Next Article in Journal
The Presence of Adipose Tissue in Aortic Valves Influences Inflammation and Extracellular Matrix Composition in Chronic Aortic Regurgitation
Next Article in Special Issue
Decursin Suppresses Esophageal Squamous Cell Carcinoma Progression via Orchestrated Cell Cycle Deceleration, Apoptotic Activation, and Oncoprotein Degradation
Previous Article in Journal
Prediction and Prioritisation of Novel Anthelmintic Candidates from Public Databases Using Deep Learning and Available Bioactivity Data Sets
Previous Article in Special Issue
Antibacterial and Antitumor Activities of Synthesized Sarumine Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors

1
College of Public Health, Dali University, Dali 671003, China
2
College of Pharmacy, Dali University, Dali 671003, China
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(7), 3136; https://doi.org/10.3390/ijms26073136
Submission received: 9 February 2025 / Revised: 15 March 2025 / Accepted: 21 March 2025 / Published: 28 March 2025

Abstract

In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in lichens are not found in other organisms, making lichen-derived compounds a promising resource for the development of new drugs, particularly against drug-resistant microorganisms, due to their distinctive chemical structures and biological activities. This article aims to explore in depth the lichen species exhibiting antimicrobial activity and their antimicrobial metabolites and focus on unique compounds such as divaricatic acid, usnic acid, vulpinic acid, salazinic acid, and rhizocarpic acid, which demonstrate significant antimicrobial effects against various resistant microorganisms, including methicillin-resistant Staphylococcus aureus, drug-resistant Mycobacterium tuberculosis, and Candida albicans and other drug-resistant microorganisms. Meanwhile, this paper discusses the potential applications and challenges associated with the use of lichens in medicine, agriculture, and food industry, aiming to elucidate these mysterious organisms for lichen researchers and enthusiasts while promoting further research and applications in the field of antimicrobials.

1. Introduction

Lichens, symbiotic organisms composed of fungi and algae [1], exhibit an extremely broad ecological distribution on Earth [2], ranging from the equator to the poles and from the Gobi Desert to high-altitude tundra and volcanic islands, even thriving in extreme environments close to space. They are found on nearly all terrestrial surfaces [3,4], covering approximately 8% of the planet’s land area [5], and play crucial roles in ecosystems as “pioneers” [4]. Based on external morphology, lichens can be classified into crustose lichens, foliose lichens, and fruticose lichens [4]. From an internal structural perspective, lichens can be divided into homoiomerous thalli and heteromerous thalli. Homoiomerous lichens have algal cells evenly distributed within the mycelial tissue without obvious layering, while heteromerous lichens exhibit a distinct layered structure. In the classification and identification of lichens, morphological features, chemical analyses, and molecular biology methods are usually integrated [4]. Common identification methods include morphological dissection, chemical color reaction methods, thin-layer chromatography, and molecular biology techniques [4]. The combined application of these methods helps accurately identify lichens, providing solid scientific evidence for related research (Figure 1).
Although more than 26,000 species of lichens are currently known worldwide, they receive far less attention in the scientific community compared with many other organisms [6,7]. Nonetheless, the chemical diversity and substantial biological activity of lichens present great potential for the development of novel antimicrobial applications. Lichens produce a wide array of structurally unique secondary metabolites [3], demonstrating high efficacy against bacterial, fungal, and viral pathogens, thus representing valuable resources for developing new strategies against drug-resistant microorganisms [8]. This antimicrobial potential is closely related to the defense mechanisms, niche competition, self-protective abilities, adaptive evolution, and biodiversity of lichens. Specifically, the antimicrobial compounds in lichens are believed to be evolutionary products of their defense mechanisms, primarily functioning to prevent microbial colonization and competition [1]. These compounds effectively inhibit the growth of bacteria, fungi, and other microorganisms, helping lichens survive in diverse and nutrient-poor environments [9]. Additionally, lichens typically grow in ecological niches with limited resources, such as rocky surfaces or tree barks [4]. By producing antimicrobial substances, lichens can reduce competition from other microorganisms, enhancing their survival capabilities, which facilitates more effective habitation and reproduction [2]. Some antimicrobial compounds also serve to protect their photosynthetic partners from Ultraviolet (UV) radiation or desiccation [10]. This multifunctionality allows lichens to thrive in extreme environments, further enhancing their adaptability [9]. At the same time, there is a complex interaction between lichens and the microbial communities in their environment. Certain lichens may evolve specific antimicrobial compounds in response to changes in local microbial ecology, forming a co-evolutionary dynamic [11]. This dynamic not only influences the ecological roles of lichens but also enriches the diversity of their chemical compounds [12,13]. Finally, the diversity of lichen species and their various growth environments enable them to produce a wide range of antimicrobial compounds. This chemical diversity reflects the important ecological roles of lichens in their ecosystems and may provide new avenues for drug development and the discovery of natural antimicrobial agents [14].
Despite the considerable antimicrobial potential of lichens, research in this area reveals several gaps. Most studies on antimicrobial activity primarily focus on specific species or compounds, resulting in a lack of comprehensive overviews of their biodiversity and the underlying active substances. Additionally, the potential applications of lichens in medicine, agriculture, and the food industry remain insufficiently explored, particularly regarding their role in combating antibiotic resistance, an area where research is still in its preliminary stages [15]. Moreover, the unclear taxonomy of some lichens, slow growth rate restricting raw material availability [4], technical challenges involved in cultivation [16], limitations in compound isolation and purification techniques [17], and uncertain potential adverse reactions and toxicity [18,19] have hindered in-depth research and widespread application of lichen resources. In response to identified research gaps, this paper systematically reviews the potential of lichens as natural antimicrobial resources, providing an in-depth discussion on existing issues in the field. It analyzes the biodiversity of antimicrobial lichens and their active substance basis, explores their application prospects for addressing drug-resistant infections, and presents new insights for drug development and microbiological research. The authors call on the academic community to enhance research efforts on lichens to fully realize their potential value in medicine, agriculture, and the food industry. Additionally, this study highlights current challenges, including taxonomic ambiguity, technical bottlenecks, and potential toxicity, while proposing future research directions to combat microbial resistance. The references cited in this article are primarily sourced from the following databases: Web of Science, PubMed, and Google Scholar, where the keywords used included “lichens, Parmeliaceae, Ramalinaceae, Usnea spp., antimicrobial activity, antibacterial activity, antifungal activity, antiviral activity, secondary metabolites, medical applications, agricultural applications, food industry”, along with related synonyms and combinations. In the literature selection process, we prioritized peer-reviewed articles published in the last decade, focusing on research related to the antimicrobial activity of lichens or lichen-derived compounds and their potential application challenges, while excluding duplicates. Through systematic screening and analysis of the literature, we summarize research progress on the antimicrobial activity of lichens, discuss their application potential across various fields, and identify existing challenges as well as future development directions.

