329
APA StyleUta, D., Nakamura, H., Maruo, K., Matsumura, K., Usami, Y., & Kume, T. (2025). Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy. International Journal of Molecular Sciences, 26(7), 3329. https://doi.org/10.3390/ijms26073329