2. Types and Characteristics of Antimicrobially Active Lichens

Globally, there are as many as 26,000 lichen species distributed in 500 genera [20], and 109 lichens exhibiting significant antimicrobial activity have been reported in the current literature, involving 41 genera and 20 families. Among these, lichens from the family Parmeliaceae dominated the antimicrobial active lichens, representing 44%, the family Ramalinaceae accounts for 15%, and the remaining 41% of the active lichens were distributed in 18 families such as Cladoniaceae, Eloschistaceae, Caliciaceae, etc. (Table 1). Among these active lichens, lichens of the genus Usnea in the family Parmeliaceae [21,22,23] are particularly prominent due to their abundance of species and diverse bioactivities; e.g., lichens such as Usnea steineri [24] and Usnea articulate [25] exhibit excellent antimicrobial effects. In addition, lichens from the genera Parmelia [26,27], Lobaria [28,29], and Thamnolia [28] have also shown significant antimicrobial activity and may be potential antibiotic or pesticide candidates.
At the level of antimicrobial targets, lichen extract exhibits significant antimicrobial activity against a wide range of pathogenic microorganisms, covering Gram-positive, Gram-negative, and clinically resistant bacteria, as well as plant and animal pathogenic fungi. In terms of against Gram-positive bacteria, lichen extracts of Usnea barbata [21], Parmelia perlata [26], Cladonia foliacea [30], and Cryptothecia striata [31] against Bacillus subtilis [21,32], Streptococcus pneumonia [21], Staphylococcus epidermidis [24], Staphylococcus aureus [29,32,33], Lactobacillus plantarum [34], Enterococcus spp. [22,35], Listeria spp. [30,36], and Micrococcus luteus [31] are potential pathogens that exhibit antimicrobial activity, and these strains are commonly associated with hospital-acquired infections, highlighting the potential of antimicrobial activity of lichens for medical applications. Against Gram-negative bacteria, lichens extract effectively inhibited highly pathogenic strains such as Salmonella typhi [25,37], Vibrio cholerae [31,32], Aeromonas hydrophila [30], and Pseudomonas aeruginosa [22,38], as well as Enterobacter [39], Escherichia [25,26], Proteus [26,33], Citrobacter [25] and Vibrio [31,32] bacteria. Against clinically resistant bacteria, lichen extracts have also shown good antimicrobial activity against resistant strains such as methicillin-resistant Staphylococcus aureus [35,40], quinolone-resistant Escherichia coli [41], vancomycin-resistant Enterococcus faecalis [24], Acinetobacter baumannii [35], multidrug-resistant Mycobacterium tuberculosis (MDR-A8, MDR-V791) and Mycobacterium smegmatis (MDR-R, MDR-40) [23], which provides a new source of substances to cope with the increasing antibiotic resistance problem. Particularly in antituberculosis, lichens extract can effectively inhibit a variety of Mycobacterium tuberculosis, including Mycobacterium tuberculosis H37Ra, Mycobacterium smegmatis [23], Mycobacterium tuberculosis, Mycobacterium kansasii, and Mycobacterium avium [24] complex groups, and the high efficiency in against Mycobacterium tuberculosis has provided new ideas for the development of new antituberculosis drugs. In terms of antifungal activity, lichen extracts have also shown encouraging results against animal pathogenic fungi such as Cryptococcus neoformans [42], and Candida spp. such as Candida albicans [21,22,32], Candida parapsilosis [22], and Candida glabrata [30], as well as the phytopathogenic fungi Cladosporium cladosporioides [43], Colletotrichum capsici [44], Fusarium oxysporum [43,44,45], Achlya bisexualis [46], Bipolaris sorokiniana [44,46], and Saprolegnia parasitica [46], Pythium debaryanum [27], Fusarium fujikuroi [47], Rhizoctonia solani [27,39] and Dermatophyte [34], have demonstrated good antimicrobial effects and may be highly promising natural resources for the development of novel antifungal drugs. Lichen extracts have important applications in medicine and agriculture due to their wide range of antimicrobial activities and deserve further research and development.
While delving into the antimicrobial potential of lichens extract, it was noticed that the antimicrobial active components were mainly concentrated in the organic solvent extracts phases, especially in the solvent extract phases such as methanol, ethanol, ethyl acetate, and acetone. Among them, methanol [32,33] and acetone [48,49] extracts were able to capture more active components due to their good solubilization properties, which endowed the extracts with potent antimicrobial activities. However, this pattern is not invariable; for example, the ethyl acetate extract of Parmelia reticulate showed better antifungal activity than the methanol extract, suggesting that the variety of lichens actively enriched in different organic phases is rich and diverse [27]. In addition to the organic solvents mentioned above, dichloromethane [38], n-hexane [37,38], chloroform [30], acetonitrile [38], propyl alcohol [47], and oil [50] have also been widely used for the extraction of lichens compounds, providing diverse options for antimicrobial studies of lichens. Although aqueous extracts have antimicrobial activity in some specific cases, such as the inhibitory activity of Parmelia cirrhatum aqueous extracts against pathogenic fungi [27], the expression of this bioactivity is dependent on the properties of the compounds and is not a universal phenomenon. In most cases, lichen aqueous extracts lack antimicrobial activity; e.g., Ramalina sinensi [25] and Usnea barbata [21] aqueous extracts are not active against the target. Our previous study also further corroborated the advantages of organic solvent extracts in antimicrobial activity, which was especially evident in the screening of the antimicrobial activity of lichens from Cangshan Mountain, Dali, China [51]. Therefore, relevant researchers should pay special attention to this feature of active ingredients from lichens during the development process of exploring the development of active ingredients from lichens.
Table 1. Antimicrobial activity of lichens extracts.
Table 1. Antimicrobial activity of lichens extracts.
CategoriesObject StrainLichens (Extracts)SamplePositive ControlReferences
MIC/MBC/ED50 (µg/mL)/IZ (mm)/IR (%)/RIZD (%)
Gram-positive bacteriaBacillus subtilisUsnea barbata (Methanol-acetone)MIC: 100 [21]
IZ: 27.0 [52]
Usnea rubrotincta (Acetone)MIC: 15.63Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Usnea rubrotincta (Methanol)MIC: 250
Parmelia conspersa (Methanol)MIC: 156.25Amracin (MIC: 0.24)[26]
Parmelia conspersa (Acetone)MIC: 39.1
Parmelia perlata (Methanol)MIC: 78.125
Parmelia perlata (Acetone)MIC: 126.25
Parmelia sulcata (Acetone)IZ: 25.0 [27]
MIC: 3120
Evernia prunastri (Acetone)MIC: 78 [36]
Pseudever niafurfuracea (Acetone)MIC: 78
Ramalina sinensis (Methanol)IZ: 25.0Gentamicin (IZ: 32.0 MIC: 250)[54]
MIC: 900
Ramalina sinensis (Ethanol)IZ: 23.0
Ramalina sinensis (Acetone)IZ: 21.0
Ramalina umeticola (Acetone)MIC: 31.25Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Ramalina hossei (Methanol)IZ: 13.3Chloramphenicol (IZ: 34.0)[55]
Ramalina conduplicans (Methanol)IZ: 15.0
Ramalina pacifica (Methanol)IZ: 17.6
MIC: 1250Streptomycin (MIC: 16)[43]
Ramalina fraxinea (Acetone)MIC: 1250
Ramalina farinacea (Acetone)MIC: 78 [36]
Cladonia foliacea (Chloroform)MIC: 0.48 [30]
Cladonia foliacea (Diethyl ether)MIC: 2.9
Cladonia foliacea (Acetone)MIC: 7.8
Cladonia foliacea (Ethanol)MIC: 3.9
Cryptothecia striata (Methanol)IZ: 17.5 [31]
Cryptothecia striata (Ethanolic)IZ: 16.6
Cryptothecia striata (Water)IZ: 14.0
Cryptothecia scripta (Methanol)IZ: 22.0
Cryptothecia scripta (Ethanolic)IZ: 15.0
Cryptothecia scripta (Water)IZ: 12.5
Phaeographis dendritica (Acetone)MIC: 125 [32]
Phaeographis dendriticaa (Methanol)MIC: 62.5
Phaeographis dendritica (Benzene)MIC: 500
Phaeographis dendritica (Diethyl ether)MIC: 250
Trypethelevirens (Acetone)MIC: 250
Trypethelevirens (Methanol)MIC: 125
Trypethelevirens (Diethyl ether)MIC: 500
Chloramphenicol (Acetone)MIC: 15.63Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Bacillus cereusRamalina hossei (Methanol)IZ: 22.0Chloramphenicol (IZ: 36.6)[55]
Ramalina conduplicans (Methanol)
Ramalina pacifica (Methanol)IZ: 27.0
Ramalina fraxinea (Acetone)MIC: 1250Streptomycin (MIC: 16)[43]
Ramalina fastigiata (Acetone)MIC: 625
Cladonia foliacea (Chloroform)MIC: 1.9 [30]
Cladonia foliacea (Diethyl ether)MIC: 46.8
Cladonia foliacea (Acetone)MIC: 31.2
Cladonia foliacea (Ethanol)MIC: 15.6
Streptococcus pneumoniaeUsnea barbata (Acetone)IZ: 18.0Ofloxacin (IZ: 19.0)
Ceftriaxone (IZ: 32.3)
[49]
Usnea barbata (Ethanol)IZ: 18.3
Staphylococcus epidermidisUsnea steineri (Acetone) MIC < 10 [24]
Staphylococcus aureusUsnea articulate (Methanol)IZ: 29.0/30.0Gentamicin (IZ: 29.0)[25]
Usnea antarctica (Methanol-acetone)IR: 94.76~100 [56]
Usnea aurantiaco-atraa (Methanol-acetone)IR: 98.43~100
Usnea barbata (Methanol-acetone)MIC: 100 [21]
Usnea barbata (Acetone)IZ: 17.3Ofloxacin (IZ: 26.3)
Ceftriaxone (IZ: 25.0)
[49]
Usnea barbata (Ethanol)IZ: 12.3
Usnea longissima (Methanol)IZ: 28.0Streptomycin (IZ: 25.0)[45]
Usnea longissima (Ethanol)IZ: 27.0
Usnea longissima (Ethyl acetate)IZ: 25.0
Usnea longissima (Acetone)IZ: 24.0
Usnea blepharea (Acetone)IZ: 21.3Amoxicillin (IZ: 22.0)
Chloramphenicol (IZ: 30.8)
[48]
Usnea rubrotincta (Acetone)MIC: 125 Chloramphenicol (MIC: 31.25)
Vancomycin (MIC: 15.63)
[53]
Usnea rubrotincta (Methanol)MIC: 500
Usnea intermedia (Methanol)MIC: 128 [41]
Usnea filipendula (Methanol) MIC: 128
Usnea fulvoreagens (Methanol)MIC: 512
Parmelia conspersa (Methanol) MIC: 78.125Amracin (MIC: 0.97)[26]
Parmelia conspersa (Acetone)MIC: 312.5
Parmelia perlata (Methanol)MIC: 156.25
Parmelia perlata (Acetone)MIC: 312.5
Parmelia caperata (Methanol) IZ: >19.0 [27]
Bulbothrix setschwanensis (Acetone)MIC: 1560Rifampicin (MIC: 0.5)[42]
Cetraria islandica (Acetone)RIZD: 92.44 [29]
Cetraria braunsiana (Methanol)IZ: 25.0Streptomycin (IZ: 24.0)[45]
Cetraria braunsiana (Ethanol)IZ: 24.0
Cetraria braunsiana (Ethyl Acetate)IZ: 22.0
Cetraria braunsiana (Acetone)IZ: 20.0
Evernia prunastri (Dichloromethane)MIC: 4 [38]
Evernia prunastri (n-Hexane)MIC: 21
Evernia prunastri (Acetonitrile)MIC: 14
Evernia prunastri (Acetone)MIC: 78
RIZD: 62.9
[29,36]
Pseudever niafurfuracea (Acetone)MIC: 78
RIZD: 89.97
[36]
Pseudevernia furfuracea (Methanol)MIC: 1250 Gentamicin (MIC: 300)[54]
Hypogymnia physodes (Methanol/Ethanol) MBC: 310 [33]
Ramalina sinensis (Methanol)IZ: 19.0
MIC > 7500
Gentamicin (IZ: 28.0 MIC: 300)[54]
Ramalina sinensis (Ethanol)IZ: 16.0
Ramalina sinensis (Acetone)IZ: 14.0
Ramalina umeticola (Acetone) MIC: 31.25 Gentamicin (IZ: 28.0 MIC: 300)
Chloramphenicol (MIC: 31.25)
Vancomycin (MIC: 15.63)
[53]
Ramalina sinensis (Methanol)IZ: 26.0 Gentamicin (IZ: 29.0)[25]
Ramalina fraxinea (Acetone)MIC: 20,000 Streptomycin (MIC: 31)[43]
Ramalina fastigiata (Acetone)MIC: 10,000
Ramalina farinacea (Acetone)MIC: 150 [36]
Cladonia incrassate (Acetone)MIC >40 [57]
Cladonia uncialis (Heptane)MIC: 5 Chloramphenicol (MIC: 5)[58]
Cladonia uncialis (Diethyl ether)MIC: 2.5
Cladonia uncialis (Acetone)MIC: 0.5
Cladonia uncialis (Methanolic)MIC: 10
Cladonia foliacea (Chloroform)MIC: 0.97 [30]
Cladonia foliacea (Diethyl ether)MIC: 0.73
Cladonia foliacea (Acetone)MIC: 15.6
Cladonia foliacea (Ethanol)MIC: 3.9
Xanthoria plitti (Methanol)MIC: 7.8
IZ: 14.0
Gentamicin (IZ: 29.0)[25]
Xanthoria parietina (Acetone)MIC: 15.6 Cefotaxime (MIC: 2)
Benzyl Penicillin Sodium (MIC: 0.03)
Tetracycline (MIC: 2)
[39]
Cryptothecia striata (Methanol)IZ: 16.5 [31]
Cryptothecia striata (Ethanolic)IZ: 16
Cryptothecia striata (Water)IZ: 14
Cryptothecia scripta (Methanol)IZ: 22
Cryptothecia scripta (Ethanolic)IZ: 17
Cryptothecia scripta (Water)IZ: 14
Physcia parietina (Methanol)IZ: 9.0Gentamicin (IZ: 29.0)[25]
Heterodermia speciosa (Methanol)IZ: 7.0 [21]
Lobaria pulmonaria (Acetone)RIZD: 105.41 [29]
Stereocaulon tomentosum (Acetone)RIZD: 81.51
Phaeographis dendritica (Acetone)MIC: 250 [32]
Phaeographis dendriticaa (Methanol)MIC: 125
Phaeographis dendritica (Benzene)MIC: 250
Phaeographis dendritica (Diethyl ether)MIC: 500
Trypethelevirens (Acetone)MIC: 500
Trypethelevirens (Methanol)MIC: 250
Trypethelevirens (Benzene)MIC: 500
Trypethelevirens (Diethyl ether)MIC: 500
Chloramphenicol (Acetone)MIC: 31.25 Chloramphenicol (MIC: 31.25)
Vancomycin (MIC: 15.63)
[53]
Staphylococcus aureus 33591Usnea intermedia (Methanol)MIC ≥ 512 [41]
Usnea filipendula (Methanol) MIC: 256
Usnea fulvoreagens (Methanol) MIC: 256
Methicillin-resistant Staphylococcus aureusUsnea sp. 407 (Acetone)IZ: 11.8Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
[28]
Usnea cf. scabrida 519 (Acetone)IZ: 10.3
Usnea sp. 523 (Acetone)IZ: 9.8
Usnea sp. 466 (Acetone)IZ: 9.5
Everniastrum sp. 419 (Acetone)IZ: 12.0
Evernia mesomorpha 458 (Acetone)IZ: 9.0
Evernia prunastri (Acetone)MIC: 39 [36]
Pseudever niafurfuracea (Acetone)MIC: 39
Parmotrema ramoddense (Ethanol)MIC: 96 IZ: 9.6Vancomycin (IZ: 14.2)[40]
Parmotrema tinctorum (Ethanol)MIC: 2400
IZ: 6.9
Parmotrema tinctorum (Hexane)MIC: 2400
IZ: 7.1
Vancomycin (IZ: 12.7)
Parmotrema ramoddense (Hexane)MIC: 60,000
IZ: 6.7
Vancomycin (IZ: 13.1)
Parmotrema ramoddense (Aqueous)MIC: 12,000
IZ: 6.4
Vancomycin (IZ: 13.5)
Ramalina sp. 517 (Acetone)IZ: 9.0 [28]
Ramalina implexa (n-Hexane/Dichloromethane)MIC: 500 Teicoplanin (MIC: 1) [35]
Roccella phycopsis (n-Hexane/Dichloromethane)MIC: 1000
Ramalina farinacea (Acetone)MIC: 150 [36]
Methicillin-susceptible Staphylococcus aureusParmotrema tinctorum (Ethanol)MIC: 2400Vancomycin (IZ: 20.8)[40]
Parmotrema tinctorum (Hexane)MIC: 2400
Parmotrema ramoddense (Ethanol)MIC: 19.2 Vancomycin (IZ:13.4)
Parmotrema ramoddense (Hexane)MIC: 12,000
Parmotrema ramoddense (Aqueous)MIC: 2400
Rhizoplaca chrysoleuca 431 (Acetone)IZ: 11.8Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
[28]
Rhizoplaca chrysoleuca 449 (Acetone)IZ: 10.0
Enterococcus faeciumUsnea sp. 407 (Acetone)IZ: 23.0 [28]
Usnea sp. 471 (Acetone)IZ: 15.0
Usnea sp. 472 (Acetone)IZ: 15.0
Usnea cf. scabrida 519 (Acetone)IZ: 14.5
Usnea sp. 523 (Acetone)IZ: 13.5
Usnea sp. 466 (Acetone)IZ: 16.0
Usnea articulata 511 (Acetone)IZ: 12.5
Usnea steineri (Acetone)MIC: 32
Allocetraria ambigua 435 (Acetone)IZ: 9.8Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
[28]
Everniastrum sp. 412 (Acetone)IZ: 13.0
Everniastrum sp. 419 (Acetone)IZ: 14.5
Everniastrum nepalense 442 (Acetone)IZ: 10.5
Evernia mesomorpha 458 (Acetone)IZ: 17.0
Evernia divaricata 433 (Acetone)IZ: 13.0
Parmotrema sp. 514 (Acetone)IZ: 15.0
Flavocetraria cucullata 443 (Acetone)IZ: 12.5
Ramalina sp. 462 (Acetone)IZ: 9.8
Ramalina sp. 470 (Acetone)IZ: 15.0
Ramalina sp. 517 (Acetone)IZ: 17.0
Ramalina sp. 518 (Acetone)IZ: 16.3
Ramalina sp. 493 (Acetone)IZ: 14.5
Ramalina implexa (n-Hexane/Dichloromethane)MIC: 500 Teicoplanin (MIC ≤ 0.5)[35]
Roccella phycopsis (n-Hexane/Dichloromethane)MIC: 1000
Niebla ceruchoides 473 (Acetone)IZ: 10.3 Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
[28]
Cladonia sp. 504 (Acetone)IZ: 10.5
Xanthoria parietina (Acetone)MIC: 15.6Benzyl Penicillin Sodium (MIC: 8)
Tetracycline (MIC: 2)
[39]
Heterodermia sp. 535 (Acetone)IZ: 11.5Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
[28]
Lobaria sp. 403 (Acetone)IZ: 9.0
Rhizoplaca chrysoleuca 449 (Acetone)IZ: 23.8
Thamnolia vermicularis 445 (Acetone)IZ: 11.0
Enterococcus casseliflavusUsnea barbata (Methanol/Ethyl acetate)IZ: 20.0~22.0 Levofloxacin (IZ: 25.0)
Tetracycline (IZ: 26.0)
[22]
Listeria innocuaEvernia prunastri (Acetone)MIC: 625 [36]
Pseudever niafurfuracea (Acetone)MIC: 310
Ramalina farinacea (Acetone)MIC: 310
Listeria monocytogenesCladonia foliacea (Chloroform)MIC: 0.12 [30]
Cladonia foliacea (Diethyl ether)MIC: 0.73
Cladonia foliacea (Acetone)MIC: 3.9
Cladonia foliacea (Ethanol)MIC: 3.9
Micrococcus luteusCryptothecia striata (Methanol)IZ: 20.0 [31]
Cryptothecia striata (Ethanolic)IZ: 15.6
Cryptothecia striata (Water)IZ: 13.0
Cryptothecia scripta (Methanol)IZ: 20.5
Cryptothecia scripta (Ethanolic)IZ: 16.0
Cryptothecia scripta (Water)IZ: 15.0
Streptococcus mutansUsnea longissima (Methanol)IZ: 14.0 Streptomycin (IZ: 15.0)[45]
Usnea longissima (Ethanol)IZ: 15.0
Usnea longissima (Ethyl acetate)IZ: 12.0
Usnea longissima (Acetone) IZ: 12.0
Cetraria braunsiana (Methanol)IZ: 20.0
Cetraria braunsiana (Ethanol)IZ: 18.0
Cetraria braunsiana (Ethyl Acetate)IZ: 16.0
Cetraria braunsiana (Acetone)IZ: 15.0
Streptococcus pyogenesBulbothrix setschwanensis (Acetone)MIC: 6250Rifampicin (MIC: 62.5)[42]
Streptococcus faecalisCladonia foliacea (Chloroform)MIC: 0.24 [30]
Cladonia foliacea (Diethyl ether)MIC: 0.73
Cladonia foliacea (Acetone)MIC: 0.97
Cladonia foliacea (Ethanol)MIC: 0.97
Micrococcus lysodeikticusParmelia crinite (Methanol)IZ: 28.0
MIC: 940
[27]
Mycobacterium smegmatisUsnea laevis (Acetone)MIC: 6.25Rifampicin (MIC: 0.2)[23]
Mycobacterium smegmatis (MDR-40)Usnea laevis (Acetone)MIC: 0.41Rifampicin (MIC: 100)[23]
Mycobacterium smegmatis (MDR-R)Usnea laevis (Acetone)MIC: 0.81 Rifampicin (MIC > 200)[23]
Mycobacterium tuberculosis H37RaUsnea laevis (Acetone)MIC: 25 Rifampicin (MIC: 0.2)[23]
Mycobacterium tuberculosisuberculosisUsnea steineri (Acetone) MIC: 32 Isoniazid (MIC: 0.03)[24]
Mycobacterium tuberculosis (MDR-V791)Usnea laevis (Acetone)MIC: 1.63 Rifampicin (MIC > 200)[23]
Mycobacterium tuberculosis (MDR-A8)Usnea laevis (Acetone)MIC: 6.25Rifampicin (MIC: 100)[23]
Mycobacterium kansasiiUsnea steineri (Acetone)MIC: 62 Isoniazid (MIC: 0.05)[24]
Mycobacterium aviumUsnea steineri (Acetone)MIC: 62 Isoniazid (MIC: 1.0)[24]
Gram-negative bacteriaSalmonella typhiUsnea longissima (n-Hexane)IZ: 12.0Ampicillin (IZ: 17.0)[37]
Ramalina sinensis (Methanol)MIC: 10,000
IZ: 26.0
Chloramphenicol (IZ: 27.0) [25]
Xanthoria plitti (Methanol)MIC: 9
Xanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 0.5)
Benzyl Penicillin Sodium (MIC: 4)
Tetracycline (MIC: 1)
[39]
Physcia parietina (Methanol)MIC: 4000
IZ: 11.0
Chloramphenicol (IZ: 27.0)[25]
Vibrio choleraeCryptothecia striata (Methanol)IZ: 17.6 [31]
Cryptothecia striata (Ethanolic)IZ: 16.3
Cryptothecia striata (Water)IZ: 12.0
Cryptothecia scripta (Methanol)IZ: 19.0
Cryptothecia scripta (Ethanolic)IZ: 18.3
Cryptothecia scripta (Water)IZ: 13.5
Phaeographis dendritica (Acetone)MIC: 62.5 [32]
Phaeographis dendriticaa (Methanol)MIC: 125
Phaeographis dendritica (Benzene)MIC: 500
Phaeographis dendritica (Diethyl ether)MIC: 250
Trypethelevirens (Acetone)MIC: 125
Trypethelevirens (Methanol)MIC: 62.5
Trypethelevirens (Benzene)MIC: 250
Aeromonas hydrophilaCladonia foliacea (Chloroform)MIC: 3.9
Cladonia foliacea (Diethyl ether)MIC: 46.8
Cladonia foliacea (Acetone)MIC: 3.9
Cladonia foliacea (Ethanol)MIC: 3.9
Pseudomonas aeruginosaUsnea articulate (Methanol)IZ: 28.0 Gentamicin (IZ: 26.0)[25]
Usnea florida (Methanol)IZ: 18.0
Usnea barbata (Methanol/Ethyl acetate)IZ: 16.0~20.0 Levofloxacin (IZ: 21.0)
Tetracycline (IZ: 24.0)
[22]
Usnea barbata (Acetone)IZ: 17.0Ofloxacin (IZ: 19.3)
Ceftriaxone (IZ: 21.0)
[49]
Usnea barbata (Ethanol)IZ: 20.0
Usnea longissima (Methanol)IZ: 16.0 Streptomycin (IZ: 15.0)[45]
Usnea longissima (Ethanol)IZ: 15.0
Usnea longissima (Ethyl acetate)IZ: 14.0
Evernia prunastri (Dichloromethane)MIC: 167 [38]
Evernia prunastri (n-Hexane)MIC: 150
Evernia prunastri (Acetonitrile)MIC: 133
Ramalina hossei (Methanol)IZ: 13.0 Chloramphenicol (IZ: 29.0)[55]
Ramalina conduplicans (Methanol)IZ: 20.0
Ramalina pacifica (Methanol)IZ: 21.6
Xanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 16)
Tetracycline (MIC: 32)
[33]
Cryptothecia striata (Methanol)IZ: 17.0 [31]
Cryptothecia striata (Ethanolic)IZ: 14.3
Cryptothecia striata (Water)IZ: 16.0
Cryptothecia scripta (Methanol)IZ: 18.6
Cryptothecia scripta (Ethanolic)IZ: 16.0
Cryptothecia scripta (Water)IZ: 13.0
Pseudomonas fluorescensUsnea barbata (Methanol-acetone)IZ: 29.0 [52]
Enterobacter cloacaeUsnea florida (Methanol)IZ: 25.0Gentamicin (IZ: 27.0)
Tetracycline (IZ: 16.0)
[25]
Ramalina sinensis (Methanol)IZ: 17.0
Xanthoria parietina (Acetone)MIC: 15.6Benzyl Penicillin Sodium (MIC: 4)[39]
Enterobacter cloacae CI Xanthoria parietina (Acetone)MIC: 62.5
Enterobacter aerogenesXanthoria parietina (Acetone)MIC: 15.6Benzyl Penicillin Sodium (MIC: 4)[39]
Enterobacter aerogenes CI Xanthoria parietina (Acetone)MIC: 62.5
Escherichia coliUsnea florida (Methanol)MIC: 8000
IZ: 27.0
Gentamicin (IZ: 22.0)[25]
Usnea longissima (Methanol)IZ: 34.0 Streptomycin (IZ: 28.0)[45]
Usnea longissima (Ethanol)IZ: 32.0
Usnea longissima (Ethyl acetate)IZ: 28.0
Usnea longissima (Acetone)IZ: 26.0
Usnea longissima (n-Hexane)IZ: 14.0Ampicillin (IZ: 21.0)[37]
Usnea longissima (n-Hexane)IZ: 17.0 Amoxicillin (IZ: 15.8)
Chloramphenicol (IZ: 31.2)
[48]
Parmelia conspersa (Methanol) MIC: 39.1Amracin (MIC: 0.97)[26]
Parmelia conspersa (Acetone)MIC: 78.125
Parmelia perlata (Methanol)MIC: 39.1
Parmelia perlata (Acetone)MIC: 39.1
Parmelia crinite (Methanol)IZ: 15.0
MIC: 3750
[27]
Parmelia sulcata (Acetone)IZ: 24.0
MIC: 1560
Bulbothrix setschwanensis (Acetone)MIC: 6250Rifampicin (MIC: 4)[42]
Cetraria braunsiana (Methanol)IZ: 22.0Streptomycin (IZ: 22.0)[45]
Cetraria braunsiana (Ethanol)IZ: 20.0
Cetraria braunsiana (Ethyl Acetate)IZ: 20.0
Cetraria braunsiana (Acetone)IZ: 18.0
Evernia prunastri (Dichloromethane)MIC: 500 [38]
Evernia prunastri (n-Hexane)MIC > 500
Evernia prunastri (Acetonitrile)MIC: 250
Ramalina sinensis (Methanol)IZ: 18.0Gentamicin (IZ: 22.0)[25]
Ramalina hossei (Methanol)IZ: 13.0 Chloramphenicol (IZ: 26.6)[55]
Ramalina conduplicans (Methanol)IZ: 14.3
Ramalina pacifica (Methanol)IZ: 16.0
Ramalina fastigiata (Acetone)MIC: 20,000Streptomycin (MIC: 62)[43]
Ramalina implexa (n-Hexane/Dichloromethane)MIC: 500 Colistin (MIC: 1)[35]
Roccella phycopsis (n-Hexane/Dichloromethane)MIC: 1000
Cladonia uncialis (Heptane)MIC: 1000Chloramphenicol (MIC: 100) [58]
Cladonia uncialis (Diethyl ether)MIC: 1000
Cladonia uncialis (Acetone)MIC: 100
Cladonia uncialis (Methanolic)MIC: 1000
Xanthoria plitti (Methanol)MIC: 10
IZ: 12.0
Gentamicin (IZ: 22.0)[25]
Cryptothecia striata (Methanol)IZ: 17.3 [31]
Cryptothecia striata (Ethanolic)IZ: 16.0
Cryptothecia striata (Water)IZ: 12.0
Cryptothecia scripta (Methanol)IZ: 23.0
Cryptothecia scripta (Ethanolic)IZ: 16.6
Cryptothecia scripta (Water)IZ: 13.0
Physcia parietina (Methanol)MIC: 4000
IZ: 10.0
Gentamicin (IZ: 22.0)[25]
Phaeographis dendritica (Acetone)MIC: 125 [32]
Phaeographis dendriticaa (Methanol)MIC: 125
Phaeographis dendritica (Benzene)MIC: 120~125
Phaeographis dendritica (Diethyl ether)MIC: 500
Trypethelevirens (Acetone)MIC: 250
Trypethelevirens (Methanol)MIC: 500
Trypethelevirens (Benzene)MIC: 250
Trypethelevirens (Diethyl ether)MIC: 500
Escherichia coli (E245,O157:H7)Usnea intermedia (Methanol)MIC: 64 [41]
Usnea filipendula (Methanol) MIC: 64
Usnea fulvoreagens (Methanol)MIC: 64
Escherichia coli (E103,121,224,246,248,300,25922)Usnea intermedia (Methanol)MIC: 128 [41]
Usnea filipendula (Methanol) MIC: 128
Usnea fulvoreagens (Methanol)MIC: 128
Escherichia coli 101Usnea intermedia (Methanol)MIC: 256 [41]
Usnea filipendula (Methanol) MIC: 512
Usnea fulvoreagens (Methanol)MIC ≥ 512
Escherichia coli (25922,O157:H7)Usnea fulvoreagens (Methanol)MIC: 512 [41]
Proteus mirabilisUsnea articulate (Methanol)MIC: 9000
IZ: 21.0
Gentamicin (IZ: 22.0)[25]
Parmelia conspersa (Methanol) MIC: 39.1Amracin (MIC: 0.49)[26]
Parmelia conspersa (Acetone)MIC: 78.125
Parmelia perlata (Methanol)MIC: 156.25
Parmelia perlata (Acetone)MIC: 78.125
Pseudevernia furfuracea (Methanol)MIC: 630 [33]
Ramalina sinensis (Methanol)IZ: 18.0Gentamicin (IZ: 22.0)[25]
Ramalina fraxinea (Acetone)MIC: 10,000Streptomycin (MIC: 62)[43]
Ramalina fastigiata (Acetone) MIC: 5000 Streptomycin (MIC: 62)
Xanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 0.03)
Benzyl Penicillin Sodium (MIC: 4)
Tetracycline (MIC: 32)
[39]
Xanthoria plitti (Methanol)IZ: 11.0Gentamicin (IZ: 22.0)[25]
Physcia parietina (Methanol)IZ: 10.0
Proteus mirabilis CIXanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 32)[39]
Proteus rettgeriUsnea articulate (Methanol)IZ: 23.0Gentamicin (IZ: 21.0)[25]
Usnea florida (Methanol)IZ: 23.0
Ramalina sinensis (Methanol)IZ: 22.0
Xanthoria plitti (Methanol)MIC: 7
IZ: 10.0
Proteus vulgarisUsnea articulate (Methanol)IZ: 29.0Gentamicin (IZ: 24.0)
Tetracycline (IZ: 10.0)
[25]
Usnea florida (Methanol)IZ: 29.0
Parmelia conspersa (Methanol) MIC: 39.1Amracin (MIC: 0.49)[26]
Parmelia conspersa (Acetone)MIC: 78.125
Parmelia perlata (Methanol)MIC: 78.125
Parmelia perlata (Acetone)MIC: 78.125
Ramalina sinensis (Methanol)IZ: 25.0Gentamicin (IZ: 24.0)
Tetracycline (IZ: 10.0)
[25]
Cladonia foliacea (Chloroform)MIC: 3.9 [30]
Cladonia foliacea (Diethyl ether)MIC: 46.8
Cladonia foliacea (Acetone)MIC: 3.9
Cladonia foliacea (Ethanol)MIC: 3.9
Xanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 2)
Benzyl Penicillin Sodium (MIC: 4)
[39]
Proteus vulgaris CIXanthoria parietina (Acetone)MIC: 15.6Cefotaxime (MIC: 32)[39]
Citrobacter youngaeUsnea articulate (Methanol)MIC: 4000
IZ: 16.0
Gentamicin (IZ: 24.0)
Tetracycline (IZ: 10.0)
[25]
Usnea florida (Methanol)MIC: 6000
IZ: 16.0
Ramalina sinensis (Methanol)IZ: 24.0
Citrobacter freundiiUsnea florida (Methanol)MIC: 5000
IZ: 19.0
Gentamicin (IZ: 23.0)
Tetracycline (IZ: 15.0)
[25]
Ramalina sinensis (Methanol)IZ: 21.0
Xanthoria plitti (Methanol)IZ: 12.0
Physcia parietina (Methanol)IZ: 11.0
Salmonella entericaUsnea articulate (Methanol)MIC: 8000Gentamicin (IZ: 18.0)[25]
Usnea florida (Methanol)MIC: 10,000
Agrobacterium tumefaciensUsnea longissima (Methanol)IZ: 24.0 Streptomycin (IZ: 18.0)[45]
Usnea longissima (Ethanol)IZ: 22.0
Usnea longissima (Ethyl acetate)IZ: 23.0
Usnea longissima (Acetone)IZ: 21.0
Cetraria braunsiana (Methanol)IZ: 20.0
Cetraria braunsiana (Ethanol)IZ: 25.0
Cetraria braunsiana (Ethyl Acetate)IZ: 18.0
Cetraria braunsiana (Acetone)IZ: 16.0
Klebsiella pneumoniaeParmelia conspersa (Methanol) MIC: 156.25Amracin (MIC: 0.49)[26]
Parmelia conspersa (Acetone)MIC156.25
Parmelia perlata (Methanol)MIC: 156.25
Parmelia perlata (Acetone)MIC: 156.25
Roccella phycopsis (n-Hexane/Dichloromethane)MIC: 1000Colistin (MIC < 2) [35]
Xanthoria parietina (Acetone)MIC: 62.5Cefotaxime (MIC: 1)
Tetracycline (MIC: 16)
[39]
Providencia rettgeriRamalina sinensis (Methanol)MIC: 8000Gentamicin (IZ: 21.0)[25]
Physcia parietina (Methanol) MIC: 8000
IZ: 11.0
Acinetobacter baumanniiRamalina implexa (n-Hexane/Dichloromethane)MIC: 500/1000Colistin (MIC: 0.78)[35]
Shigella flexneriCryptothecia striata (Methanol)IZ: 18.3 [31]
Cryptothecia striata (Ethanolic)IZ: 15.6
Cryptothecia striata (Water)IZ: 14.5
Cryptothecia scripta (Methanol)IZ: 20.0
Cryptothecia scripta (Ethanolic)IZ: 19.0
Cryptothecia scripta (Water)IZ: 12.0
Shigella dysenteriaeCryptothecia striata (Methanol)IZ: 18.5 [31]
Cryptothecia striata (Ethanolic)IZ: 16.0
Cryptothecia striata (Water)IZ: 15.0
Cryptothecia scripta (Methanol)IZ: 21.5
Cryptothecia scripta (Water)IZ: 13.0
FungiCryptococcus neoformansBulbothrix setschwanensis (Acetone)MIC: 6250Amphotericin B (MIC: 1.44)[42]
Candida albicansUsnea barbata (Methanol/Ethyl acetate)IZ: 13.0~16.0 Fluconazole (IZ: 32.3)
Voriconazole (IZ: 34.3)
[22]
Usnea longissima (Methanol)IZ: 15.0Ketoconazole (IZ: 10.0)[45]
Usnea longissima (Ethanol)IZ: 16.0
Usnea longissima (Ethanol)IZ: 11.0 [44]
Usnea longissima (Ethyl acetate)IZ: 12.0Ketoconazole (IZ: 10.0)[45]
Usnea longissima (Acetone)IZ: 14.0
Parmelia conspersa (Methanol) MIC: 39.1Ketoconazole (MIC: 1.95)[26]
Parmelia conspersa (Acetone)MIC: 39.1
Parmelia perlata (Methanol)MIC: 78.125
Parmelia perlata (Acetone)MIC: 78.125
Parmelia perlata (Methanol)MIC: 78.125Ketoconazole (MIC: 1.95)[26]
Parmelia sulcata (Acetone)MIC: 780 [27]
Cetraria braunsiana (Methanol)IZ: 25.0Ketoconazole (IZ: 14.0)[45]
Cetraria braunsiana (Ethanol)IZ: 30.0
Cetraria braunsiana (Ethyl Acetate)IZ: 28.0
Cetraria braunsiana (Acetone)IZ: 27.0
Evernia prunastri (Dichloromethane)MIC: 150 [38]
Evernia prunastri (n-Hexane)MIC: 150
Evernia prunastri (Acetonitrile)MIC: 38/IZ: 12 MIC > 7.5
Ramalina fraxinea (Acetone)MIC: 5000 Ketoconazole (MIC: 39)[43]
Ramalina fastigiata (Acetone)MIC: 625
Cladonia uncialis (Heptane)MIC: 750Amphothericin B (MIC: 1) [58]
Cladonia uncialis (Diethyl ether)MIC: 750
Cladonia uncialis (Acetone)MIC: 750
Cladonia uncialis (Methanolic)MIC: 250
Cladonia foliacea (Chloroform)MIC: 500 [30]
Cladonia foliacea (Diethyl ether)MIC: 375
Cladonia foliacea (Acetone)MIC: 500
Cladonia foliacea (Ethanol)MIC: 500
Xanthoria plitti (Methanol)MIC: 7
IZ: 10.0
Gentamicin (IZ: 21.0)[25]
Heterodermia diademata (Ethyl acetate)MIC: 230 [21]
Phaeographis dendritica (Acetone)MIC: 250 [32]
Phaeographis dendriticaa (Methanol)MIC: 125
Phaeographis dendritica (Benzene)MIC: 120~125
Phaeographis dendritica (Diethyl ether)MIC: 500
Trypethelevirens (Acetone)MIC: 250
Trypethelevirens (Methanol)MIC: 500
Trypethelevirens (Benzene)MIC: 250
Trypethelevirens (Diethyl ether)MIC: 250
Candida albicans CIXanthoria parietina (Acetone)MIC > 100Ketoconazole (MIC: 0.4)[39]
Candida parapsilosisUsnea barbata (Ethyl acetate)IZ: 7.0Fluconazole (IZ: 25.7)
Voriconazole (IZ: 30.7)
[22]
Candida glabrataCladonia foliacea (Chloroform)MIC: 500 [30]
Cladonia foliacea (Diethyl ether)MIC: 375
Cladonia foliacea (Acetone)MIC: 500
Cladonia foliacea (Ethanol)MIC: 500
Cladosporium cladosporioidesRamalina fraxinea (Acetone)MIC: 5000Ketoconazole (MIC: 39)[43]
Ramalina fastigiata (Acetone)MIC: 2500
Fusarium oxysporumUsnea longissima (Methanol)IZ: 14.0 Ketoconazole (IZ: 12.0)[45]
Usnea longissima (Ethanol)IZ: 12.0
Usnea longissima (Ethyl acetate)IZ: 12.0
Usnea longissima (Acetone)IZ: 10.0
Usnea hirta (Methanol)IZ: 11.3
MIC: 3.125
[44]
Usnea hirta (Acetone)IZ: 12.6
MIC: 6.25
Cetraria braunsiana (Methanol)IZ: 22.0Ketoconazole (IZ: 12.0)[45]
Cetraria braunsiana (Ethanol)IZ: 25.0
Cetraria braunsiana (Ethyl Acetate)IZ: 24.0
Cetraria braunsiana (Acetone)IZ: 22.0
Ramalina fraxinea (Acetone)MIC: 5000 Ketoconazole (MIC: 78)[43]
Ramalina fastigiata (Acetone)MIC: 2500
Fusarium fujikuroiBryoria capillaris (Acetone) MIC: 156.2 Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Bryoria capillaris (Methanol)MIC: 312.5
Parmotrema andinum (Propyl alcohol)IZ: 20.7
Gyalolechia subbracteata (Methyl alcohol)IZ: 33.3
Pyrenodesmia variabilis (Methyl alcohol)IZ: 27.3
Blennothallia crispa (Methyl alcohol)IZ: 28.0
Catapyrenium squamulosum (Acetone)IZ: 5.0
Fusarium solaniAlectoria sarmentosa (Ethanol) IZ: 25.0AmphotericinB (MIC: 10)
Flucytosine (MIC: 410)
Itraconazole (MIC: 37)
Voriconazole (MIC: 12)
[47]
Bryoria capillaris (Acetone) MIC: 156.2
Bryoria capillaris (Methanol)MIC: 312.5
Parmotrema andinum (Propyl alcohol)IZ: 19.0
Parmotrema austrosinense (Ethyl acetate)IZ: 12.3
Parmotrema grayanum (Ethyl acetate)IZ: 15.3
Parmotrema grayanum (Acetone)IZ: 17
IR: 89
Parmotrema thomsonii (Trichloromethane)IZ: 18.0
Parmotrema tinctorum (Ethyl acetate)IZ: 18.6
Flavoparmelia caperata (Acetone/Chloroform)IZ: 10.3
Hypogymnia nepalensis (Acetone)IZ: 16.0
Roccella montagnei (Methanol/Ethyl acetate)IZ: 13.3
Cladonia rangiferina (Ethanol)IZ: 16.0
Heterodermia diademata (Chloroform)IZ: 20.0
Teloschistes flavicans (Acetone)IZ: 18.6
Fusarium sp.Ramalina hossei (Methanol)IZ: 22.0Self-comparison (IZ: 34.6)[55]
Ramalina conduplicans (Methanol)IZ: 22.0
Ramalina pacifica (Methanol)IZ: 23.0
Fusarium udum ButlerParmelia reticulate (n-Hexane)ED50: 43.7 [27]
Schizophyllum communeUsnea barbata (Methanol-acetone)IR: 51.60 [21]
Alternaria alternataUsnea barbata (Methanol-acetone)IR: 100 [21]
Ramalina fraxinea (Acetone)MIC: 5000Ketoconazole (MIC: 78)[43]
Ramalina fastigiata (Acetone)MIC: 2500
Trichoderma virideUsnea longissima (Ethanol)IZ: 14.0 [44]
Ramalina fraxinea (Acetone)MIC: 5000 Ketoconazole (MIC: 78)[43]
Ramalina fastigiata (Acetone)MIC: 2500
Aspergillus nigerParmelia conspersa (Methanol) MIC: 39.1Ketoconazole (MIC: 0.97)[26]
Parmelia conspersa (Acetone)MIC: 39.1
Parmelia perlata (Methanol)MIC: 39.1
Parmelia perlata (Acetone)MIC: 19.53
Cetraria braunsiana (Methanol)IZ: 14.0Ketoconazole (IZ: 12.0)[45]
Cetraria braunsiana (Ethanol)IZ: 14.0
Cetraria braunsiana (Ethyl Acetate)IZ: 12.0
Cetraria braunsiana (Acetone)IZ: 12.0
Ramalina fraxinea (Acetone)MIC: 10,000Ketoconazole (MIC: 78)[43]
Ramalina fastigiata (Acetone)MIC: 10,000
Phaeographis dendritica (Acetone)MIC: 500 [32]
Phaeographis dendriticaa (Methanol)MIC: 250
Phaeographis dendritica (Benzene)MIC: 500
Phaeographis dendritica (Diethyl ether)MIC: 250
Trypethelevirens (Acetone)MIC: 500
Trypethelevirens (Methanol)MIC: 250
Trypethelevirens (Diethyl ether)MIC: 500
Aspergillus flavus
Mucor mucedo
Ramalina fastigiata (Acetone)MIC: 20,000 [43]
Parmelia sulcata (Acetone)MIC: 780 [27]
Ramalina fraxinea (Acetone)MIC: 10,000
Ramalina fastigiata (Acetone)MIC: 5000Ketoconazole (MIC: 156)[43]
Saccharomyces cerevisiaeParmelia sulcata (Acetone)MIC: 780 [27]
Rhizoctonia bataticolaParmelia reticulate (n-Hexane)ED50: 25.1 [27]
Rhizoctonia solani KühnParmelia reticulate (n-Hexane)ED50: 29.4 [27]
Xanthoria parietina (Acetone)MIC: 62.5Ketoconazole (MIC: 0.2) [39]
Sclerotium rolfsii SaccParmelia reticulate (n-Hexane)ED50: 43.7 [27]
Alternaria sp.Ramalina hossei (Methanol) IZ: 6.6 Self-comparison (IZ: 51.0)[55]
Ramalina conduplicans (Methanol)IZ: 13.0
Ramalina pacifica (MethanolIZ: 18.0
Curvularia sp.Ramalina hossei (Methanol)IZ: 18.0Self-comparison (IZ: 47.0)[55]
Ramalina conduplicans (Methanol)IZ: 21.3
Ramalina pacifica (Methanol)IZ: 22.0
Penicillium chrysogenumRamalina fraxinea (Acetone)MIC: 10,000Ketoconazole (MIC: 78)[43]
Penicillium expansumRamalina fraxinea (Acetone)MIC: 20,000Ketoconazole (MIC: 156)[43]
Ramalina fastigiata (Acetone)MIC: 20,000
Penicillium chrysogenumRamalina fastigiata (Acetone)MIC: 5000Ketoconazole (MIC: 78)[43]
Penicillium verrucosumPhaeographis dendritica (Acetone)MIC: 125 [32]
Phaeographis dendriticaa (Methanol)MIC: 62.5
Phaeographis dendritica (Diethyl ether)MIC: 500
Trypethelevirens (Diethyl ether)MIC: 500
Trypethelevirens (Acetone)MIC: 125
Trypethelevirens (Benzene)MIC: 250
Botrytis cinereaXanthoria parietina (Acetone)MIC > 100Ketoconazole (MIC: 0.2)[39]
Phaeographis dendritica (Acetone)MIC: 125 [32]
Phaeographis dendriticaa (Methanol)MIC: 125
Trypethelevirens (Diethyl ether)MIC: 500
Phaeographis dendritica (Diethyl ether)MIC: 125
Trypethelevirens (Acetone)MIC: 500
Achlya bisexualisUsnea longissima (Acetone)MIC: 200 [46]
Cladonia amaurocraea (Acetone)MIC: 200
Cladonia rangiferina (Acetone)MIC: 200
Saprolegnia parasiticaUsnea longissima (Acetone)MIC: 200 [46]
Cladonia amaurocraea (Acetone)MIC: 200
Cladonia rangiferina (Acetone)MIC: 200
Pythium debaryanumParmelia reticulate (Ethyl acetate)ED50: 48.4 [27]
Pythium sp.Usnea longissima (Acetone) MIC: 800 [45]
Cladonia amaurocraea (Acetone)MIC: 800 [46]
Cladonia rangiferina (Acetone) MIC: 1600
CI: clinical isolate strain; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; ED50: effective dose 50; IZ: inhibition zone diameter; IR: inhibition rate; RIZD (%): relative inhibition zone diameter.

3. Antimicrobial Active Compounds of Lichens

Lichens secondary metabolites are favored by researchers for their rich diversity of chemical structures [56]. These metabolites, which primarily originate from the secondary metabolic pathway of lichens, include fatty (aliphatic) and phenolic compounds, which are usually deposited on the surface of the mycelial cells in the form of water-insoluble crystals [59]. Among the more than 800 lichen chemicals currently identified, up to 82% are lichen-specific [41]. Chemical taxonomy studies revealed that lichen-specific secondary metabolites mainly include depsides, depsidones, and dibenzofuran derivatives [23]. Among them, lichen chemicals with antimicrobial activity are mainly synthesized through the acetate–polymalonate pathway, including depsides (carboxylic acid derivatives) and its derivatives, usnic acid and related products, anthraquinones, and higher fatty acids and esters. While terpenoids are mainly synthesized through the mevalonic acid pathway, pulvinic acid derivatives are mainly derived from the shikimic acid pathway [59], and the discovery of these substances provides a solid scientific foundation for the study of the bioactivity of lichens and their potential applications.

3.1. Phenol (Carboxylic Acid) Derivatives

As central antimicrobial active chemical constituents of lichens, phenolic compounds distinguish themselves with their unique chemical structures, biological activities, ecological distribution, environmental adaptations, chemical defenses, biosynthetic complexities, structure–activity relationships, rarity, and distinctiveness [60]. These compounds contribute to the lichens’ adaptation to extreme environments and also play a role in defending against pathogens and herbivores [61]. Phenolic acid compounds in lichens consist of monocyclic derivatives, depsides, depsidones, dibenzofuran derivatives, and a small amount of anthraquinones and xanthones [62]. Their diversity and complexity offer significant potential for applications in medicine, agriculture, and industry, particularly in the exploration of novel anti-infective strategies and biopesticides.

3.1.1. Monocyclic Derivatives

Lichen monocyclic derivatives, by introducing diverse functional groups such as methoxy, hydroxyl, aldehyde, carboxyl, ester bonds, and halogens, form a family of compounds rich in biological activities [63]. For instance, 4-chlororcinol (MIC: 1–17 µg/mL) and orcinol (MIC: 18.75 µg/mL) exhibited potent activity against methicillin-resistant Staphylococcus aureus [35], methyl β-orcinol-carboxylate inhibited Streptococcus gordonii (MIC: 375 µg/mL) [64], and orsellinic acid combated Fusarium fujikuroi (MIC: 15.1 µg/mL) [47]. Methyl β-orsellinate inhibited Staphylococcus aureus and Helicobacter pylori, and with a notable effect against Helicobacter pylori (IZ:27 mm) [44]. Compounds such as ethyl everninate, dibutyl phthalate, and methyl-2,4-dihydroxy3,6-dimethylbenzoate were active against Candida albicans (MIC:64 µg/mL) [65], while 2-ethylhexyl-4-methoxy orsellinate showed a notable effect against Candida albicans (MIC: 0.125 µg/mL) [65]. Among the lichens metabolites of (+) montagnetol homologs, (+) montagnetol homologs 3 exhibited excellent antimicrobial efficacy against Pseudomonas aeruginosa (MIC: 0.062 µg/mL), while (+) montagnetol homologs 6 significantly inhibited Candida albicans (MIC: 0.062 µg/mL); the C-2 and C-3 positional configurations of these compounds may be the key to the enhanced activity [66], which further highlighted the potential of lichens’ monocyclic derivatives in the antimicrobial field (Table 2).

3.1.2. Depsides

Depsides, the core compounds of lichen acids, link multiple aromatic rings through ester bonds, which not only demonstrates chemical diversity but also showcases their outstanding antimicrobial activity [62]. Depside compounds from lichens, such as chloroatranorin [70], anziaic acid and its methylated derivatives [71], and barbatic acid and its derivatives [21] have been shown to have significant antimicrobial activity against Staphylococcus aureus, Escherichia coli, Mycobacterium, Fusarium fujikuroi, drug-resistant strains, and Candida albicans, among others, and have shown significant antibacterial activity. Among them, diffractaic acid (MIC: 16.3 µg/mL) showed higher antifungal activity than fluorocytosine (MIC: 90 µg/mL) and itraconazole (MIC: 27 µg/mL) [47]. Evernic acid showed significant antimicrobial activity, and its bacterial neuraminidase inhibitory activity was superior to quercetin [72], and divaricatic acid has stronger activity against Staphylococcus epidermidis and Enterococcus faecium (MIC: 16 µg/mL) than vancomycin (MIC: 25 µg/mL) [28]. Atranorin, derived from lichens such as Cladonia foliacea [30], Usnea laevis [23], Menegazzia terebrata [73], Parmelia reticulate [27], Usnea rubrotincta, and Ramalina dumeticola [53], showed significant activity against Proteus vulgaris (MIC: 5 µg/mL) and Candida albicans, comparable with erythromycin (MIC: 5.1 µg/mL) [74] and benomyl [21]. Perlatolic acid showed significant activity against methicillin-resistant Staphylococcus aureus (MIC: 32 µg/mL) and can act synergistically with gentamicin [75]. Lecanoric acid and olivetoric acid in this group demonstrates broad-spectrum antimicrobial activity [76]. Gyrophoric acid is particularly effective against Bacillus subtilis (MIC: 19 µg/mL) [62], and its unique structure with three monocyclic aromatic rings has been found in various lichens, including Usnea muhlenbertus [77], Parmotrema tinctorum [78], and Acarospora fuscata [21]. The activities of these compounds are closely related to their chemical structures, especially the compounds containing free phenolic groups, show strong inhibitory activities against Gram-negative bacteria [79], which is important in the search for effective anti-Gram-negative drugs (Table 3). Overall, depside compounds occupy a crucial position among the antimicrobially active compounds in lichens due to their unique chemical structural diversity and excellent biological activities.

3.1.3. Depsidones

Depsidones, an important branch of β-type lichen phenolic compounds, exhibit remarkable antimicrobial properties [73]. In this category, psoromic acid was more effective (MIC: 3.2–4.1 μM) than isoniazid against Mycobacterium tuberculosis [82], while salazinic acid and lobaric acid also demonstrate significant inhibitory effects against drug-resistant Mycobacterium tuberculosis (MDR-R, MDR-40) (MIC: 50 μg/mL) [23]. In the field of oral health, variolaric acid, psoromic acid, hypoprotocetraric acid, and conhypoprotocetraric acid effectively inhibited the oral microorganisms Streptococcus gordonii and Porphyromonas gingivalis, with psoromic acid having the most significant activity, with MIC values of 11.72 μg/mL and 5.86 μg/mL, respectively [64]. For Staphylococcus aureus, lobaric acid (MIC: 8 μg/mL) showed strong activity [74], and protocetraric acid (MIC: 12.5 μg/mL) [83], psoromic acid (MIC: 31 μg/mL) [82] and himantormione A and B [69] were also active against this bacterium. Additionally, protocetraric acid demonstrate excellent antimicrobial activity against Gram-positive bacteria [84] and fungi of Candida (MIC: 3.9 μg/mL) [83]. Stictic acid [59] and norstictic acid [47] show excellent antimicrobial activity against Francisella tularensis and Fusarium fujikuroi among other microorganisms. Physodic acid [54], 3-hydroxyphysodic acid [59], and fumarprotocetraric acid possessed a wide range of microorganisms, with fumarprotocetraric acid showing outstanding activity against Bacillus species, Listeria monocytogenes (MIC: 4.6 μg/mL), and Candida fungi (MIC: 18.7 μg/mL) (Table 4) [30]. These findings indicate that depsidones show significant potential in both the antibacterial and antifungal fields, and their research and development are of notable scientific interest.

3.1.4. Dibenzofuran Derivatives

Lichens produce unique dibenzofuran compounds through the polyketide pathway that are synthesized from phenolic units, forming aromatic or saturated derivatives rarely found in organisms outside of lichens [86]. Usnic acid, as a typical representative of this class of compounds, appears in various lichens in different enantiomeric forms, possibly as pure or mixed forms [87], exhibiting broad antimicrobial potential and effectively combating Gram-positive bacteria, such as Mycobacterium abscessus (MIC: 9.07/18.15 µg/mL) [88] and drug-resistant Mycobacterium tuberculosis (MIC: 12.5/25 µg/mL) [23] and many other microorganisms. It also showed significant inhibitory effects against Staphylococcus aureus, Bacillus subtilis, and Clavibacter michiganensis subsp. Michiganensis (MIC: 7.81 µg/mL) [53]. In the antifungal field, usnic acid showed potent activity against Saprolegnia (MIC: 2–8 µg/mL), especially against Saprolegnia parasitica [46], and inhibited Candida albicans (MIC: 0.25 µg/mL) and Aspergillus fumigatus (MIC: 0.125 µg/mL) [84]. Usnic acid derivatives, especially compounds containing cyclic sulfonamides, showed potent activity against Mycobacterium tuberculosis (MIC: 2.5–5.4 µM) [89]. The introduction of fluorine atom enhances its antimicrobial effect; e.g., 3-fluoro-5-trifluoromethylphenyl was effective against various pathogenic bacteria (MIC: 10 µM) [90]. The enantiomeric form also affects the antimicrobial activity of lichen compounds, as shown by the two enantiomers of usnic acid, (+)-usnic acid and (−)-usnic acid, which exhibit different antimicrobial actions; (+)-usnic acid was found to be effective against Staphylococcus epidermidis (MIC: 2.95 µg/mL) comparable to vancomycin (MIC: 3.12 µg/mL) [91], while (−)-usnic acid was more effective against Staphylococcus aureus (MIC: 2.4 µg/mL) [30]. In addition, other compounds in this group such as usenamine and its derivatives also exhibit broad antimicrobial effects. Usenamine E~H effectively inhibit Candida albicans (MIC: 64 µg/mL) [65], and usone fought against Trichophyton rubrum, a fungus causing skin infections (MIC: 41 µM) [92]. In terms of antibacterial activity, usnic acid is also effective in inhibiting Escherichia coli (MIC: 0.25 µg/mL) [38], Mycobacterium tuberculosis (MIC: 50 µg/mL) [23], Klebsiella pneumoniae (MIC: 0.0625 µg/mL) [84], and other pathogenic bacteria (Table 5). In conclusion, the dibenzofuran derivatives in lichens, with their broad antimicrobial properties, demonstrate substantial potential against Gram-positive bacteria, such as tuberculosis, Staphylococcus aureus and Bacillus subtilis.

3.1.5. Other Phenol Derivatives

Phenolic acid derivatives of lichens, including xanthone and anthraquinone, exhibit promising antimicrobial activity. The primary structure of xanthone is 9H-xanthen-9-one with a dibenzo-γ-pirone scaffold [100], characterized by the internal cyclization of a single folded polyketone chain [101], and it is widely distributed in nature, with lichen-derived xanthones accounting for 79% of the total amount [102]. Lichen oxyxanthone chloride are of interest for their antibacterial and antifungal activities. It has been shown that the substitution of chlorine atom at the C-position significantly enhances its antimicrobial activity, e.g., 3-chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-one with a chlorine atom at the C-3 position showed antimicrobial activity against Enterococcus faecalis (IZ:10 mm) and Staphylococcus aureus (IZ:9.5 mm). Meanwhile, 2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one with chlorine atoms at both C-2 and C-7 positions exhibited potent antifungal activity, especially against clinical dermatophytes, such as Trichophyton rubrum, Microsporum canis, and Epidermophyton floccosum, with MIC values ranging from 4 to 8 µg/mL and showed synergistic effects against Trichophyton rubrum in combination with fluconazole (FICI = 0.289) [102]. Anthraquinone derivative parietin exhibited antimicrobial activity against various bacterial strains, especially against Staphylococcus aureus and Enterococcus faecalis (MIC: 7.8–62.5 µg/mL), and also showed significant effects against Rhizoctonia solani (MIC: 31.3 µg/mL) [39]. Other compounds with antibacterial properties, such as lepraric acid, effectively combat oral pathogenic bacteria like Porphyromonas gingivalis and Streptococcus gordonii [64], and eumitrins F–H showed moderate inhibition against various microorganisms (MIC: 62.5 µg/mL) [103]. Hybocarpone exhibited notable antibacterial effect against Staphylococcus aureus and its methicillin-resistant Staphylococcus aureus strain (MIC: 4–8 µg/mL) (Table 6) [74]. Therefore, it is scientifically important to deeply explore the antimicrobial potential of other phenolic acids in lichens.

3.2. Higher Fatty Acids and Esters

Higher fatty acids and esters in lichens have also been confirmed to exhibit significant antimicrobial properties. For example, protolichesterinic acid from Cetraria islandica has a broad antibacterial and antifungal spectrum, such as methicillin-resistant Staphylococcus aureus (MIC: 64 µg/mL) [75] and Pythium debaryanum (ED50: 16.07 µg/mL), with activity against the latter exceeding that of hexaconazole (ED50: 25.92 µg/mL) [27]. Constipatic acid and 18r-ydroxy-dihydroalloprotolichesterinic acid from Usnea showed antifungal activity against Candida albicans (MIC: 64 µg/mL) [65]. The butyrolactone derivatives of lichesterinic acid, especially B-12, demonstrated excellent inhibitory effects against Porphyromonas gingivalis (MIC: 0.037 µg/mL) due to its COOH group and long carbon chain structure [104], showing promising application prospects in new drug discovery and oral care products and good prospects for application in new drug development and oral care products (Table 7).

3.3. Other Categories

Lichens, as pioneer organisms in nature, not only produce structurally distinctive compounds but also harbor numerous secondary metabolites with significant antimicrobial activities through the shikimic acid and mevalonic acid pathways, including triphenylquinone, picrotoxinin derivatives, and terpenoids, which provide important options for novel antimicrobial drug development [59]. In the area of antibacterial activity against Gram-positive bacteria, rhizocarpic acid (MIC: 32 µg/mL) [105] and caperatic acid (MIC: 10 µg/mL) [96] inhibited Staphylococcus aureus, while epiforellic acid showed inhibitory effects against methicillin-resistant Staphylococcus aureus (MIC: 32 µg/mL) [75]. Vulpinic acid, derived from Letharia vulpina [106], inhibited not only methicillin-resistant Staphylococcus aureus and oral pathogenic Streptococcus gordonii (MIC: 187.5 µg/mL) and Porphyromonas gingivalis (MIC: 375 µg/mL) [64] but also strongly inhibited the phytopathogenic fungus Sclerotinia sclerotiorum (EC50: 2.8 µg/mL), revealing its potential application in plant disease management [76]. Moreover, stereocalpin A (IC50: 28 µg/mL), stereocalpin B (IC50: 30 µg/mL) [99] and uridine (IZ:6.3 mm) [65] exhibited antimicrobial activity against Escherichia coli, while 4-(acylamino) butyramides and (+)-roccellic acid showed activity against pathogenic Candida albicans (MIC: 64 µg/mL) [65] and the oral-associated bacteria Streptococcus gordonii and Porphyromonas gingivalis (MIC: 46.9 µg/mL) [64], thus offering rich natural resources for antimicrobial drug development (Table 8).
In the field of antiviral research, in addition to indicators such as IC50, ED50, and IR, the selectivity index (SI) is also an important evaluation criterion. A higher SI value indicates that the drug has lower toxicity to host cells while inhibiting the virus [109,110]. As illustrated in Table 9, several monocyclic derivatives, including methyl-β-orcinol carboxylate, atranol, and methyl haematommate, have been shown to exert inhibitory effects on the hepatitis C virus, with IC50 values ranging from 40.3 to 55.5 μM [111]. In addition, depsidic compounds from lichens have also demonstrated excellent antiviral activity. For example, evernic acid exhibited a suppression rate of 64.6% against the Epstein–Barr virus at a concentration of 50 µM, with no mutagenicity or tumorigenicity [62]. Atranorin showed promising inhibitory effects against the hepatitis C virus (IC50: 22.3 μM, SI > 4.5) [111]. Sekikaic acid exhibited significant inhibitory effects and selectivity against respiratory syncytial virus (IC50: 5.69 μg/mL, SI: 5.46) [62,112]. Depsidic compounds isolated from Usnea longissima, particularly barbatic acid, were proven to inhibit the neuraminidase of the influenza virus (IC50: 8.44 μM) [72]. Depsides, such as lobaric acid, demonstrated antiviral activity against chikungunya virus and the novel Severe acute respiratory syndrome-related coronavirus 2 (coronavirus SARS-CoV-2) [59]. Additionally, psoromic acid effectively inhibited the replication of herpes simplex virus (HSV) type 1 (IC50: 1.9 μM, SI: 163.2) and type 2 (IC50: 2.7 μM, SI: 114.8), with efficacy surpassing the antiviral drug acyclovir (IC50: 2.6 and 2.8 μM, SI: 119.2 and 110.7), indicating higher selectivity in inhibiting HSV [113]. Dibenzofuran derivatives, including usnic acid and its derivatives, also exhibited remarkable antiviral activity, effectively inhibiting the proliferation of mouse polyomavirus and showing antiviral activity against human papillomavirus and arenaviruses [114]. Among the isomers, for SARS-CoV-2, (+)-usnic acid (IC50: 7.99 µM, SI: 6.26) showed higher selectivity than chloroquine (IC50: 6.16 µM, SI: 13.07) and remdesivir (IC50: 7.42 µM, SI: 4.24) but lower selectivity than lopinavir (IC50: 10.8 µM, SI: 6.74) [114,115], demonstrating some selective advantage, but with room for improvement. In terms of inhibiting viral activity, (+)-usnic acid exhibited greater inhibitory effects against SARS-CoV-2 than remdesivir [114]. Furthermore, (+)-usnic acid achieved a selectivity index of 11.1 against the Beta variant (B.1.351) of SARS-CoV-2, which is higher than that of the Alpha variant (B.1.1.7, SI: 5.8), indicating lower toxicity to host cells when inhibiting the Beta variant [115]. Regarding the inhibition of the A (H1N1) pdm09 influenza virus, (−)-usnic acid had a selectivity index of 14.4, higher than that of (+)-usnic acid (SI: 5.9), showing greater selectivity [87,116]. Additionally, usnic acid derivatives inhibited the growth of several influenza viruses, such as H1N1pdm, H3N2, A/Vladivostok/2/09 (H1N1), and influenza A virus (Puerto Rico/8/1934, H1N1), with IC50 values ranging from 3 to 43 µg/mL [114]. In conclusion, psoromic acid, (+)-usnic acid, and (−)-usnic acid all exhibit good antiviral activity and selectivity against HSV, SARS-CoV-2 and its variants, as well as the A (H1N1) pdm09 influenza virus, indicating potential for further research and development.

4. Potential Applications and Challenges of Lichen Antimicrobial Activity

4.1. Application Value of Lichen Antimicrobial Activity

Lichens, as a unique biological resource, demonstrate immense potential in various fields such as the medicine, agriculture, and food industries due to their rich chemical composition and diverse biological activities. In the field of pharmaceuticals, lichen-derived compounds, especially usnic acid and its derivatives, excel in the antimicrobial field, with remarkable efficacy against various skin infections and skin diseases [95], and have been widely used in facial infections, ulcers, burns, and scars [32,117]. Lichens such as Lobaria pulmonaria, Cetraria islandica, and Cladonia species are used for the treatment of tuberculosis, and Cetraria islandica in particular is famous in Turkey for its therapeutic effects on hemorrhoids, pneumonia, and dysentery [118]. Additionally, Xanthoria parietina, Letharia vulpine, and Parmelia sulcata are used for the treatment of jaundice, digestive system disorders, and respiratory disorders, respectively [118]. These lichens occupy a significant place in traditional medicine due to their unique medicinal value. In modern medicine, the application of usnic acid has expanded to antimicrobial coatings for medical devices [95] and polymeric materials [87], such as usnic acid polyaniline matrix dressings Fe3O4@AU [119,120], polymethylmethacrylate (PMMA) bone cements [119], titanium implants, and polymeric implants for tympanic membranes [121], which can effectively reduce bacterial biofilm formation and enhance the antimicrobial properties of medical devices. Usnic acid is also used in personal care and hygiene products such as dandruff and itching shampoo, medical mouthwashes, medical gloves, and disinfectants due to its remarkable antimicrobial activity [95]. Among these, usnic acid preparations, such as Sodium usnate and Copper (II) usnate [95], are widely used internationally and have demonstrated favorable clinical effects. Through chemical structural modifications, usnic acid derivatives possess multifunctional properties, such as antimicrobial and antiviral activities. For example, modifying its C-2 group to enamine can synthesize 1, 2, 3-triazole antimicrobial and antituberculosis agents [89]. The zinc salt of usnic acid has shown pharmacological effects in the treatment of various viral infections, such as Human Papillomavirus and Influenza virus [50]. In summary, usnic acid and its derivatives in lichens not only hold a significant place in traditional medicines but also play a key role in the antimicrobial treatment of medical devices and the development of wound dressings, which promotes the discovery of new medicines and the innovation of medical devices.
Meanwhile, lichens are also emerging in the field of agriculture; lichen extracts can inhibit the growth of plant pathogenic microorganisms and serve as natural plant protection agents for the prevention and control of crop diseases. Usnic acid, a representative compound of lichens extracts, can efficiently suppress pathogenic Oomycetes, aiding in the control of saprolegniasis in aquaculture [46]. Beard lichen extract has therapeutic effects on rainbow trout infected with Lactococcus garvieae [122], which contributes to microbial pollution control in aquatic ecosystems [44]. Additionally, the antifungal activity of usnic acid and vulpinic acid provides significant control of bacterial canker of tomato [123]. Trichoderma asperellum has been shown to be effective in the control of ryegrass brown patch caused by Rhizoctonia solani on golf courses, making it a promising candidate for new biopesticides [76].
In the food industry, the application potential of lichen extracts is equally notable. Oakmoss lichen is used to make jelly, and Cladonia rangiferina is used in brandy production, enriching the flavor of foods while offering potential health benefits [118]. Usnic acid is used as a nutraceutical ingredient in some countries to induce weight loss [115], though excessive intake may lead to hepatotoxicity and acute failure [124]. Usnic acid is also an efficient cream preservative with strong inhibitory effects on a wide range of microorganisms in thin cream [20]. Moreover, extracts of Usnea barbata [50], Parmelia saxatilis [27], and their zinc salts, highly sensitive to Enterococcus, became natural feed additives for poultry. In the field of food packaging materials, thin coatings of lichens based on ZnO@C18-usnic acid nanoparticles were prepared by MAPLE technology, which effectively inhibited the adhesion and biofilm formation of Salmonella, offering an innovative choice for new food packaging materials [125]. It is also noteworthy that lichens compounds have industrial potential for the preparation of PH indicators [27], dyes [27], daily products such as toothpaste and mouthwash [115], UV protectants, or sunscreens [27]. For example, the thallus of Evernia prunastri and Usnea is used in perfume production, while Wolf lichen is a widely used purple dye used by North American indigenous people [118].

4.2. Challenges in the Application of Lichen Antimicrobial Activity

Despite the promising applications of lichens as potential antimicrobial agents, several challenges hinder their practical application in the medical field and in functional foods. The primary issue is the limited availability of raw materials for research and application due to constraints in algal physiology and CO2 diffusion [126], which result in slow natural growth, low biomass, and restricted access to lichen resources [16]. Moreover, the yield of active ingredients from lichens is highly dependent on environmental conditions [13,127]. For example, the production of secondary metabolites from lichens is unstable, influenced by various factors such as light, temperature, humidity, and altitude. Although artificially simulating the growth environment of lichens and optimizing controlled laboratory conditions could be a strategy to obtain sufficient amounts of active lichen feedstock, achieving this in a short timeframe may prove challenging [127]. To address this issue, researchers might explore expanding fermentation technologies for lichen endophytes, investigating active products derived from the fermentation liquid of these microorganisms to tackle the slow growth and scarcity of wild resources. In conjunction with the OSMAC strategy, new culture media and nutrient regulation techniques can be developed to activate silent gene clusters by modulating nutritional or environmental factors during fermentation, thereby increasing the yield of secondary metabolites or acquiring similar efficient compounds [16,128]. Additionally, multi-omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, can be employed to analyze the metabolic pathways of lichen endophytes [129]. Coupled with gene scanning and gene editing technologies like CRISPR/Cas9 [130], this approach facilitates precise modifications of key metabolic pathways, potentially increasing both the yield and stability of secondary metabolites [11]. This process includes activating and regulating the expression of various functional genes, optimizing key enzymes in metabolic pathways, and ensuring a stable supply of raw materials while also potentially leading to the discovery of new compounds with novel structures and broad biological activities [131]. Furthermore, biosynthetic methods such as microbial metabolic engineering and plant transformation can be utilized to enhance the catalytic efficiency of key enzymes through enzyme engineering [132], optimizing the “cell factory” and fermentation conditions (including enzyme catalytic efficiency and substrate supply), thereby increasing the yield and conversion rate of target compounds and promoting the sustainable use of lichen resources [133]. Through these technologies, researchers can identify and optimize key enzymes and regulatory factors via metabolic engineering, ultimately enhancing yields of secondary metabolites [134]. This strategy effectively addresses the challenges associated with the limited availability of lichen resources and the instability of secondary metabolite yields while also promoting the sustainable utilization of lichen resources and providing a vital research foundation for new drug development.
Secondly, the complexity of lichen taxonomy poses challenges for the identification of lichen species and their products. To address this issue, it is recommended to adopt an integrated multidisciplinary approach to identification, including molecular biology techniques, chemical analysis methods, and morphological observations, to ensure an accurate classification of lichens and provide a solid foundation for research and application [135,136]. Additionally, utilizing advanced microscopic imaging technologies to observe the morphological and structural characteristics of lichens, combined with chemical analysis results, can further improve the accuracy of species identification [137]. Moreover, constructing molecular networks of lichen metabolites to analyze the interrelationships among metabolites may help uncover new metabolic pathways and potential bioactive compounds [16]. In this process, establishing a simple yet scientific identification system is crucial for researchers, as it will contribute to the standardization and efficiency of lichen research.
Thirdly, the potential toxicity of lichen metabolites and photosensitization have limited their applications in the pharmaceutical field [21,80]. To address this issue, a variety of innovative strategies can be employed: Computer-aided drug design (CADD) can be utilized to optimize the structures of lichen metabolites, screening for derivatives with higher selectivity and lower toxicity, thereby predicting activity and toxicity at the molecular level and guiding the synthesis of safer compounds [138]. Additionally, microbial transformation techniques can harness the metabolic capabilities of microorganisms to convert toxic compounds into low-toxicity or non-toxic derivatives while preserving their biological activity [139]. Furthermore, a combination therapy strategy is also an effective approach; co-administration with other drugs can alleviate allergic reactions caused by lichen metabolites like usnic acid [126]. Moreover, developing smart drug delivery systems, such as nanocarriers and targeted drug delivery technologies, can effectively reduce the adverse effects of drugs and improve treatment safety and efficacy [20,126]. Examples include nanogels [140], peptoids [141], liposomes [142], and CBD-loaded PEG-b-PCL nanoparticles, the latter of which have been used in drug nanocarriers due to their excellent biocompatibility and have been approved by the FDA [143]. Polymer carriers such as Risperdal Consta®, Trelstar®, Sandostatin LAR®, and Somatuline Autogel® have the ability to precisely deliver drugs to specific cells or organelles, enhancing drug efficacy and reducing side effects [142]. Additionally, pro-drug strategies can chemically modify active drugs into inactive or low-activity forms that release active compounds under specific conditions in the body, thereby reducing direct toxicity while increasing targeting and bioavailability [144]. Finally, gene editing technologies can be used to optimize the metabolic pathways of lichen endophytes or symbiotic fungi, thereby reducing the generation of toxic metabolites at the source [130]. The comprehensive application of these strategies not only effectively reduces the potential toxicity of lichen metabolites but also enhances their value in the pharmaceutical field, providing broader prospects for the development of safe and effective lichen-derived drugs.
Fourthly, the structural complexity of lichen secondary metabolites increases the difficulty of extraction, purification, and identification, leading to high costs. To address these challenges, a variety of innovative strategies can be employed. First, it is recommended to use techniques such as thin-layer chromatography [145], capillary gas chromatography [146], silica gel column chromatography, medium-pressure liquid chromatography [147], supercritical fluid extraction, and high-performance liquid chromatography [146] to improve efficiency and purity. In addition, the use of computational chemistry and chemical biology to simulate and predict the chemical properties of these molecules can help accelerate their identification and functional research [148]. Furthermore, utilizing gene-editing techniques to precisely modify lichen endophytes or symbiotic fungi can optimize metabolic pathways, reduce the production of complex metabolites, and enhance the yield of target compounds [130]. Implementing automation equipment for rapid sample processing and large-scale screening not only reduces human error but also lowers research costs [149]. Finally, optimizing the solvent system (for example, developing more efficient solvent combinations) can further improve the resolution of thin-layer chromatography and other separation techniques [144]. The comprehensive application of these strategies will significantly enhance the extraction efficiency and purity of lichen secondary metabolites, reduce research costs, and provide strong support for the sustainable utilization of lichen resources and the development of new drugs.
Fifthly, the commercialization and practical translation of lichen active compounds may face market and regulatory barriers. Like other novel antibiotics, the development of new lichen drugs encounters challenges in market access and regulatory approval, which may delay their actual application [21]. To overcome this challenge, researchers should strictly adhere to regulatory requirements for drug development and conduct comprehensive safety and efficacy assessments from the early research stages. Meanwhile, they should engage in active communication with government and regulatory agencies to seek policy support and fast-track approval processes to shorten the time to market [21,150]. Additionally, through international collaboration and regulatory coordination, introducing advanced international research and development experiences and optimizing the import approval process can facilitate the international development of lichen drugs [21,150]. Utilizing advanced clinical trial designs and data analysis methods can improve the efficiency and success rate of clinical trials [21,150] while also promoting the informatization of production and inspection processes in pharmaceutical companies, enhancing the transparency and controllability of drug production. These measures will help accelerate the commercialization process of lichen active compounds and facilitate their transition from the laboratory to the market.
Sixthly, the economic cost of lichens and their metabolic product production and development is a significant challenge. Based on the aforementioned difficulties, the production and development of lichens and their metabolites are costly, which to some extent affects their commercialization prospects [16]. It is suggested that lichen researchers should seek diversified financial support, such as governmental research funds, corporate investment and international cooperation, etc., so that the target compounds can be synthesized on a large scale by means of synthetic biology after obtaining highly promising antimicrobial active substances [151].
Seventhly, lichen extracts have demonstrated significant antibacterial activity in in vitro experiments. However, most current research remains in the preclinical stage, primarily focusing on in vitro studies and animal models, lacking supportive data from large-scale clinical trials [21]. Additionally, while compounds like usnic acid have found some applications in everyday products [95] such as health supplements, cosmetics, toothbrushes, antimicrobial coatings [95], and food packaging [125], issues related to their toxicity and bioavailability have not yet been fully resolved, and they are not currently used as standalone drugs for clinical treatment. Furthermore, there are currently no clinical data indicating that patients can directly use lichens or their compounds to treat infectious diseases, suggesting that the application of lichens and their compounds is still in the experimental exploration stage and has not yet transitioned into clinical practice [21]. Future research should focus on clinical trials of lichen compounds to determine their potential application value in treating infectious diseases [29]. At the same time, the research on their mechanisms of action is still at an early stage, with unclear molecular targets and pathways [152]. Limited experimental data and insufficient clinical validation also restrict their promotion in practical applications [21]. Moving forward, it is important for researchers in this field to utilize modern technological methods to explore their mechanisms of action [16], improve experimental data, and conduct clinical validations to overcome regulatory hurdles and advance their application in both medical and industrial fields.
Finally, the issue of public acceptance cannot be ignored. On the one hand, the public has limited understanding of lichens, and on the other hand, cases of adverse reactions or even deaths did occur during the transformation process of existing lichen active substance applications, causing public doubts about the safety of lichen-derived drugs [20]. For this reason, more scientists are needed to join lichen research teams and carry out extensive widespread public education and outreach to improve public awareness of lichens and their application potential. At the same time, their safety and effectiveness can be demonstrated through clinical trials and practical application data to enhance public trust [20].
Overall, lichens—these “antimicrobial warriors” hidden deep in nature—still face numerous global challenges on the road to widespread application in the pharmaceutical field, particularly during the critical phase of transitioning from the laboratory to clinical application. This process is complex and arduous, requiring not only rigorous clinical trials and practical application data to thoroughly demonstrate their safety and efficacy but also the ability to meet stringent market access and regulatory approval requirements. These challenges will undoubtedly delay the development process of lichen-based pharmaceuticals. However, even in the face of these obstacles, lichens and their unique secondary metabolites remain an important resource in the field of new drug development due to their exceptional antibacterial potential. We fervently call upon more scholars to engage in lichen research, delve deeply into the scientific issues mentioned above, and uncover the mysteries of this ancient organism.

Funding

This work was supported by Yunnan Fundamental Research Projects (grant no. 202401AT070076) and the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’ Association (grant no. 202401BA070001-067).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Gerasimova, J.; Ruthensteiner, B.; Beck, A. MicroCT as a Useful Tool for Analysing the 3D Structure of Lichens and Quantifying Internal Cephalodia in Lobaria pulmonaria. Appl. Microbiol. 2021, 1, 189–200. [Google Scholar] [CrossRef]
  2. Bhagarathi, L.K.; Maharaj, G.; DaSilva, P.N.B.; Subramanian, G. A review of the diversity of lichens and what factors affect their distribution in the neotropics. GSC Biol. Pharm. Sci. 2022, 20, 027–063. [Google Scholar] [CrossRef]
  3. Oh, S.-Y.; Yang, J.H.; Woo, J.-J.; Oh, S.-O.; Hur, J.-S. Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea. Sustainability 2020, 12, 3769. [Google Scholar] [CrossRef]
  4. Bhagarathi, L.K.; DaSilva, P.N.B.; Subramanian, G.; Maharaj, G.; Kalika-Singh, S.; Pestano, F.; Phillips-Henry, Z.; Cossiah, C. An integrative review of the biology and chemistry of lichens and their ecological, ethnopharmacological, pharmaceutical and therapeutic potential. GSC Biol. Pharm. Sci. 2023, 23, 092–119. [Google Scholar] [CrossRef]
  5. Asplund, J.; Wardle, D.A. How lichens impact on terrestrial community and ecosystem properties. Biol. Rev. Camb. Philos. Soc. 2017, 92, 1720–1738. [Google Scholar] [CrossRef]
  6. Furmanek, Ł.; Czarnota, P.; Seaward, M.R.D. Antifungal activity of lichen compounds against dermatophytes: A review. J. Appl. Microbiol. 2019, 127, 308–325. [Google Scholar] [CrossRef]
  7. Bhagarathi, L.K.; Phillip, N.B.D.S.; Subramanian, G. lichen inventory and species diversity at coastal ecosystems at No. 63 Benab, Berbice, Guyana. Int. J. Sci. Res. Arch. 2024, 11, 737–756. [Google Scholar] [CrossRef]
  8. Letwin, L.; Malek, L.; Suntres, Z.; Christopher, L. Cytotoxic and antibiotic potential of secondary metabolites from the lichen Umbilicaria muhlenbergii. Curr. Pharm. Biotechnol. 2020, 21, 1516–1527. [Google Scholar]
  9. Boustie, J.; Tomasi, S.; Grube, M. Bioactive lichen metabolites: Alpine habitats as an untapped source. Phytochem. Rev. 2010, 10, 287–307. [Google Scholar] [CrossRef]
  10. Dziurowicz, P.; Fałowska, P.; Waszkiewicz, K.; Wietrzyk-Pełka, P.; Węgrzyn, M. Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi. Ecol. Quest. 2024, 35, 1–29. [Google Scholar] [CrossRef]
  11. Grimm, M.; Grube, M.; Schiefelbein, U.; Zühlke, D.; Bernhardt, J.; Riedel, K. The lichens’ microbiota, still a mystery? Front. Microbiol. 2021, 12, 623839. [Google Scholar] [CrossRef] [PubMed]
  12. Faluaburu, M.S.; Nakai, R.; Imura, S.; Naganuma, T. Phylotypic characterization of mycobionts and photobionts of Rock Tripe lichen in East Antarctica. Microorganisms 2019, 7, 203. [Google Scholar] [CrossRef] [PubMed]
  13. Alors, D.; Divakar, P.K.; Calchera, A.; Schmitt, I.; Crespo, A.; Molina, M.C. The Temporal Variation of Secondary Metabolites in the Mycobiont Culture and Thallus of Parmelina carporrhizans and Parmelina quercina Analyzed using High-Performance Liquid Chromatography. Separations 2023, 10, 399. [Google Scholar] [CrossRef]
  14. Kekuda, T.P.; Ranjitha, M.C.; Ghazala, F.; Vidya, P.; Vinayaka, K.S. Antimicrobial activity of selected corticolous macrolichens. Sci. Technol. Arts Res. J. 2016, 4, 169–174. [Google Scholar] [CrossRef]
  15. Kim, B.; Han, S.-R.; Lamichhane, J.; Park, H.; Oh, T.-J. Draft genome analysis of antimicrobial Streptomyces isolated from Himalayan lichen. J. Microbiol. Biotechnol. 2019, 29, 1144–1154. [Google Scholar] [CrossRef]
  16. Ren, M.; Jiang, S.; Wang, Y.; Pan, X.; Pan, F.; Wei, X. Discovery and excavation of lichen bioactive natural products. Front. Microbiol. 2023, 14, 1177123. [Google Scholar] [CrossRef]
  17. Ribeiro, J.; Luís, M.Â.; Rodrigues, B.; Santos, F.M.; Mesquita, J.; Boto, R.; Tomaz, C.T. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024, 10, 198. [Google Scholar] [CrossRef]
  18. Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 2014, 353, 57–62. [Google Scholar] [CrossRef]
  19. Popovici, V.; Matei, E.; Cozaru, G.C.; Bucur, L.; Gîrd, C.E.; Schröder, V.; Ozon, E.A.; Mitu, M.A.; Musuc, A.M.; Petrescu, S.; et al. Design, characterization, and anticancer and antimicrobial activities of mucoadhesive oral patches loaded with Usnea barbata (L.) F. H. Wigg ethanol extract F-UBE-HPMC. Antioxidants 2022, 11, 1801. [Google Scholar] [CrossRef]
  20. Wang, H.; Xuan, M.; Huang, C.; Wang, C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022, 27, 7469. [Google Scholar] [CrossRef]
  21. Adenubi, O.T.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. J. Ethnopharmacol. 2022, 298, 115657. [Google Scholar] [CrossRef]
  22. Popovici, V.; Bucur, L.; Calcan, S.I.; Cucolea, E.I.; Costache, T.; Rambu, D.; Schröder, V.; Gîrd, C.E.; Gherghel, D.; Vochita, G.; et al. Elemental analysis and in vitro evaluation of antibacterial and antifungal activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Plants 2022, 11, 32. [Google Scholar]
  23. Tatipamula, V.B.; Annam, S.S.P. Antimycobacterial activity of acetone extract and isolated metabolites from folklore medicinal lichen Usnea laevis Nyl. against drug-sensitive and multidrug-resistant tuberculosis strains. J. Ethnopharmacol. 2022, 282, 114641. [Google Scholar] [CrossRef] [PubMed]
  24. Rodrigo Lucarini, M.G.T.A. Antimycobacterial activity of Usnea steineri and its major constituent (+)-usnic acid. Afr. J. Biotechnol. 2012, 12, 17. [Google Scholar]
  25. Bate, P.N.N.; Orock, A.E.; Nyongbela, K.D.; Babiaka, S.B.; Kukwah, A.; Ngemenya, M.N. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. J. King Saud Univ.-Sci. 2020, 32, 614–619. [Google Scholar] [CrossRef]
  26. Manojlović, N.T.; Rančić, A.B.; Décor, R.; Vasiljević, P.; Tomović, J. Determination of chemical composition and antimicrobial, antioxidant and cytotoxic activities of lichens Parmelia conspersa and Parmelia perlata. J. Food Meas. Charact. 2021, 15, 686–696. [Google Scholar] [CrossRef]
  27. González-Burgos, E.; Fernández-Moriano, C.; Gómez-Serranillos, M.P. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. Phytochemistry 2019, 165, 112051. [Google Scholar] [CrossRef]
  28. Oh, J.M.; Kim, Y.J.; Gang, H.-S.; Han, J.; Ha, H.-H.; Kim, H. Antimicrobial Activity of Divaricatic Acid Isolated from the Lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus. Molecules 2018, 23, 3068. [Google Scholar] [CrossRef]
  29. Kello, M.; Goga, M.; Kotorova, K.; Sebova, D.; Frenak, R.; Tkacikova, L.; Mojzis, J. Screening Evaluation of Antiproliferative, Antimicrobial and Antioxidant Activity of Lichen Extracts and Secondary Metabolites In Vitro. Plants 2023, 12, 611. [Google Scholar] [CrossRef]
  30. Yilmaz, M.; Turk, A.O.; Tay, T.; Kıvanc, M. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z. Naturforsch. C J. Biosci. 2004, 59, 249–254. [Google Scholar]
  31. Majumder, S.; Sinha, S. Phytochemical screening and antibacterial activity of two different species of crustose lichen from kalyani university campus, West Bengal, India. Int. J. Eng. Technol. Manag. Res. 2021, 8, 13–17. [Google Scholar] [CrossRef]
  32. Pradhan, S.; Dash, S.; Parida, S.; Sahoo, B.; Rath, B. Antioxidant and antimicrobial activities and GC/MS-based phytochemical analysis of two traditional Lichen species Trypethellium virens and Phaeographis dendritica. J. Genet. Eng. Biotechnol. 2023, 21, 41. [Google Scholar] [CrossRef]
  33. Pompilio, A.; Scocchi, M.; Mangoni, M.L.; Shirooie, S.; Serio, A.; Ferreira Garcia da Costa, Y.; Alves, M.S.; Karatoprak, G.S.; Süntar, I.; Di Bonaventura, G.; et al. Bioactive compounds: A goldmine for defining new strategies against pathogenic bacterial biofilms? Crit. Rev. Microbiol. 2023, 49, 117–149. [Google Scholar] [PubMed]
  34. Taylor, J.A.; Fourie, T.; Powell, M.; Chianella, I. Evidence for some antimicrobial properties of English churchyard lichens. Access Microbiol. 2023, 5, 000536.v4. [Google Scholar] [CrossRef]
  35. Zorrilla, J.G.; D’addabbo, T.; Roscetto, E.; Varriale, C.; Catania, M.R.; Zonno, M.C.; Altomare, C.; Surico, G.; Nimis, P.L.; Evidente, A. Antibiotic and Nematocidal Metabolites from Two Lichen Species Collected on the Island of Lampedusa (Sicily). Int. J. Mol. Sci. 2022, 23, 8471. [Google Scholar] [CrossRef]
  36. Aoussar, N.; Laasri, F.E.; Bourhia, M.; Manoljovic, N.; Mhand, R.A.; Rhallabi, N.; Ullah, R.; Shahat, A.A.; Noman, O.M.; Mellouki, F.; et al. Phytochemical analysis, cytotoxic, antioxidant, and antibacterial activities of lichens. Evid.-Based Complement. Altern. Med. 2020, 2020, 8104538. [Google Scholar]
  37. Watoni, A.H.; Nurdin, M. Antibacterial activity of usnic acid from Usnea longissima Ach. Pak. J. Pharm. Sci. 2020, 33, 1631–1639. [Google Scholar]
  38. Shcherbakova, A.; Strömstedt, A.A.; Göransson, U.; Gnezdilov, O.; Turanov, A.; Boldbaatar, D.; Kochkin, D.; Ulrich-Merzenich, G.; Koptina, A. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J. Microbiol. Biotechnol. 2021, 37, 129. [Google Scholar] [CrossRef]
  39. Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.M.; et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci. 2015, 16, 7861–7875. [Google Scholar] [CrossRef]
  40. Shiromi, P.S.A.I.; Hewawasam, R.P.; Jayalal, R.G.U.; Rathnayake, H.; Wijayaratne, W.M.D.G.B.; Wanniarachchi, D. Chemical Composition and Antimicrobial Activity of Two Sri Lankan Lichens, Parmotrema rampoddense, and Parmotrema tinctorum against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2021, 2021, 985325. [Google Scholar] [CrossRef]
  41. Oran, S.; Sahin, S.; Sahinturk, P.; Ozturk, S.; Demir, C. Antioxidant and Antimicrobial Potential, and HPLC Analysis of Stictic and Usnic Acids of Three Usnea Species from Uludag Mountain (Bursa, Turkey). Iran J. Pharm. Res. 2016, 15, 527–535. [Google Scholar] [PubMed]
  42. Maurya, I.K.; Singh, S.; Tewari, R.; Tripathi, M.; Upadhyay, S.; Joshi, Y. Antimicrobial activity of Bulbothrix setschwanensis (Zahlbr.) Hale lichen by cell wall disruption of Staphylococcus aureus and Cryptococcus neoformans. Microb. Pathog. 2018, 115, 12–18. [Google Scholar] [CrossRef] [PubMed]
  43. Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites. Curr. Pharm. Biotechnol. 2016, 17, 651–658. [Google Scholar] [CrossRef] [PubMed]
  44. Sepahvand, A.; Studzińska-Sroka, E.; Ramak, P.; Karimian, V. Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. J. Ethnopharmacol. 2021, 268, 113656. [Google Scholar] [CrossRef]
  45. Yadav, H.; Nayaka, S.; Dwivedi, M. Analytics on antimicrobial activity of lichen extract. J. Pure Appl. Microbiol. 2021, 15, 701–708. [Google Scholar] [CrossRef]
  46. Guo, S.Y.; Liu, W.X.; Han, L.F.; Chen, J.Z. Antifungal activity of lichen extracts and usnic acid for controlling the saprolegniasis. Int. J. Environ. Agric. Res. (IJOEAR) 2017, 3, 43–47. [Google Scholar] [CrossRef]
  47. Furmanek, Ł.; Czarnota, P.; Seaward, M.R.D. A review of the potential of lichen substances as antifungal agents: The effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch. Microbiol. 2022, 204, 523. [Google Scholar] [CrossRef]
  48. Maulidiyah, M.; Natsir, M.; Nazila, W.; Musdalifah, A.; Salim, L.O.A.; Nurdin, M. Isolation and antibacterial activity of diffractic acid compound from lichen Usnea blepharea Motyka. J. Appl. Pharm. Sci. 2021, 11, 121–130. [Google Scholar] [CrossRef]
  49. Popovici, V.; Bucur, L.; Gîrd, C.E.; Popescu, A.; Matei, E.; Cozaru, G.C.; Schröder, V.; Ozon, E.A.; Fița, A.C.; Lupuliasa, D.; et al. Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H.Wigg from Călimani Mountains, Romania. Pharmaceuticals 2022, 15, 829. [Google Scholar] [CrossRef]
  50. Basiouni, S.; Fayed, M.A.A.; Tarabees, R.; El-Sayed, M.; Elkhatam, A.; Töllner, K.-R.; Hessel, M.; Geisberger, T.; Huber, C.; Eisenreich, W.; et al. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020, 10, 353. [Google Scholar] [CrossRef]
  51. Wang, J.; Zhao, H.; Guo, Q.; Ding, H. Identification and antibacterial activity of Thamnolia vermicularis and Thamnolia subuliformis. J. Microbiol. Methods 2022, 203, 106628. [Google Scholar] [CrossRef]
  52. Bazarnova, Y.; Politaeva, N.; Lyskova, N. Research for the lichen Usnea barbata metabolites. Z. Fur. Naturforschung Sect. C-J. Biosci. 2018, 73, 291–296. [Google Scholar] [CrossRef]
  53. Saranyapiriya Gunasekaran, V.P.R.S. Antibacterian and antioxidant activity of lichen Usnea rubrotincta, Ramalina dumeticola, Cladonia verticillata and theri chemical constituents. Malays. J. Anal. Sci. 2016, 20, 1–13. [Google Scholar] [CrossRef]
  54. Sargsyan, R.; Gasparyan, A.; Tadevosyan, G.; Panosyan, H. Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express 2021, 11, 110. [Google Scholar] [CrossRef]
  55. Ankith, G.N.; Rajesh, M.R.; Karthik, K.N.; Avinash, H.C.; Kekuda, P.T.; Vinayaka, K.S. Antibacterian and antifungal activity of three Ramallina species. J. Drug Deliv. Ther. 2017, 65, 34–38. [Google Scholar]
  56. Londoñe-Bailon, P.; Sánchez-Robinet, C.; Alvarez-Guzman, G. In vitro antibacterial, antioxidant and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiacoatra). Polar Sci. 2019, 22, 100477. [Google Scholar] [CrossRef]
  57. Dieu, A.; Millot, M.; Champavier, Y.; Mambu, L.; Chaleix, V.; Sol, V.; Gloaguen, V. Uncommon Chlorinated Xanthone and Other Antibacterial Compounds from the Lichen Cladonia incrassata. Planta Medica 2014, 80, 931–935. [Google Scholar] [CrossRef]
  58. Studzińska-Sroka, E.; Hołderna-Kędzia, E.; Galanty, A.; Bylka, W.; Kacprzak, K.; Ćwiklińska, K. In vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis. Nat. Prod. Res. 2015, 29, 2302–2307. [Google Scholar]
  59. Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsidones with Biological Interest. Planta Medica 2022, 88, 855–880. [Google Scholar] [CrossRef]
  60. Vega-Bello, M.J.; Moreno, M.L.; Estellés-Leal, R.; Hernández-Andreu, J.M.; Prieto-Ruiz, J.A. Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities. Molecules 2023, 28, 7317. [Google Scholar] [CrossRef]
  61. Asplund, J.; van Zuijlen, K.; Roos, R.E.; Birkemoe, T.; Klanderud, K.; Lang, S.I.; Wardle, D.A.; Nybakken, L. Contrasting responses of plant and lichen carbon-based secondary compounds across an elevational gradient. Funct. Ecol. 2021, 35, 330–341. [Google Scholar] [CrossRef]
  62. Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J. Fungi 2023, 9, 116. [Google Scholar] [CrossRef] [PubMed]
  63. Do, T.-H.; Duong, T.-H.; Nguyen, H.T.; Nguyen, T.-H.; Sichaem, J.; Nguyen, C.H.; Nguyen, H.-H.; Long, N.P. Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules 2022, 27, 2871. [Google Scholar] [CrossRef]
  64. Sweidan, A.; Chollet-Krugler, M.; Sauvager, A.; van de Weghe, P.; Chokr, A.; Bonnaure-Mallet, M.; Tomasi, S.; Bousarghin, L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia 2017, 121, 164–169. [Google Scholar] [CrossRef]
  65. Hao, Y.-M.; Yan, Y.-C.; Zhang, Q.; Liu, B.-Q.; Wu, C.-S.; Wang, L.-N. Phytochemical composition, antimicrobial activities, and cholinesterase inhibitory properties of the lichen Usnea diffracta Vain. Front. Chem. 2022, 10, 1063645. [Google Scholar] [CrossRef]
  66. Mallavadhani, U.V.; Boddu, R.; Rathod, B.B.; Setty, P.R. Stereoselective synthesis of the lichen metabolite, (+) montagnetol and its congeners as antimicrobial agents. Synth. Commun. 2018, 48, 2992–2999. [Google Scholar] [CrossRef]
  67. Duong, T.H.; Huynh, B.L.C.; Chavasiri, W.; Chollet-Krugler, M.; Nguyen, V.K.; Nguyen, T.H.T.; Hansen, P.E.; Le Pogam, P.; Thüs, H.; Boustie, J.; et al. New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry 2017, 137, 156–164. [Google Scholar] [CrossRef]
  68. Sultana, N.; Afolayan, A.J. A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton. J. Asian Nat. Prod. Res. 2011, 13, 1158–1164. [Google Scholar] [CrossRef]
  69. Hyung Koo, M.; Shin, M.J.; Ju Kim, M.; Lee, S.; Eun So, J.; Hee Kim, J.; Lee, J.H.; Suh, S.-S.; Joung Youn, U. Bioactive secondary metabolites isolated from the Antarctic Lichen Himantormia lugubris. Chem. Biodivers. 2022, 19, e202200374. [Google Scholar] [CrossRef]
  70. Türk, H.; Yılmaz, M.; Tay, T.; Türk, A.Ö.; Kıvanç, M. Antimicrobial Activity of Extracts of Chemical Races of the Lichen Pseudevernia furfuracea and their Physodic Acid, Chloroatranorin, Atranorin, and Olivetoric Acid Constituents. Z. Fur. Naturforschung Sect. C-J. Biosci. 2006, 61, 499–507. [Google Scholar] [CrossRef]
  71. Ristić, S.; Ranković, B.; Kosanić, M.; Stanojković, T.; Stamenković, S.; Vasiljević, P.; Manojlović, I.; Manojlović, N. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J. Food Sci. Technol. 2016, 53, 2804–2816. [Google Scholar] [CrossRef] [PubMed]
  72. Ullah, M.; Uddin, Z.; Song, Y.; Li, Z.; Kim, J.; Ban, Y.; Park, K. Bacterial neuraminidase inhibition by phenolic compounds from Usnea longissima. S. Afr. J. Bot. 2019, 120, 326–330. [Google Scholar] [CrossRef]
  73. Rai, H.; Gupta, R.K.; Verma, D.; Gupta, S.; Mitra, D.; Das Mohapatra, P.K.; Al-Meshal, A.S.; Sami, R.; Ashour, A.A.; Shafie, A. Assessment of antimicrobial activity of lichenic compounds isolated from Menegazzia terebrata (Hoffm.) A. Massal. J. Biobased Mater. Bioenergy 2022, 16, 418–423. [Google Scholar] [CrossRef]
  74. Kokubun, T.; Shiu, W.K.P.; Gibbons, S. Inhibitory Activities of Lichen-Derived Compounds against Methicillin- and Multidrug-Resistant Staphylococcus aureus. Planta Medica 2007, 73, 176–179. [Google Scholar] [CrossRef]
  75. Bellio, P.; Segatore, B.; Mancini, A.; Di Pietro, L.; Bottoni, C.; Sabatini, A.; Brisdelli, F.; Piovano, M.; Nicoletti, M.; Amicosante, G.; et al. Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine 2015, 22, 223–230. [Google Scholar] [CrossRef]
  76. Paguirigan, J.A.; Liu, R.; Im, S.M.; Hur, J.-S.; Kim, W. Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens. Plant Pathol. J. 2022, 38, 25–32. [Google Scholar] [CrossRef]
  77. Mohammadi, M.; Bagheri, L.; Badreldin, A.; Fatehi, P.; Pakzad, L.; Suntres, Z.; van Wijnen, A.J. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chem. Interact. 2022, 351, 109768. [Google Scholar] [CrossRef]
  78. Bui, V.-M.; Duong, T.-H.; Nguyen, T.-N.; Nguyen, N.-H.; Nguyen, H.-H.; Chavasiri, W.; Nguyen, K.-P.; Huynh, B.-L. Two new phenolic compounds from the Vietnamese lichen Parmotrema tinctorum. Nat. Prod. Res. 2022, 36, 3429–3434. [Google Scholar] [CrossRef]
  79. Nugraha, A.S.; Untari, L.F.; Laub, A.; Porzel, A.; Franke, K.; Wessjohann, L.A. Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen: Parmelia cetrata Ach. Nat. Prod. Res. 2021, 35, 5001–5010. [Google Scholar] [CrossRef]
  80. Studzinska-Sroka, E.; Galanty, A.; Bylka, W. Atranorin—An Interesting Lichen Secondary Metabolite. Mini-Rev. Med. Chem. 2017, 17, 1633–1645. [Google Scholar] [CrossRef]
  81. Pompilio, A.; Pomponio, S.; Di Vincenzo, V.; Crocetta, V.; Nicoletti, M.; Piovano, M.; Garbarino, J.; Di Bonaventura, G. Antimicrobial and Antibiofilm Activity of Secondary Metabolites of Lichens against Methicillin-Resistant Staphylococcus aureus Strains from Cystic Fibrosis Patients. Futur. Microbiol. 2013, 8, 281–292. [Google Scholar] [CrossRef]
  82. Hassan, S.T.S.; Šudomová, M.; Berchová-Bímová, K.; Gowrishankar, S.; Rengasamy, K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018, 7, 226. [Google Scholar] [CrossRef] [PubMed]
  83. Nishanth, K.S.; Sreerag, R.S.; Deepa, I.; Mohandas, C.; Nambisan, B. Protocetraric acid: An excellent broad spectrum compound from the lichen Usnea albopunctata against medically important microbes. Nat. Prod. Res. 2015, 29, 574–577. [Google Scholar] [CrossRef]
  84. Manojlovic, N.; Rankovic, B.; Kosanic, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cy-totoxic activities of some their major metabolites. Phytomedicine 2012, 19, 1166–1172. [Google Scholar]
  85. Carpentier, C.; Queiroz, E.F.; Marcourt, L.; Wolfender, J.-L.; Azelmat, J.; Grenier, D.; Boudreau, S.; Voyer, N. Dibenzofurans and Pseudodepsidones from the Lichen Stereocaulon paschale Collected in Northern Quebec. J. Nat. Prod. 2017, 80, 210–214. [Google Scholar] [CrossRef]
  86. Liang, X.; Chen, W.; Jiang, B.; Xiao, C.-J. Dibenzofurans from nature: Biosynthesis, structural diversity, sources, and bioactivities. Bioorganic Chem. 2024, 144, 107107. [Google Scholar] [CrossRef]
  87. Galanty, A.; Paśko, P.; Podolak, I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem. Rev. 2019, 18, 527–548. [Google Scholar] [CrossRef]
  88. Ramis, I.B.; Vianna, J.S.; Reis, A.J.; von Groll, A.; Ramos, D.F.; Viveiros, M.; da Silva, P.E.A. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus. Planta Medica 2018, 84, 1265–1270. [Google Scholar] [CrossRef]
  89. Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. J. Nat. Prod. 2020, 83, 26–35. [Google Scholar] [CrossRef]
  90. Bangalore, P.K.; Pedapati, R.K.; Pranathi, A.N.; Batchu, U.R.; Misra, S.; Estharala, M.; Sriram, D.; Kantevari, S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol. Divers. 2023, 27, 811–836. [Google Scholar] [CrossRef]
  91. Tozatti, M.G.; Ferreira, D.S.; Flauzino, L.G.; da Silva Moraes, T.; Martins, C.H.G.; Groppo, M.; Andrade e Silva, M.L.; Januário, A.H.; Pauletti, P.M.; Cunhaa, W.R. Activity of the lichen Usnea steineri and its major metabolites against Gram-positive, Multidrug-resistant Bacteria. Nat. Prod. Commun. 2016, 11, 493–496. [Google Scholar] [CrossRef] [PubMed]
  92. Yu, X.; Guo, Q.; Su, G.; Yang, A.; Hu, Z.; Qu, C.; Wan, Z.; Li, R.; Tu, P.; Chai, X. Usnic Acid Derivatives with Cytotoxic and Antifungal Activities from the Lichen Usnea longissima. J. Nat. Prod. 2016, 79, 1373–1380. [Google Scholar] [CrossRef]
  93. Kocovic, A.; Jeremic, J.; Bradic, J.; Sovrlic, M.; Tomovic, J.; Vasiljevic, P.; Andjic, M.; Draginic, N.; Grujovic, M.; Mladenovic, K.; et al. Phytochemical Analysis, Antioxidant, Antimicrobial, and Cytotoxic Activity of Different Extracts of Xanthoparmelia stenophylla Lichen from Stara Planina, Serbia. Plants 2022, 11, 1624. [Google Scholar] [CrossRef]
  94. Sudarwanti, C.S.; Imran, I.; Yanti, N.A.; Musdalifah, A.; Nurdin, M.; Maulidiyah, M. Antimicrobial activity of acetone extract and usnic acid constituent of lichen Usnea longissima (ach.). Int. Res. J. Pharm. 2018, 9, 89–98. [Google Scholar] [CrossRef]
  95. Luzina, O.A.; Salakhutdinov, N.F. Usnic acid and its derivatives for pharmaceutical use: A patent review (2000–2017). Expert Opin. Ther. Pat. 2018, 28, 477–491. [Google Scholar] [CrossRef]
  96. Dieu, A.; Mambu, L.; Champavier, Y.; Chaleix, V.; Sol, V.; Gloaguen, V.; Millot, M. Antibacterial activity of the lichens Usnea Florida and Flavoparmelia caperata (Parmeliaceae). Nat. Prod. Res. 2020, 34, 3358–3362. [Google Scholar] [CrossRef]
  97. Gupta, V.K.; Verma, S.; Gupta, S.; Singh, A.; Pal, A.; Srivastava, S.K.; Srivastava, P.K.; Singh, S.C.; Darokar, M.P. Membrane-damaging potential of natural L-(−)-usnic acid in Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3375–3383. [Google Scholar] [CrossRef]
  98. Goel, M.; Kalra, R.; Ponnan, P.; Jayaweera, J.A.A.S.; Kumbukgolla, W.W. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Lichen Ramalina roesleri. Microb. Pathogenesis 2020, 150, 104676. [Google Scholar] [CrossRef]
  99. Lee, S.; Jeong, S.Y.; Nguyen, D.L.; So, J.E.; Kim, K.H.; Kim, J.H.; Han, S.J.; Suh, S.-S.; Lee, J.H.; Youn, U.J. Stereocalpin B, a New Cyclic Depsipeptide from the Antarctic Lichen Ramalina terebrata. Metabolites 2022, 12, 141. [Google Scholar] [CrossRef]
  100. Huang, Q.; Wang, Y.; Wu, H.; Yuan, M.; Zheng, C.; Xu, H. Xanthone Glucosides: Isolation, Bioactivity and Synthesis. Molecules 2021, 26, 5575. [Google Scholar] [CrossRef]
  101. Le Pogam, P.; Boustie, J. Xanthones of Lichen Source: A 2016 Update. Molecules 2016, 21, 294. [Google Scholar] [CrossRef] [PubMed]
  102. Resende, D.I.S.P.; Pereira-Terra, P.; Inácio, Â.S.; Da Costa, P.M.; Pinto, E.; Sousa, E.; Pinto, M.M.M. Lichen Xanthones as Models for New Antifungal Agents. Molecules 2018, 23, 2617. [Google Scholar] [CrossRef] [PubMed]
  103. Nguyen, V.-K.; Nguyen-Si, H.-V.; Devi, A.P.; Poonsukkho, P.; Sangvichien, E.; Tran, T.-N.; Yusuke, H.; Mitsunaga, T.; Chavasiri, W. Eumitrins F-H: Three new xanthone dimers from the lichen Usnea baileyi and their biological activities. Nat. Prod. Res. 2023, 37, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
  104. Sweidan, A.; Smida, I.; Chollet-Krugler, M.; Sauvager, A.; Vallet, J.; Gouault, N.; Oliviero, N.; Tamanai-Shacoori, Z.; Burel, A.; van de Weghe, P.; et al. Lichen butyrolactone derivatives disrupt oral bacterial membrane. Fitoterapia 2019, 137, 104274. [Google Scholar] [CrossRef]
  105. James, P.J.C.; Vuong, D.; Moggach, S.A.; Lacey, E.; Piggott, M.J. Synthesis, Characterization, and Bioactivity of the Lichen Pigments Pulvinamide, Rhizocarpic Acid, and Epanorin and Congeners. J. Nat. Prod. 2023, 86, 550–556. [Google Scholar] [CrossRef]
  106. Shrestha, G.; Thompson, A.; Robison, R.; St Clair, L.L. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. Pharm. Biol. 2016, 54, 413–418. [Google Scholar]
  107. Gandhi, A.D.; Umamahesh, K.; Sathiyaraj, S.; Suriyakala, G.; Velmurugan, R.; Al Farraj, D.A.; Gawwad, M.R.A.; Murugan, K.; Babujanarthanam, R.; Saranya, R. Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. J. Infect. Public Health 2022, 15, 491–497. [Google Scholar] [CrossRef]
  108. Ngoc, T.N.; Kuo, P.C.; Trung, H.T.; Tuong Vi, L.N.; Hung, Q.T.; Dunge, L.T.; Trinh, N.D.; Trung, N.O.; Khoa, N.C.; Hai, H.V.; et al. A new triterpenoid and other compounds from lichens Cryptothecia faveomaculata Makhija & Patw. Nat. Prod. Res. 2021, 35, 1349–1356. [Google Scholar]
  109. Boudagga, S.; Bouslama, L.; Papetti, A.; Colombo, R.; Arous, F.; Jaouani, A. Antiviral activity of Inonotusin A an active compound isolated from Boletus bellinii and Boletus subtomentosus. Biologia 2022, 77, 3645–3655. [Google Scholar] [CrossRef]
  110. Reichling, J. Antiviral and Virucidal Properties of Essential Oils and Isolated Compounds—A Scientific Approach. Planta Medica 2022, 88, 587–603. [Google Scholar] [CrossRef]
  111. Vu, T.H.; Le Lamer, A.-C.; Lalli, C.; Boustie, J.; Samson, M.; Dévéhat, F.L.-L.; Le Seyec, J. Depsides: Lichen Metabolites Active against Hepatitis C Virus. PLoS ONE 2015, 10, e0120405. [Google Scholar] [CrossRef]
  112. Lai, D.; Odimegwu, D.C.; Esimone, C.; Grunwald, T.; Proksch, P. Phenolic Compounds with In Vitro Activity against Respiratory Syncytial Virus from the Nigerian Lichen Ramalina farinacea. Planta Medica 2013, 79, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
  113. Hassan, S.T.S.; Šudomová, M.; Berchová-Bímová, K.; Šmejkal, K.; Echeverría, J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules 2019, 24, 2912. [Google Scholar] [CrossRef]
  114. Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Kiselev, O.I.; Salakhutdinov, N.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem. 2014, 22, 6826–6836. [Google Scholar]
  115. Oh, E.; Wang, W.; Park, K.-H.; Park, C.; Cho, Y.; Lee, J.; Kang, E.; Kang, H. (+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
  116. Sokolov, D.N.; Zarubaev, V.V.; Shtro, A.A.; Marina, P.P.; Olga, A.L.; Nina, I.K.; Nariman, F.S.; Oleg, I.K. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A(H1N1)2009. Bioorg. Med. Chem. Lett. 2012, 22, 7060–7064. [Google Scholar]
  117. Cirillo, D.; Borroni, E.; Festoso, I.; Monti, D.; Romeo, S.; Mazier, D.; Verotta, L. Synthesis and antimycobacterial activity of (+)-usnic acid conjugates. Arch. Der Pharm. 2018, 351, e1800177. [Google Scholar] [CrossRef]
  118. Renjini, A.S.; Celestin Baboo, R.V.; Sirajudheenm, K.; Saranya, S.M.; Sarika, P.V. An overview on pharmaceutical applications of lichen secondary metabolites. Int. J. Pharm. Sci. Rev. Res. 2024, 84, 14. [Google Scholar]
  119. Francolini, I.; Piozzi, A.; Donelli, G. Usnic acid: Potential role in management of wound infections. Adv. Exp. Med. Biol. 2019, 1214, 31–41. [Google Scholar]
  120. Nunes, P.S.; Rabelo, A.S.; de Souza, J.C.C.; Santana, B.V.; da Silva, T.M.M.; Serafini, M.R.; Menezes, P.d.P.; Lima, B.d.S.; Cardoso, J.C.; Alves, J.C.S.; et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm. 2016, 513, 473–482. [Google Scholar] [CrossRef]
  121. Luzina, O.A.; Salakhutdinov, N.F. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. Russ. J. Bioorganic Chem. 2016, 42, 115–132. [Google Scholar] [CrossRef]
  122. Bilen, S.; Sirtiyah, A.M.A.; Terzi, E. Therapeutic effects of beard lichen, Usnea barbata extract against Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 87, 401–409. [Google Scholar] [CrossRef] [PubMed]
  123. Kwon, Y.; Cha, J.; Chiang, J.; Tran, G.; Giaever, G.; Nislow, C.; Hur, J.-S.; Kwak, Y.-S. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J. Appl. Microbiol. 2016, 121, 1580–1591. [Google Scholar] [CrossRef]
  124. Chen, S.; Zhang, Z.; Qing, T.; Ren, Z.; Yu, D.; Couch, L.; Ning, B.; Mei, N.; Shi, L.; Tolleson, W.H.; et al. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch. Toxicol. 2017, 91, 1293–1307. [Google Scholar] [CrossRef]
  125. Stan, M.S.; Constanda, S.; Grumezescu, V.; Andronescu, E.; Ene, A.M.; Holban, A.M.; Vasile, B.S.; Mogoantă, L.; Bălşeanu, T.-A.; Mogoşanu, G.D. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonela enterica early biofilm growth. Appl. Surf. Sci. 2015, 12, 63. [Google Scholar]
  126. Poulsen-Silva, E.; Gordillo-Fuenzalida, F.; Atala, C.; Moreno, A.A.; Otero, M.C. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023, 13, 805. [Google Scholar] [CrossRef]
  127. Zakeri, Z.; Junne, S.; Jäger, F.; Dostert, M.; Otte, V.; Neubauer, P. Lichen cell factories: Methods for the isolation of photobiont and mycobiont partners for defined pure and co-cultivation. Microb. Cell Factories 2022, 21, 80. [Google Scholar] [CrossRef]
  128. Staropoli, A.; Iacomino, G.; De Cicco, P.; Woo, S.L.; Di Costanzo, L.; Vinale, F. Induced secondary metabolites of the beneficial fungus Trichoderma harzianum M10 through OSMAC approach. Chem. Biol. Technol. Agric. 2023, 10, 28. [Google Scholar] [CrossRef]
  129. Zhang, J.; Luo, W.; Wang, Z.; Chen, X.; Lv, P.; Xu, J. A novel strategy for D-psicose and lipase co-production using a co-culture system of engineered Bacillus subtilis and Escherichia coli and bioprocess analysis using metabolomics. Bioresour. Bioprocess. 2021, 8, 77. [Google Scholar] [CrossRef]
  130. Schilling, C.; Koffas, M.A.G.; Sieber, V.; Schmid, J. Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synth. Biol. 2020, 9, 3353–3363. [Google Scholar] [CrossRef]
  131. Gül, E.; Çelik, V. Biyofarmasötik keşif, geliştirme ve uretimin güncel paradigması olarak mikroorganizmaların metabolik mühendisliği: Sentetik biyolojinin katkıları. Dicle Üniversitesi Fen Bilim. Enstitüsü Derg. 2022, 11, 427–458. [Google Scholar]
  132. Woodley, J.M. Advances in biological conversion technologies: New opportunities for reaction engineering. React. Chem. Eng. 2020, 5, 632–640. [Google Scholar] [CrossRef]
  133. Nielsen, J. Cell factory engineering for improved production of natural products. Nat. Prod. Rep. 2019, 36, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
  134. Fordjour, E.; Mensah, E.O.; Hao, Y.; Yang, Y.; Liu, X.; Li, Y.; Liu, C.-L.; Bai, Z. Toward improved terpenoids biosynthesis: Strategies to enhance the capabilities of cell factories. Bioresour. Bioprocess. 2022, 9, 6. [Google Scholar] [CrossRef]
  135. Dreyling, L.; Boch, S.; Lumbsch, H.T.; Schmitt, I. Surveying lichen diversity in forests: A comparison of expert mapping and eDNA metabarcoding of bark surfaces. MycoKeys 2024, 106, 153–172. [Google Scholar] [CrossRef] [PubMed]
  136. Singh, S.; Arya, M.; Vishwakarma, S.K. Advancements in methods used for identification of lichens. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1450–1460. [Google Scholar]
  137. Kukwa, M.; Rodriguez-Flakus, P.; Aptroot, A.; Flakus, A. Two new species of Astrothelium from Sud Yungas in Bolivia and the first discovery of vegetative propagules in the family Trypetheliaceae (lichen-forming Dothideomycetes, Ascomycota). MycoKeys 2023, 95, 83–100. [Google Scholar] [CrossRef]
  138. Josephine, J.R.J.G. The emergence of in-silico models in drug target Interaction system: A comprehensive review. Biosci. Biotechnol. Res. Asia 2024, 1, 11–24. [Google Scholar]
  139. Xu, Y.; Chen, X.; Yuan, Z.; Ni, B.-J. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions. Environ. Sci. Technol. 2018, 52, 2835–2843. [Google Scholar] [CrossRef]
  140. Siafaka, P.I.; Bülbül, E.Ö.; Okur, M.E.; Karantas, I.D.; Okur, N.Ü. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023, 9, 753. [Google Scholar] [CrossRef]
  141. Rosalba, T.P.F.; Matos, G.D.R.; Salvador, C.E.M.; Andrade, C.K.Z. Rational Design and Multicomponent Synthesis of Lipid–Peptoid Nanocomposites towards a Customized Drug Delivery System Assembly. Molecules 2023, 28, 5725. [Google Scholar] [CrossRef] [PubMed]
  142. Qiu, C.; Zhang, J.Z.; Wu, B.; Xu, C.C.; Pang, H.H.; Tu, Q.C.; Lu, Y.Q.; Guo, Q.Y.; Xia, F.; Wang, J.G. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J. Nanobiotechnol. 2023, 21, 456. [Google Scholar] [CrossRef]
  143. Shreiber-Livne, I.; Sulimani, L.; Shapira, A.; Procaccia, S.; Meiri, D.; Sosnik, A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv. Transl. Res. 2023, 13, 3192–3203. [Google Scholar] [CrossRef] [PubMed]
  144. Nija, B. Prodrug approach: NSAID conjugates of platinum compounds as anti-cancer agents. Iraqi J. Pharm. Sci. 2023, 32, 1–13. [Google Scholar]
  145. Maulidiyah, M.; Suilowati, P.E.; Musdalifah, A.; Kusmalwaty, T.; Imran, I.; Azis, T.; Watoni, A.H.; Hasan, A.; Salim, L.O.A.; Nurdin, M. Antioxidant activity of secondary metabolite compounds from lichen Teloschistes flavicans. Biointerface Res. Appl. Chem. 2021, 11, 13878–13884. [Google Scholar]
  146. Oliveira, T.F.M.J. Techniquesfor chemical identification of metabolites produced by endophytic microorganims. Arq. Do Mudi 2022, 26, 52–66. [Google Scholar]
  147. Wang, X.; Zhang, Y.; Wu, N.; Cao, J.; Tao, Y.; Yu, R. A Method to Separate Two Main Antioxidants from Lepidium latifolium L. Extracts Using Online Medium Pressure Chromatography Tower and Two-Dimensional Inversion/Hydrophobic Interaction Chromatography Based on Online HPLC-DPPH Assay. Separations 2021, 8, 238. [Google Scholar] [CrossRef]
  148. Clements, T.; Rautenbach, M.; Ndlovu, T.; Khan, S.; Khan, W. A Metabolomics and Molecular Networking Approach to Elucidate the Structures of Secondary Metabolites Produced by Serratia marcescens Strains. Front. Chem. 2021, 9, 633870. [Google Scholar] [CrossRef]
  149. Attia, K.A.M.; El-Desouky, E.A.; Abdelfatah, A.M.; Abdelshafi, N.A. Simultaneous analysis of the of levamisole with triclabendazole in pharmaceuticals through developing TLC and HPLC–PDA chromatographic techniques and their greenness assessment using GAPI and AGREE methods. BMC Chem. 2023, 17, 163. [Google Scholar] [CrossRef]
  150. Sarethy, P.S.A.I. Biotechnology-based profiling of lichens and their metabolites for therapeutic applications. Curr. Appl. Sci. Technol. 2024, 2, e256497. [Google Scholar]
  151. Yang, D.; Eun, H.; Prabowo, C.P.S. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int. J. Mol. Sci. 2023, 24, 8923. [Google Scholar] [CrossRef]
  152. Bauer, J.; Waltenberger, B.; Noha, S.M.; Schuster, D.; Rollinger, J.M.; Boustie, J.; Chollet, M.; Stuppner, H.; Werz, O. Discovery of Depsides and Depsidones from Lichen as Potent Inhibitors of Microsomal Prostaglandin E2 Synthase-1 Using Pharmacophore Models. ChemMedChem 2012, 7, 2077–2081. [Google Scholar] [CrossRef]
Figure 1. The fundamental structure and biological identification methods of lichens.
Figure 1. The fundamental structure and biological identification methods of lichens.
Ijms 26 03136 g001
Table 2. Antimicrobial activity of monocyclic derivatives.
Table 2. Antimicrobial activity of monocyclic derivatives.
CompoundsStructuresObject StrainsSamplesPositive ControlReferences
MIC (µg/mL)/IZ (mm)
4-ChlororcinolIjms 26 03136 i001Methicillin-resistant Staphylococcus aureusMIC: 1–17Teicoplanin (MIC: 1)[35]
Enterococcus faecalisMIC: 75Teicoplanin (MIC ≤ 0.5)
Acinetobacter baumanniiMIC: 300Colistin (MIC: 0.78)
Klebsiella pneumoniaeColistin (MIC < 2)
OrcinolIjms 26 03136 i002Enterococcus faeciumMIC: 9.37Teicoplanin (MIC ≤ 0.5)[35]
Methicillin-resistant Staphylococcus aureusMIC: 18.75Colistin (MIC: 1)
Escherichia coliMIC: 9.37Teicoplanin (MIC: 1)
Pseudomonas aeruginosaMIC: 300Colistin (MIC: 4)
Methyl β-orcinol-carboxylateIjms 26 03136 i003Streptococcus gordoniiMIC: 375Doxycycline (MIC: 0.13)[64]
Porphyromonas gingivalisMIC: 93.75Doxycycline (MIC: 0.51)
Orsellinic acidIjms 26 03136 i004Fusarium fujikuroiMIC: 15.1Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Methyl β-orsellinateIjms 26 03136 i005Enterococcus faeciumIZ: 13.0Apramycin (IZ: 21.0)[63]
Staphylococcus aureusIZ: 18.0Apramycin (IZ: 21.0)[67]
Staphylococcus aureusMIC: 62.5Streptomycin (MIC: 2)[68]
Bacillus subtilis
Bacillus cereus
MIC: 125Streptomycin (MIC: 4)
Staphylococcus epidermidisStreptomycin (MIC: 2)
Acinetobacter baumanniiIZ: 16.0Apramycin (IZ: 20.0)[63]
Helicobacter pyloriIZ: 27.0 [44]
Escherichia coliMIC: 62.5Streptomycin (MIC: 4)[68]
Shigella sonneiMIC: 125
Methyl 5-bromo-β-orsellinateIjms 26 03136 i006Staphylococcus aureusIZ: 12.0 [67]
Methyl 3,5-dibromo-orsellinateIjms 26 03136 i007Staphylococcus aureusIZ: 29.0
MIC: 4
[67]
Ethyl everninateIjms 26 03136 i008Candida albicansMIC: 64 [65]
AtranolIjms 26 03136 i009Staphylococcus aureusIC50 ≥ 200,000Kanamycin (IC50: 42)[69]
Escherichia coliKanamycin (IC50: 9)
Dibutyl phthalateIjms 26 03136 i010Candida albicansMIC: 64 [65]
Methyl orsellinateIjms 26 03136 i011Staphylococcus aureusIZ: 13.0 [67]
Helicobacter pyloriIZ: 22.0 [44]
OrsellinaldehydeIjms 26 03136 i012Staphylococcus aureusIZ: 6.6Gentamicin (IZ: 12.3)[65]
Methyl-2,4-dihydroxy3,6-dimethylbenzoateIjms 26 03136 i013Candida albicansMIC: 64 [65]
2-Ethylhexyl-4-methoxy orsellinateIjms 26 03136 i014Staphylococcus aureusIZ: 6.2Gentamicin (IZ: 12.3)[65]
Escherichia coliIZ: 6.3Gentamicin (IZ: 12.4)
(+) MontagnetolIjms 26 03136 i015Staphylococcus aureusMIC: 0.5Streptomycin (MIC: 0.007)[66]
Salmonella typhi Pseudomonas aeruginosaMIC: 0.25Streptomycin (MIC: 0.015)
Escherichia coliMIC: 0.5Streptomycin (MIC: 0.125)
Candida albicansMIC: 0.125Streptomycin (MIC: 0.031)[66]
(−) MontagnetolIjms 26 03136 i016Staphylococcus aureusMIC: 0.5Streptomycin (MIC: 0.007)[66]
Salmonella typhiMIC: 0.25Streptomycin (MIC: 0.015)
Escherichia coliStreptomycin (MIC: 0.125)
Pseudomonas aeruginosaMIC: 0.5Streptomycin (MIC: 0.015)
Candida albicansMIC: 0.125Streptomycin (MIC: 0.031)
Staphylococcus aureusMIC: 0.125Streptomycin (MIC: 0.007)[66]
(+) Montagnetol homologs 3Ijms 26 03136 i017Salmonella typhiMIC: 0.125Streptomycin (MIC: 0.015)
Pseudomonas aeruginosaMIC: 0.062Streptomycin (MIC: 0.015)
Escherichia coliMIC: 0.5Streptomycin (MIC: 0.125)
Staphylococcus aureusMIC: 0.5Streptomycin (MIC: 0.007)[66]
(+) Montagnetol homologs 6Ijms 26 03136 i018Salmonella typhi Pseudomonas aeruginosaMIC: 0.25Streptomycin (MIC: 0.015)
Escherichia coliStreptomycin (MIC: 0.125)
Candida albicansMIC: 0.062Streptomycin (MIC: 0.031)
MIC: minimum inhibitory concentration; IZ: inhibition zone diameter.
Table 3. Antimicrobial activity of depsides.
Table 3. Antimicrobial activity of depsides.
CompoundsStructuresObject StrainsSamplesPositive Control References
MIC/EC50/ED50 (µg/mL)/IZ (mm)/IR (%)
Chloroatranorin Ijms 26 03136 i019Staphylococcus aureusMIC: 6240 [70]
Bacillus cereus
Bacillus subtilis
Listeria monocytogenesMIC: 3120 [70]
Proteus vulgarisMIC: 6240
Aeromonas hydrophilaMIC: 3120
Yersinia enterocoliticaMIC: 6240
Candida albicansMIC: 12,520 [70]
Candida glabrata
Anziaic acidIjms 26 03136 i020Bacillus cereusMIC: 500Streptomycin (MIC: 16)[71]
2′-O-Methyl anziaic acidIjms 26 03136 i021Bacillus cereusMIC: 62.5Streptomycin (MIC: 16)[71]
Staphylococcus aureusMIC: 250 Streptomycin (MIC: 31)
Escherichia coliMIC: 1000 Streptomycin (MIC: 62)[71]
Proteus mirabilisMIC: 500 Streptomycin (MIC: 62)
Cladosporium cladosporioidesMIC: 250 Ketoconazole (MIC: 39)[71]
Candida albicans
Trichoderma virideMIC: 250Ketoconazole (MIC: 78)
Fusarium oxysporum
Alternaria alternate
Mucor mucedoMIC: 500 Ketoconazole (MIC: 156)
Penicillium expansum
Aspergillus nigerMIC: 500 Ketoconazole (MIC: 78)
Penicillium chrysogenum
Aspergillus flavusMIC: 1000 Ketoconazole (MIC: 312)
Barbatic acidIjms 26 03136 i022Bacillus subtilisMIC: 31.25 Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Staphylococcus aureusMIC: 62.5Chloramphenicol (MIC: 31.25)
Vancomycin (MIC: 15.63)
4′-O-Demethylbarbatic acidIjms 26 03136 i023Streptococcus gordoniiMIC: 218 Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisMIC: 10.94Doxycycline (MIC: 0.13)[38]
3-Hydroxy-5methylphenyl-2-hydroxy-4-methoxy-6-methylbenzoateIjms 26 03136 i024Staphylococcus aureusIZ: 6.6Gentamicin (IZ: 12.3)[65]
Candida albicansMIC: 32 [65]
Diffractaic acidIjms 26 03136 i025Staphylococcus aureusIZ: 17.3 [62]
MycobacteriaMIC: 15.6 [47]
Escherichia coliIZ: 12.8 [62]
Fusarium fujikuroiMIC: 16.3Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Diffractic acidIjms 26 03136 i026Staphylococcus aureusIZ: 17.3Amoxicillin (IZ: 22.0) Chloramphenicol (IZ: 30.8)[48]
Escherichia coliIZ: 12.8Amoxicillin (IZ: 15.8) Chloramphenicol (IZ: 31.2)
Evernic acidIjms 26 03136 i027Staphylococcus aureusMIC: 0.98 [62]
Staphylococcus aureus-1199BMIC: 128 Norfloxacin (MIC: 32)[74]
Escherichia coliMIC: 31.25 [62]
Pseudomonas aeruginosaMIC: 125
Candida albicansMIC: 62.5 [62]
8-Hydroxybarbatic acidIjms 26 03136 i028Bacillus subtilisMIC: 125Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Methyl evernateIjms 26 03136 i029Bacillus cereusMIC: 125 Streptomycin (MIC: 16)[43]
Bacillus subtilisMIC: 250 Streptomycin (MIC: 16)
Staphylococcus aureusMIC: 500Streptomycin (MIC: 31)
Escherichia coliMIC: 1000Streptomycin (MIC: 62)[43]
Proteus mirabilis
Candida albicansMIC: 250Ketoconazole (MIC: 39)[43]
Cladosporium cladosporioides
Alternaria alternateKetoconazole (MIC: 78)
Penicillium expansum Mucor mucedoMIC: 500 Ketoconazole (MIC: 156)
Fusarium oxysporum Trichoderma virideKetoconazole (MIC: 78)
Penicillium chrysogenum Aspergillus nigerMIC: 1000 Ketoconazole (MIC: 78)
Aspergillus flavusKetoconazole (MIC: 312)
2′-OmethylevernolIjms 26 03136 i030Staphylococcus aureusIZ: 6.4Gentamicin (IZ: 12.3)[65]
Candida albicansMIC: 64
AtranorinIjms 26 03136 i031Staphylococcus aureus-1199BMIC: 128 Norfloxacin (MIC: 32)[74]
Staphylococcus aureusMIC: 31Streptomycin (MIC: 31.25)[30,53,80]
Methicillin-susceptible Staphylococcus aureus (Sa1,Sa10,Sa13) MIC: 128 [81]
Methicillin-resistant Staphylococcus aureus (Sa3,Sa14)MIC: 128
Methicillin-resistant Staphylococcus aureus (Sa15)MIC: 64
Bacillus mycoidesMIC: 15~31Streptomycin (MIC: 7.81)[80]
Bacillus subtilisMIC: 15.63~70.7 Streptomycin (MIC: 7.81)
Erythromycin (MIC: 4.2)
Gentamycin (MIC: 5)
Bacillus subtilisMIC: 15.6/15.63 Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[30,53]
Sarcina luteaMIC: 21.5 Erythromycin (MIC: 4.6)
Gentamycin (MIC: 4.5)
Listeria monocytogenesMIC: 15.6 [30]
Streptococcus faecalisMIC: 250 IZ: 17.8~33.0 Erythromycin (MIC: 4)
Gentamycin (MIC: 5)
[30,80]
Bacillus cereusMIC: 1.2 [30]
Mycobacterium tuberculosisuberculosisMIC: 250 Levofloxacin (MIC: 0.015)[80]
Mycolicibacterium aurum
Mycobacterium tuberculosis (MDR-A8) MIC > 200 Rifampicin (MIC: 100)[23]
Mycobacterium smegmatis (MDR-40)
Mycobacterium tuberculosis (MDR-V791)MIC > 200 Rifampicin (MIC > 200)
Mycobacterium smegmatis (MDR-R)
Proteus vulgarisMIC: 5/62.5Erythromycin (MIC: 5.1)
Gentamycin (MIC: 4.6)
[30,80]
Aeromonas hydrophilaMIC: 31.2 [30]
Escherichia coliMIC: 8.3~31Streptomycin (MIC: 31.25)
Erythromycin (MIC: 4.7)
Gentamycin (MIC: 5.1)
[80]
Enterobacter cloacaeMIC: 31/1000
Klebsiella pneumoniaeMIC: 8.3~31/500
Candida glabrataMIC: 500 [30]
Candida albicansMIC: 17/250~500Erythromycin (MIC: 5)
Gentamycin (MIC: 4.9)
Ketoconazole (MIC: 1.95)
[30,80]
Sclerotium rolfsii SaccED50: 39.70 [27]
Aspergillus fumigatusMIC: 250/500Ketoconazole (MIC: 3.9)[80]
Cryptococcus (Naganishia) diffluensMIC: 15.7 Erythromycin (MIC: 5.8)
Gentamycin (MIC: 5.5)
[80]
Cryptococcus neoformansMIC > 250 Ketoconazole (MIC: 25)[80]
Epidermophyton floccosum
Paecilomyces variotiiMIC: 250 Ketoconazole (MIC: 1.95)[80]
Trichoderma harzianumKetoconazole (MIC: 7.81)
Botrytis cinereaKetoconazole (MIC: 1.95)
Fusarium oxysporumMIC: 500 Ketoconazole (MIC: 3.9)[80]
Mucor mucedoKetoconazole (MIC: 31.25)
Penicillium purpurescensMIC: 500~1000 Ketoconazole (MIC: 3.9)[80]
Penicillium verrucosum
Aspergillus flavus
Divaricatic acidIjms 26 03136 i032Bacillus subtilisMIC: 7Vancomycin (MIC: 0.78)
Cefotaxime (MIC: 0.5)
[28]
Staphylococcus aureus 0027MIC: 64 Vancomycin (MIC: 25)
Cefotaxime (MIC: 64)
Staphylococcus epidermidisMIC: 16Vancomycin (MIC: 25)
Cefotaxime (MIC: 0.5)
Enterococcus faeciumMIC: 16Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
Methicillin-resistant Staphylococcus aureusMIC: 30 Vancomycin (MIC: 25)
Cefotaxime (MIC > 256)
Streptococcus mutansMIC: 32 Vancomycin (MIC: 12.5)
Cefotaxime (MIC: 0.5)
Micrococcus luteusMIC: 40Vancomycin (MIC: 25)
Cefotaxime (MIC: 1)
Pseudomonas aeruginosaMIC: 128 Vancomycin (MIC: 31.25)
Cefotaxime (MIC: 32)
[28]
Candida albicansMIC: 20Vancomycin (MIC > 100)
Cefotaxime (MIC > 256)
[28]
Perlatolic acidIjms 26 03136 i033Methicillin-resistant Staphylococcus aureusMIC: 32 Clindamycin (MIC: 8192)
Erythromycin (MIC: 1024)
Gentamicin (MIC: 256)
Levofloxacin (MIC ≤ 0.5)
Oxacillin (MIC: 8)
[75]
Thamnolic acidIjms 26 03136 i034Bacillus cereusMIC: 400 [62]
Bacillus subtilis
Listeria monocytogenesMIC: 200
Micrococcus luteus
Proteus vulgarisMIC: 400 [62]
Sclerotium rolfsii SaccMIC: 200 [62]
Candida kruseiMIC: 400
Aspergillus fumigatus
Alternaria alternate
Squamatic acidIjms 26 03136 i035Staphylococcus aureusMIC: 1,250,000 Chloramphenicol (MIC: 5)[58]
Sekikaic acidIjms 26 03136 i036Staphylococcus aureusIR: 50 [62]
Streptococcus mutansIR: 60
Streptomyces viridochromogenesIR: 55
Bacillus subtilisIR: 15
MIC: 125
Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53,62]
Escherichia coliIR: 78 [62]
Hyperhomosekikaic acidIjms 26 03136 i037Bacillus subtilisMIC: 125 Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
[53]
Lecanorin Ijms 26 03136 i038Candida albicansMIC: 64 [65]
Ramalic acid
/Obtusatic acid
Ijms 26 03136 i039Staphylococcus aureusMIC: 1000 Streptomycin (MIC: 31)[43]
Bacillus cereusMIC: 125Streptomycin (MIC: 16)
Bacillus subtilisMIC: 500Streptomycin (MIC: 16)
Proteus mirabilis
Escherichia coli
MIC: 1000 Streptomycin (MIC: 62)[43]
Candida albicansMIC: 250Ketoconazole (MIC: 39)[43]
Cladosporium cladosporioidesMIC: 500Ketoconazole (MIC: 39)
Trichoderma virideKetoconazole (MIC: 78)
Penicillium expansum
Mucor mucedo
MIC: 1000 Ketoconazole (MIC: 156)
Penicillium chrysogenum Aspergillus niger
Alternaria alternate
Fusarium oxysporum
Ketoconazole (MIC: 78)
Aspergillus flavusKetoconazole (MIC: 312)
3′-Hydroxyl-5′-propylphenyl 2,4-dihydroxyl-6-methylbenzoateIjms 26 03136 i040Aliivibrio fischeriIR: 95.5 [79]
Lecanoric acidIjms 26 03136 i041Clavibacter michiganensis subsp. michiganensisMIC > 500 Oxolinic acid (MIC: 31.25)
Oxytetracycline (MIC: 125)
[76]
Aliivibrio fischeriIR: 100 [79]
Fusarium fujikuroiMIC: 14.8Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Rhizoctonia solani KühnEC50: 35.12 [76]
Olivetoric acidIjms 26 03136 i042Bacillus cereus
Bacillus subtilis
Staphylococcus aureus
MIC: 623.48 [70]
Listeria monocytogenesMIC: 2493.92
Streptococcus faecalisMIC: 9999.66
Salmonella TyphimuriumMIC: 19,975.34 [70]
Escherichia coli
Proteus vulgarisMIC: 2493.92
Aeromonas hydrophila
Yersinia enterocoliticaMIC: 623.48
Candida albicans
Candida glabrata
MIC: 1246.96 [70]
Fusarium fujikuroiMIC: 1000 Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
3′-Hydroxyl-5′-pentylphenyl 2,4-dihydroxyl-6-methylbenzoateIjms 26 03136 i043Aliivibrio fischeriIR: 89 [79]
(+)-ErythrinIjms 26 03136 i044Streptococcus gordoniiMIC: 750 Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisMIC: 375 Doxycycline (MIC: 0.13)
Gyrophoric acidIjms 26 03136 i045Bacillus subtilisMIC: 19 [62]
MIC: minimum inhibitory concentration; ED50: effective dose 50; IZ: inhibition zone diameter; IR: inhibition rate; EC50: half maximal effective concentration.
Table 4. Antimicrobial activity of depsidones.
Table 4. Antimicrobial activity of depsidones.
CompoundsStructuresObject StrainsSamplesPositive ControlReferences
MIC/IC50 (µg/mL or µM)/IR/RIZD (%)
Salazinic acidIjms 26 03136 i046Bacillus mycoidesMIC: 0.0008/0.015 Streptomycin (MIC: 7.81) [59,84]
Bacillus subtilisMIC: 0.0008/0.0312 Streptomycin (MIC: 7.81) [59,84]
Bacillus cereusMIC: 63 [59]
Staphylococcus aureusMIC: 0.125Streptomycin (MIC: 15.72)[84]
Mycobacterium smegmatis MDR-RMIC: 50Rifampicin (MIC > 200)[23]
Mycobacterium smegmatis MDR-40MIC: 50Rifampicin (MIC: 100)[23]
Mycobacterium smegmatismegmatisMIC: 100 Rifampicin (MIC: 0.2)[23]
Mycobacterium tuberculosis H37RaMIC > 200
Mycobacterium tuberculosis MDR-A8
Mycobacterium tuberculosis MDR-V791
Mycolicibacterium aurumMIC: 250 [27]
Penicillium verrucosumMIC: 0.5 Ketoconazole (MIC: 3.9)[84]
Klebsiella pneumoniaeMIC: 0.5 Streptomycin (MIC: 31.25)[84]
Escherichia coliMIC: 1Streptomycin (MIC: 31.25)[84]
Candida albicansMIC: 0.25 Ketoconazole (MIC: 1.95)[84]
Aspergillus flavusMIC: 1 Ketoconazole (MIC: 3.9)[84]
Aspergillus fumigatus
Penicillium purpurescens
Fusarium udum ButlerIC50: 88.20 [59]
Protocetraric acidIjms 26 03136 i047Bacillus mycoidesMIC: 0.015/15Streptomycin (MIC: 7.81)[59,83,84]
Bacillus subtilisMIC: 0.015/15/64 Streptomycin (MIC: 7.81)[59,84]
Staphylococcus aureusMIC: 0.015/32/12.5/15 Streptomycin (MIC: 15.72)[59,83,84]
Mycobacterium smegmatismegmatisMIC: 2 Ciprofloxacin (MIC: 4)[84]
Mycobacterium tuberculosisuberculosisMIC: 125 [59]
Staphylococcus epidermidisMIC: 64 Ciprofloxacin (MIC: 4)[83]
Streptococcus faecalisMIC: 64 Ciprofloxacin (MIC: 2)
Vibrio choleraeMIC: 2 Ciprofloxacin (MIC: 4)[83]
Proteus vulgarisMIC: 4 Ciprofloxacin (MIC: 4)[83]
Escherichia coliMIC: 4 Ciprofloxacin (MIC: 2)
Pseudomonas aeruginosaMIC: 8 Ciprofloxacin (MIC: 4)
Salmonella typhiMIC: 500/0.5 [59,84]
Klebsiella pneumoniaeMIC: 1000/1Streptomycin (MIC: 31.25)[83,84]
Proteus mirabilisMIC: 16Ciprofloxacin (MIC: 1)[83]
Penicillium purpurescensMIC: 1 Ciprofloxacin (MIC: 2)
Amphotericin B (MIC: 4)
[83]
Fusarium fujikuroiMIC: 12.6 Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Penicillium verrucosumMIC: 0.5 Ketoconazole (MIC: 3.9)[84]
Candida albicansMIC: 64/0.25Amphotericin B (MIC: 1)
Ketoconazole (MIC: 1.95)
[83,84]
Campylobacter gastriMIC: 64Amphotericin B (MIC: 1)[83]
Aspergillus flavusMIC: 125Amphotericin B (MIC: 4)[83]
Aspergillus fumigatusMIC: 0.25 Ketoconazole (MIC: 3.9)[84]
Candida tropicalisMIC: 125Amphotericin B (MIC: 2)
Candida glabrataMIC: 250Amphotericin B (MIC: 1)[83]
Trichophyton rubrumMIC: 1000/1Amphotericin B (MIC: 4)[59,83]
Variolaric acidIjms 26 03136 i048Streptococcus gordoniiMIC: 375 Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisDoxycycline (MIC: 0.13)
Escherichia coliIR: 3.2 [59]
Stictic acidIjms 26 03136 i049Francisella tularensisIC50: 13 [59]
Yersinia pestisIC50: 27
Norstictic acidIjms 26 03136 i050Fusarium fujikuroiMIC: 16.1 Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Psoromic acidIjms 26 03136 i051Bacillus cereusMIC: 62.5 Streptomycin (MIC: 4)[68]
Bacillus subtilis
Mycobacterium tuberculosisuberculosisMIC: 3.2~4.1 [82]
Mycobacterium tuberculosisuberculosisMIC: 62.5 [59]
Streptococcus gordoniiMIC: 11.72Doxycycline (MIC: 0.51)[64]
Staphylococcus epidermidisMIC: 125 Streptomycin (MIC: 2)[68]
Staphylococcus aureusMIC: 250 Streptomycin (MIC: 2)
Escherichia coliMIC: 125
IR: 18.2
Streptomycin (MIC: 4)[59,68]
Shigella sonneiMIC: 250 Streptomycin (MIC: 4)[68]
Porphyromonas gingivalisMIC: 5.86Doxycycline (MIC: 0.13)[64]
Hypoconstictic acidIjms 26 03136 i052Staphylococcus aureusMIC: 31Streptomycin (MIC: 2)[68]
Bacillus subtilisMIC: 250 Streptomycin (MIC: 4)
Bacillus cereus
Staphylococcus epidermidisMIC > 250Streptomycin (MIC: 2)
Escherichia coliMIC: 62.5Streptomycin (MIC: 4)[68]
Shigella sonneiMIC > 250Streptomycin (MIC: 4)
2’-O-Methylhypostictic acidIjms 26 03136 i053Bacillus cereusMIC: 31Streptomycin (MIC: 2)[68]
Staphylococcus epidermidisMIC: 62.5
Bacillus subtilisStreptomycin (MIC: 4)
Menegazziaic acidIjms 26 03136 i054Staphylococcus aureusMIC > 250 Streptomycin (MIC: 2)[68]
Staphylococcus epidermidis
Bacillus cereusMIC: 250Streptomycin (MIC: 4)
Bacillus subtilis
Escherichia coliMIC: 31 Streptomycin (MIC: 4)[68]
Shigella sonneiMIC: 250
PannarinIjms 26 03136 i055Methicillin-resistant Staphylococcus aureusbactericidal action [59]
Galbinic acidIjms 26 03136 i056Bacillus cereusMIC: 62.5Streptomycin (MIC: 4)[68]
Bacillus subtilis
Staphylococcus aureusMIC: 250 Streptomycin (MIC: 2)
Staphylococcus epidermidisMIC > 250
Shigella sonneiMIC > 250Streptomycin (MIC: 4)[68]
Escherichia coliMIC: 125
Lobaric acidIjms 26 03136 i057Staphylococcus aureus-1199B (NorA)MIC: 8 Norfloxacin (MIC: 32)[74]
XU212 (TetkmecA)MIC: 32 Tetracycline (MIC: 128)
Methicillin-resistant Staphylococcus aureus-16Oxacillin (MIC: 512)
RN4220 (MsrA)Erythromycin (MIC: 128)
Mycobacterium tuberculosis MDR-A8
Mycobacterium smegmatis MDR-40
MIC: 50Rifampicin (MIC: 100)[23]
Mycobacterium tuberculosis MDR-V791
Mycobacterium smegmatis MDR-R
Rifampicin (MIC > 200)
Mycobacterium smegmatismegmatisRifampicin (MIC: 0.2)
Methicillin-resistant Staphylococcus aureus-15MIC: 64Oxacillin (MIC: 32)[74]
Staphylococcus aureus-ATCC 25923Norfloxacin (MIC: 32)
Methicillin-resistant Staphylococcus aureusMIC: 64 Clindamycin (MIC: 8192)
Erythromycin (MIC: 1024)
Gentamicin (MIC: 256)
Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8)
[75]
Mycobacterium tuberculosisH37RaMIC: 100 Rifampicin (MIC: 0.2)[23]
Clavibacter michiganensis subsp. michiganensisMIC: 250 Oxolinic acid (MIC: 31.25)
Oxytetracycline (MIC: 125)
[76]
Streptococcus mutansMIC: 20Penicillin G (MIC: 0.15)[85]
Porphyromonas gingivalisMIC: 80Penicillin G (MIC: 0.29)
Himantormione AIjms 26 03136 i058Staphylococcus aureusIC50: 3590Kanamycin (IC50: 42)[69]
Himantormione BIjms 26 03136 i059Staphylococcus aureusIC50: 701
α-Collatolic acidIjms 26 03136 i060Methicillin-resistant Staphylococcus aureusMIC: 128 Clindamycin (MIC: 8192)
Erythromycin (MIC: 1024)
Gentamicin (MIC: 256)
Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8)
[75]
Escherichia coliIR: 103.4 [59]
Physodic acidIjms 26 03136 i061Bacillus subtilisMIC: 0.8
MIC: 6240
[59,70]
Bacillus mycoidesMIC: 1.6
Staphylococcus aureusRIZD: 118.78
MIC: 25,000
[29,70]
Staphylococcus aureus-1199B (NorA)MIC: 16 Norfloxacin (MIC: 32)[74]
Staphylococcus aureus-ATCC 25923MIC: 32 Norfloxacin (MIC: 1)
Methicillin-resistant Staphylococcus aureus-15Oxacillin (MIC: 32)
Staphylococcus aureus-XU212Tetracycline (MIC: 128)
Methicillin-resistant Staphylococcus aureus-16Oxacillin (MIC: 512)
Staphylococcus aureus-RN4220Erythromycin (MIC: 128)
Bacillus cereusMIC: 3120 [70]
Listeria monocytogenes
Streptococcus faecalisMIC: 25,000
Proteus vulgarisMIC: 25,000 [70]
Yersinia enterocoliticaMIC: 3120
Candida albicansMIC: 3120 [70]
Candida glabrata
3-Hydroxyphysodic acidIjms 26 03136 i062Staphylococcus aureus-RN4220 (MsrA)MIC: 32 Erythromycin (MIC: 128)[74]
Staphylococcus aureus-ATCC 25923MIC: 64 Norfloxacin (MIC: 1)
Staphylococcus aureus-1199B (NorA)Norfloxacin (MIC: 32)
EMethicillin-resistant Staphylococcus aureus-16Oxacillin (MIC: 512)
EMethicillin-resistant Staphylococcus aureus-15Oxacillin (MIC: 32)
Staphylococcus aureus-XU212 (Tetk, mecA)MIC: 128Tetracycline (MIC: 128)
Hypoprotocetraric acidIjms 26 03136 i063Streptococcus gordoniiMIC: 250 Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisMIC: 62.5Doxycycline (MIC: 0.13)
Conhypoprotocetraric acidIjms 26 03136 i064Streptococcus gordoniiMIC: 700Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisMIC: 175 Doxycycline (MIC: 0.13)[64]
Fumarprotocetraric acidIjms 26 03136 i065Bacillus cereusMIC: 4.6 [30]
Bacillus subtilis
Listeria monocytogenes
Streptococcus faecalisMIC: 150
Staphylococcus aureusMIC: 37.5
Klebsiella pneumoniaeMIC: 31 [59]
Proteus vulgarisMIC: 37.5 [30]
Aeromonas hydrophilaMIC: 150
Candida albicansMIC: 18.7 [30]
Candida glabrata
MIC: minimum inhibitory concentration; IR: inhibition rate; RIZD (%): relative inhibition zone diameter; IC50: half maximal inhibitory concentration.
Table 5. Antimicrobial activity of dibenzofuran compounds.
Table 5. Antimicrobial activity of dibenzofuran compounds.
CompoundsStructuresObject StrainsSamplesPositive ControlReferences
MIC/IC50 (µg/mL or µM)/IZ (mm)/BEC (µg/mL)
Usnic acidIjms 26 03136 i066Staphylococcus aureusMIC: 7.81, 1.0, 21, 0.15, 156Chloramphenicol (MIC: 31.25)
Vancomycin (MIC: 15.63)
Streptomycin (MIC: 15.72)
Tetracycline (MIC < 0.06)
Ampicillin (MIC < 0.06)
[20,38,53,84,93]
Methicillin-susceptible Staphylococcus aureus (Sa3,Sa13)MIC: 2 [81]
Methicillin-resistant Staphylococcus aureus (Sa1, Sa10,Sa14, Sa15)MIC: 8
Methicillin-resistant Staphylococcus aureusMIC: 25~50 [20]
Bacillus subtilisIZ: 15.0~21.0, 7.81, 0.5
MIC: 0.0008
Chloramphenicol (MIC: 7.81)
Vancomycin (MIC: 7.81)
Streptomycin (MIC: 7.81)
[20,21,53,84]
Bacillus cereusIZ: 23.7 Chloramphenicol (IZ: 22.3)[94]
Bacillus mycoidesMIC: 0.0008 Streptomycin (MIC: 7.81)[84]
Bacillus megateriumIZ: 17.0~22.0 [21]
Enterococcus casseliflavusIZ: 19.7Levofloxacin (IZ: 25.0)
Tetracycline (IZ: 26.0)
[22]
Streptococcus pyogenesIZ: 12.0Levofloxacin (IZ: 21.0)
Tetracycline (IZ: 27.0)
[22]
Streptococcus pneumoniaeIZ: 17.0, 17.3Levofloxacin (IZ: 22.0)
Tetracycline (IZ: 30.7)
Ofloxacin (IZ: 19.3)
Ceftriaxone (IZ: 21.0)
[22,49]
Mycobacterium abscessus ATCC 19977MIC: 18.15Amikacin (MIC: 1.71)
Ciprofloxacin (MIC: 3.02)
Clarithromycin (MIC: 0.67)
[88]
Mycobacterium abscessus AT07MIC: 9.07Amikacin (MIC: 3.41)
Ciprofloxacin (MIC: 6.03)
Clarithromycin (MIC: 0.17)
[88]
Mycobacterium abscessus AT46Amikacin (MIC: 1.71)
Ciprofloxacin (MIC: 12.07)
Clarithromycin (MIC: 0.33)
Mycobacterium abscessus AT52Amikacin (MIC: 6.83)
Ciprofloxacin (MIC: 24.14)
Clarithromycin (MIC: 171.13)
Mycobacterium tuberculosis H37RaMIC: 50 Rifampicin (MIC: 0.2)[23]
Mycobacterium tuberculosis MDR-A8MIC: 25 Rifampicin (MIC: 100)
Mycobacterium tuberculosis MDR-V791 Mycobacterium smegmatismegmatis MDR-RMIC: 12.5 Rifampicin (MIC > 200)
Mycobacterium smegmatismegmatisMIC: 12.5 Rifampicin (MIC: 0.2)
Mycobacterium smegmatismegmatis MDR-40MIC: 12.5 Rifampicin (MIC: 100)
Clavibacter michiganensis subsp. michiganensisMIC: 7.812Oxolinic acid (MIC: 31.25)
Oxytetracycline (MIC: 125)
[76]
Pseudomonas aeruginosaIZ: 16.7
MIC: 133
Ofloxacin (IZ: 19.3)
Ceftriaxone (IZ: 21.0)
[38,49]
Escherichia coliMIC: 20, 0.25, 225Streptomycin (MIC: 31.25)[20,38,84]
Escherichia coliIZ: 7.0, 18.6, 16Levofloxacin (IZ: 31.0)
Tetracycline (IZ: 21.0)
Chloramphenicol (IZ: 23.2)
Ampicillin (IZ: 21.0)
[22,37,94]
Klebsiella pneumoniaeMIC: 0.0625
IZ: 11.3
Streptomycin (MIC: 31.25)
Chloramphenicol (IZ: 17.5)
[84,94]
Proteus mirabilisMIC < 10,000Tetracycline (MIC > 128)
Ampicillin (MIC > 128)
[93]
Salmonella typhiIZ: 14.0, 18.1Ampicillin (IZ: 17.0)
Chloramphenicol (IZ: 23.8)
[37,94]
Salmonella entericaMIC < 10,000Tetracycline (MIC: 2)
Ampicillin (MIC: 1)
[93]
Salmonella typhimuriumTetracycline (MIC: 2) Ampicillin (MIC: 2)
Vibrio harveyiMIC: 20 [20]
Fusarium fujikuroiMIC: 18.6 Amphotericin B (MIC: 3)
Isavuconazole (MIC: 5)
Natamycin (MIC: 4)
Posaconazole (MIC: 0.65)
Voriconazole (MIC: 3.7)
Fluconazole (MIC: 90)
Itraconazole (MIC: 27)
[47]
Achlya bisexualisMIC: 8 [46]
Pythium sp.
Saprolegnia parasiticaMIC: 2
Aspergillus flavusMIC: 0.5 Ketoconazole (MIC: 3.9)[84]
Aspergillus fumigatusMIC: 0.125 Ketoconazole (MIC: 3.9)
Aspergillus nigerMIC: 10 Amphotericin B (MIC: 0.98)
Fluconazole (MIC: 250)
Penicillium purpurescensMIC: 0.5 Ketoconazole (MIC: 3.9)[84]
Penicillium verrucosum[93]
Candida albicansMIC: 0.25 Ketoconazole (MIC: 1.95)[84]
Saccharomyces cerevisiaeMIC: 5 Fluconazole (MIC: 7.81)[93]
MalasseziaIZ: 20.0 [95]
(+)-Usnic acidIjms 26 03136 i067Staphylococcus aureusMIC: 7.5, 12.5,
IZ: 20.0
Vancomycin (MIC: 1.47)[87,91,96]
Staphylococcus aureus-ATCC 25923MIC: 16Norfloxacin (MIC: 1)[74]
Staphylococcus aureus XU212 (Tetk, mecA)Tetracycline (MIC: 128)
Staphylococcus aureus RN4220 (MsrA)MIC: 8 Erythromycin (MIC: 128)[74]
Staphylococcus aureus-1199B (NorA)Norfloxacin (MIC: 32)
Methicillin-resistant Staphylococcus aureus-15MIC: 16Oxacillin (MIC: 32)[74]
Methicillin-resistant Staphylococcus aureus-16Oxacillin (MIC: 512)
Staphylococcus epidermidisMIC: 3.12 Vancomycin (MIC: 2.95)[91]
Staphylococcus haemolyticusMIC: 12.5 Vancomycin (MIC: 2.95)
Staphylococcus haemolyticusMIC: 25 [87]
Bacillus subtilisMIC: 8Streptomycin (MIC: 4)[68]
Bacillus cereus
Mycobacterium aviumMIC: 16 Isoniazid (MIC: 1.0)[24]
Mycobacterium tuberculosisuberculosisMIC: 8
IZ: 8
Isoniazid (MIC: 0.03)[24,87]
Mycobacterium kansasiiMIC: 8 Isoniazid (MIC: 0.05)[24]
Enterococcus faeciumMIC > 50, 6.25 [44,87]
Escherichia coliMIC: 31 [68]
Helicobacter pyloriMIC: 4~8 [87]
Candida albicansMIC: 64 [65]
Candida orthopsilosisBEC50: 3.9
BEC80: 31.25
[87]
Candida parapsilosisBEC50: 3.9
BEC80: 62.5
(−)-Usnic acidIjms 26 03136 i068Staphylococcus aureusIZ: 25~40
MIC: 100
[87]
Staphylococcus aureusMIC: 2.4, 2.5, 7.5Chloramphenicol (MIC: 5) [30,57,58]
Methicillin-resistant Staphylococcus aureusMIC: 2.5~7.5 [58]
Methicillin-resistant Staphylococcus aureus (Cl)MIC: 25~50 32~128Oxacillin (MIC: 0.078)
Oxacillin (MIC: 16–128)
[97,98]
Bacillus cereusMIC: 0.15 [30]
Bacillus subtilisMIC: 0.61
Streptococcus faecalisMIC: 0.15
Listeria monocytogenesMIC: 0.31 [30]
Proteus vulgarisMIC: 0.15
Aeromonas hydrophilaMIC: 1.2
Candida albicansMIC: 0.15 [30]
Candida glabrata
Usenamine EIjms 26 03136 i069Candida albicansMIC: 64 [65]
Usenamine FIjms 26 03136 i070Candida albicansMIC: 64 [65]
Usenamine GIjms 26 03136 i071Candida albicansMIC: 64 [65]
Usenamine HIjms 26 03136 i072Candida albicansMIC: 64 [65]
IsousoneIjms 26 03136 i073Trichophyton rubrum spp. MIC: 41 [92]
UsoneIjms 26 03136 i074Trichophyton rubrum spp. MIC: 41 [92]
PerfluorophenacylIjms 26 03136 i075Bacillus subtilisIZ: 12.0
MIC: 158.1
Streptomycin (IZ: 33.0 MIC: 3)[90]
1, 3, 7, 9-Tetrahydroxy-2, 8-dimethyl-4, 6-di (ethanoyl) dibenzofuranIjms 26 03136 i076Escherichia coliIC50: 18 [99]
2,6-DifluorophenylIjms 26 03136 i077Salmonella TyphiMIC: 11 [90]
Bacillus subtilisStreptomycin (IZ: 33.0 MIC: 3)
Escherichia coliMIC: 6Streptomycin (IZ: 37.0 MIC: 3)
2-Acylnaphthalenyl Ijms 26 03136 i078Mtb H37RvMIC: 5.3 [89]
3,4-DifluorophenacylIjms 26 03136 i079Bacillus subtilisIZ: 12.0
MIC: 172.8
Penicillin (IZ: 28.0 MIC: 3.5)
Streptomycin (IZ: 24.0 MIC: 8.1)
[89]
Mtb H37RvMIC: 5.4
N-AcylmorpholinylIjms 26 03136 i080Bacillus subtilisIZ: 12.0
MIC: 90.7
Penicillin (IZ: 28.0 MIC: 3.5)
Streptomycin (IZ: 24.0 MIC: 8.1)
[89]
Didymic acid Ijms 26 03136 i081Staphylococcus aureusMIC: 7.5 [57]
Condidymic acidIjms 26 03136 i082Staphylococcus aureusMIC: 7.5 [57]
3-Fluoro-5-trifluoromethylphenylIjms 26 03136 i083Salmonella TyphiMIC: 10 [90]
Hexanoic acidIjms 26 03136 i084Bacillus subtilisMIC: 3Streptomycin (IZ: 33.0 MIC: 3)[90]
Streptococcus mutansMIC: 7
Salmonella TyphiMIC: 3 [90]
MIC: minimum inhibitory concentration; IZ: inhibition zone diameter; BEC50: biofilm-eradicating concentration 50; IC50: half maximal inhibitory concentration.
Table 6. Antimicrobial activity of other phenol derivatives.
Table 6. Antimicrobial activity of other phenol derivatives.
CompoundsStructuresObject StrainsSamplesPositive ControlReferences
MIC (µg/mL)/IZ (mm)
3-Chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-oneIjms 26 03136 i085Staphylococcus aureusIZ: 9.5 [102]
Enterococcus faeciumIZ: 10.0
2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-oneIjms 26 03136 i086Epidermophyton floccosumMIC: 4 [102]
Trichophyton rubrum Microsporum canisMIC: 8
Lepraric acidIjms 26 03136 i087Streptococcus gordoniiMIC > 2500Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisMIC: 625 Doxycycline (MIC: 0.13)
Eumitrin FIjms 26 03136 i088Bacillus subtilisMIC: 62.5 [103]
Escherichia coliMIC: 62.5 [103]
Eumitrin GIjms 26 03136 i089Bacillus subtilisMIC: 62.5 [103]
Escherichia coliMIC: 62.5 [103]
Eumitrin HIjms 26 03136 i090Bacillus subtilisMIC: 62.5 [103]
Escherichia coliMIC: 62.5 [103]
HybocarponeIjms 26 03136 i091Staphylococcus aureusMIC: 4Norfloxacin (MIC: 1)[74]
Staphylococcus aureus-RN4220 (MsrA)Erythromycin (MIC: 128)
Methicillin-resistant Staphylococcus aureus-15Oxacillin (MIC: 32)
Methicillin-resistant Staphylococcus aureus-16MIC: 8Oxacillin (MIC: 512)
Staphylococcus aureus-1199B (NorA)Norfloxacin (MIC: 32)
Staphylococcus aureus-XU212 (Tetk, mecA)Tetracycline (MIC: 128)
MIC: minimum inhibitory concentration; IZ: inhibition zone diameter.
Table 7. Antimicrobial activity of higher fatty acids and esters compounds.
Table 7. Antimicrobial activity of higher fatty acids and esters compounds.
CompoundsStructuresObject StrainsSamplesPositive ControlReferences
MIC/ED50 (µg/mL)/IZ (mm)
Protolichesterinic acidIjms 26 03136 i092Methicillin-resistant Staphylococcus aureusMIC: 64 Clindamycin (MIC: 8192)
Erythromycin (MIC: 1024)
Gentamicin (MIC: 256)
Levofloxacin (MIC ≤ 0.5)
Oxacillin (MIC: 8)
[75]
Pythium debaryanumED50: 16.07Hexaconazole (ED50: 25.92)[27]
Rhizoctonia solaniED50: 23.09
Constipatic acidIjms 26 03136 i093Candida albicansMIC: 64 [65]
Lichesterinic acid B-10Ijms 26 03136 i094Porphyromonas gingivalisMIC: 0.073Doxycycline (MIC: 0.13)[104]
Lichesterinic acid B-7Porphyromonas gingivalisMIC: 75
Lichesterinic acid B-12Porphyromonas gingivalisMIC: 0.037
Lichesterinic acid B-13Porphyromonas gingivalisMIC: 0.293
18R-hydroxy-dihydroalloprotolichesterinic acidIjms 26 03136 i095Candida albicansMIC: 64 [65]
MIC: minimum inhibitory concentration; ED50: effective dose 50; IZ: inhibition zone diameter.
Table 8. Antimicrobial activity of other categories of lichens substances.
Table 8. Antimicrobial activity of other categories of lichens substances.
CompoundsStructuresObject Strains SamplesPositive Control AntibioticsReferences
MIC (µg/mL or µM)/IC50/EC50 (µg/mL)/IZ (mm)
Rhizocarpic acidIjms 26 03136 i096Bacillus subtilisMIC: 50Tetracycline (MIC: 6.3)[105]
Staphylococcus aureusMIC: 32Norfloxacin (MIC: 1)[74]
RN4220 (MsrA)Erythromycin (MIC: 128)
Methicillin-resistant Staphylococcus aureus-15Oxacillin (MIC: 32)
Methicillin-resistant Staphylococcus aureus-16Oxacillin (MIC: 512)
Staphylococcus aureus-1199B (NorA)MIC: 64Norfloxacin (MIC: 32)
XU212 (Tetk, mecA)Tetracycline (MIC: 128)
7-Hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-oneIjms 26 03136 i097Bacillus subtilisMIC: 2620 [107]
Klebsiella pneumoniaeMIC: 1290
Escherichia coli Pseudomonas aeruginosaMIC: 1560
Candida albicansMIC: 6250
Aspergillus fumigatusMIC: 7250
Stereocalpin AIjms 26 03136 i098Escherichia coliIC50: 28 [99]
Stereocalpin BIjms 26 03136 i099Escherichia coliIC50: 30 [99]
Epiforellic acidIjms 26 03136 i100Methicillin-resistant Staphylococcus aureusMIC: 32Clindamycin (MIC: 8192)
Erythromycin (MIC: 1024)
Gentamicin (MIC: 256)
Levofloxacin (MIC ≤ 0.5)
Oxacillin (MIC: 8)
[75]
Cryptothecin AIjms 26 03136 i101Candida albicansWeak activity [108]
Vulpinic acidIjms 26 03136 i102Methicillin-resistant Staphylococcus aureusMIC: 31,250 [106]
Streptococcus gordoniiMIC: 187.5Doxycycline (MIC: 0.51)[64]
Clavibacter michiganensis subsp. michiganensisMIC: 3.9Oxolinic acid (MIC: 31.25)
Oxytetracycline (MIC: 125)
[76]
Porphyromonas gingivalisMIC: 375Doxycycline (MIC: 0.13)[64]
Sclerotinia sclerotiorumEC50: 2.8 [76]
UridineIjms 26 03136 i103Escherichia coliIZ: 6.3Gentamicin (IZ: 12.4)[65]
4-(Acylamino)butyramidesIjms 26 03136 i104Candida albicansMIC: 64 [65]
(+)-Roccellic acidIjms 26 03136 i105Streptococcus gordoniiMIC: 46.9 Doxycycline (MIC: 0.51)[64]
Porphyromonas gingivalisDoxycycline (MIC: 0.13)
Caperatic acidIjms 26 03136 i106Staphylococcus aureusMIC: 10 [96]
MIC: minimum inhibitory concentration; IZ: inhibition zone diameter; EC50: half maximal effective concentration; IC50: half maximal inhibitory concentration.
Table 9. Antiviral activity of lichen-derived compounds.
Table 9. Antiviral activity of lichen-derived compounds.
Compounds StructuresObject Strains SamplesPositive Control AntibioticsReferences
IC50/ED50 (µg/mL or µM)/IZ (mm)/IR (%)/SI
Methyl β-orcinol-carboxylateIjms 26 03136 i107Hepatitis C VirusIC50: 50.6 [111]
AtranolIjms 26 03136 i108Hepatitis C VirusIC50: 40.3Telaprevir (IC50: 0.18)
Erlotinib (IC50: 0.64)
Methyl orsellinateIjms 26 03136 i109Hepatitis C VirusIC50 > 100
Barbatic acidIjms 26 03136 i110Epstein–Barr virusIC50 > 100 [62]
Diffractic acidIjms 26 03136 i111Epstein–Barr virusIC50: >100 [62]
Evernic acidIjms 26 03136 i112Epstein–Barr virusIR: 64.6 [62]
AtranorinIjms 26 03136 i113Hepatitis C virus IC50: 22.3
SI > 4.5
Telaprevir (IC50: 0.18)
Erlotinib (IC50: 0.64)
[111]
Sekikaic acidIjms 26 03136 i114Respiratory syncytial virus rgIC50: 5.69
SI: 5.46
[62,112]
Respiratory syncytial virus A2 IC50: 7.7
Psoromic acidIjms 26 03136 i115Herpes Simplex Virus Type 1IC50: 1.9
SI: 163.2
Acyclovir (IC50: 2.6 SI: 119.2)[113]
Herpes Simplex Virus Type 2IC50: 2.7 SI: 114.8Acyclovir (IC50: 2.8 SI: 110.7)
Usnic acidIjms 26 03136 i116Herpes simplex type 1 virus IZ > 4 [20]
Polio type 1 virus IZ > 4
(+)-Usnic acidIjms 26 03136 i117Severe acute respiratory Syndrome Coronavirus 2IC50: 7.99
SI: 6.26
Chloroquine (IC50: 6.16 SI: 13.07)
Remdesivir (IC50: 2.25 SI: 4.24)
Lopinavir (IC50: 10.8 SI: 6.74)
[115]
Severe acute respiratory Syndrome Coronavirus 2 Alpha (B.1.1.7)IC50: 6.05
SI: 5.8
Chloroquine (IC50: 2.64)
Remdesivir (IC50: 1.47)
Lopinavir (IC50: 11.8)
Severe acute respiratory Syndrome Coronavirus 2 Beta (B.1.351)IC50: 2.92
SI: 11.1
Chloroquine (IC50: 6.22)
Remdesivir (IC50: 6.48)
Lopinavir (IC50: 15.3)
A(H1N1)pdm09 influenza virusED50: 51.7
SI: 5.9
[87,116]
Epstein–Barr virus activationED50: 1.0
(−)-Usnic acidIjms 26 03136 i118A(H1N1)pdm09 influenza virusED50: 14.5
SI: 14.4
[87,116]
Epstein–Barr virus ED50: 5.0
ED50: effective dose 50; IZ: inhibition zone diameter; IR: inhibition rate; IC50: half maximal inhibitory concentration; SI: selection index.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tian, H.; Lu, J.; Liang, F.; Ding, H.; Xiao, C. Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. Int. J. Mol. Sci. 2025, 26, 3136. https://doi.org/10.3390/ijms26073136

AMA Style

Tian H, Lu J, Liang F, Ding H, Xiao C. Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. International Journal of Molecular Sciences. 2025; 26(7):3136. https://doi.org/10.3390/ijms26073136

Chicago/Turabian Style

Tian, Hongqiao, Junlin Lu, Fangrong Liang, Haiyan Ding, and Chaojiang Xiao. 2025. "Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors" International Journal of Molecular Sciences 26, no. 7: 3136. https://doi.org/10.3390/ijms26073136

APA Style

Tian, H., Lu, J., Liang, F., Ding, H., & Xiao, C. (2025). Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. International Journal of Molecular Sciences, 26(7), 3136. https://doi.org/10.3390/ijms26073136

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop