Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors
Abstract
1. Introduction
2. Types and Characteristics of Antimicrobially Active Lichens
Categories | Object Strain | Lichens (Extracts) | Sample | Positive Control | References |
---|---|---|---|---|---|
MIC/MBC/ED50 (µg/mL)/IZ (mm)/IR (%)/RIZD (%) | |||||
Gram-positive bacteria | Bacillus subtilis | Usnea barbata (Methanol-acetone) | MIC: 100 | [21] | |
IZ: 27.0 | [52] | ||||
Usnea rubrotincta (Acetone) | MIC: 15.63 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | ||
Usnea rubrotincta (Methanol) | MIC: 250 | ||||
Parmelia conspersa (Methanol) | MIC: 156.25 | Amracin (MIC: 0.24) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 39.1 | ||||
Parmelia perlata (Methanol) | MIC: 78.125 | ||||
Parmelia perlata (Acetone) | MIC: 126.25 | ||||
Parmelia sulcata (Acetone) | IZ: 25.0 | [27] | |||
MIC: 3120 | |||||
Evernia prunastri (Acetone) | MIC: 78 | [36] | |||
Pseudever niafurfuracea (Acetone) | MIC: 78 | ||||
Ramalina sinensis (Methanol) | IZ: 25.0 | Gentamicin (IZ: 32.0 MIC: 250) | [54] | ||
MIC: 900 | |||||
Ramalina sinensis (Ethanol) | IZ: 23.0 | ||||
Ramalina sinensis (Acetone) | IZ: 21.0 | ||||
Ramalina umeticola (Acetone) | MIC: 31.25 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | ||
Ramalina hossei (Methanol) | IZ: 13.3 | Chloramphenicol (IZ: 34.0) | [55] | ||
Ramalina conduplicans (Methanol) | IZ: 15.0 | ||||
Ramalina pacifica (Methanol) | IZ: 17.6 | ||||
MIC: 1250 | Streptomycin (MIC: 16) | [43] | |||
Ramalina fraxinea (Acetone) | MIC: 1250 | ||||
Ramalina farinacea (Acetone) | MIC: 78 | [36] | |||
Cladonia foliacea (Chloroform) | MIC: 0.48 | [30] | |||
Cladonia foliacea (Diethyl ether) | MIC: 2.9 | ||||
Cladonia foliacea (Acetone) | MIC: 7.8 | ||||
Cladonia foliacea (Ethanol) | MIC: 3.9 | ||||
Cryptothecia striata (Methanol) | IZ: 17.5 | [31] | |||
Cryptothecia striata (Ethanolic) | IZ: 16.6 | ||||
Cryptothecia striata (Water) | IZ: 14.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 22.0 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 15.0 | ||||
Cryptothecia scripta (Water) | IZ: 12.5 | ||||
Phaeographis dendritica (Acetone) | MIC: 125 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 62.5 | ||||
Phaeographis dendritica (Benzene) | MIC: 500 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 250 | ||||
Trypethelevirens (Acetone) | MIC: 250 | ||||
Trypethelevirens (Methanol) | MIC: 125 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Chloramphenicol (Acetone) | MIC: 15.63 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | ||
Bacillus cereus | Ramalina hossei (Methanol) | IZ: 22.0 | Chloramphenicol (IZ: 36.6) | [55] | |
Ramalina conduplicans (Methanol) | |||||
Ramalina pacifica (Methanol) | IZ: 27.0 | ||||
Ramalina fraxinea (Acetone) | MIC: 1250 | Streptomycin (MIC: 16) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 625 | ||||
Cladonia foliacea (Chloroform) | MIC: 1.9 | [30] | |||
Cladonia foliacea (Diethyl ether) | MIC: 46.8 | ||||
Cladonia foliacea (Acetone) | MIC: 31.2 | ||||
Cladonia foliacea (Ethanol) | MIC: 15.6 | ||||
Streptococcus pneumoniae | Usnea barbata (Acetone) | IZ: 18.0 | Ofloxacin (IZ: 19.0) Ceftriaxone (IZ: 32.3) | [49] | |
Usnea barbata (Ethanol) | IZ: 18.3 | ||||
Staphylococcus epidermidis | Usnea steineri (Acetone) | MIC < 10 | [24] | ||
Staphylococcus aureus | Usnea articulate (Methanol) | IZ: 29.0/30.0 | Gentamicin (IZ: 29.0) | [25] | |
Usnea antarctica (Methanol-acetone) | IR: 94.76~100 | [56] | |||
Usnea aurantiaco-atraa (Methanol-acetone) | IR: 98.43~100 | ||||
Usnea barbata (Methanol-acetone) | MIC: 100 | [21] | |||
Usnea barbata (Acetone) | IZ: 17.3 | Ofloxacin (IZ: 26.3) Ceftriaxone (IZ: 25.0) | [49] | ||
Usnea barbata (Ethanol) | IZ: 12.3 | ||||
Usnea longissima (Methanol) | IZ: 28.0 | Streptomycin (IZ: 25.0) | [45] | ||
Usnea longissima (Ethanol) | IZ: 27.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 25.0 | ||||
Usnea longissima (Acetone) | IZ: 24.0 | ||||
Usnea blepharea (Acetone) | IZ: 21.3 | Amoxicillin (IZ: 22.0) Chloramphenicol (IZ: 30.8) | [48] | ||
Usnea rubrotincta (Acetone) | MIC: 125 | Chloramphenicol (MIC: 31.25) Vancomycin (MIC: 15.63) | [53] | ||
Usnea rubrotincta (Methanol) | MIC: 500 | ||||
Usnea intermedia (Methanol) | MIC: 128 | [41] | |||
Usnea filipendula (Methanol) | MIC: 128 | ||||
Usnea fulvoreagens (Methanol) | MIC: 512 | ||||
Parmelia conspersa (Methanol) | MIC: 78.125 | Amracin (MIC: 0.97) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 312.5 | ||||
Parmelia perlata (Methanol) | MIC: 156.25 | ||||
Parmelia perlata (Acetone) | MIC: 312.5 | ||||
Parmelia caperata (Methanol) | IZ: >19.0 | [27] | |||
Bulbothrix setschwanensis (Acetone) | MIC: 1560 | Rifampicin (MIC: 0.5) | [42] | ||
Cetraria islandica (Acetone) | RIZD: 92.44 | [29] | |||
Cetraria braunsiana (Methanol) | IZ: 25.0 | Streptomycin (IZ: 24.0) | [45] | ||
Cetraria braunsiana (Ethanol) | IZ: 24.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 22.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 20.0 | ||||
Evernia prunastri (Dichloromethane) | MIC: 4 | [38] | |||
Evernia prunastri (n-Hexane) | MIC: 21 | ||||
Evernia prunastri (Acetonitrile) | MIC: 14 | ||||
Evernia prunastri (Acetone) | MIC: 78 RIZD: 62.9 | [29,36] | |||
Pseudever niafurfuracea (Acetone) | MIC: 78 RIZD: 89.97 | [36] | |||
Pseudevernia furfuracea (Methanol) | MIC: 1250 | Gentamicin (MIC: 300) | [54] | ||
Hypogymnia physodes (Methanol/Ethanol) | MBC: 310 | [33] | |||
Ramalina sinensis (Methanol) | IZ: 19.0 MIC > 7500 | Gentamicin (IZ: 28.0 MIC: 300) | [54] | ||
Ramalina sinensis (Ethanol) | IZ: 16.0 | ||||
Ramalina sinensis (Acetone) | IZ: 14.0 | ||||
Ramalina umeticola (Acetone) | MIC: 31.25 | Gentamicin (IZ: 28.0 MIC: 300) Chloramphenicol (MIC: 31.25) Vancomycin (MIC: 15.63) | [53] | ||
Ramalina sinensis (Methanol) | IZ: 26.0 | Gentamicin (IZ: 29.0) | [25] | ||
Ramalina fraxinea (Acetone) | MIC: 20,000 | Streptomycin (MIC: 31) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 10,000 | ||||
Ramalina farinacea (Acetone) | MIC: 150 | [36] | |||
Cladonia incrassate (Acetone) | MIC >40 | [57] | |||
Cladonia uncialis (Heptane) | MIC: 5 | Chloramphenicol (MIC: 5) | [58] | ||
Cladonia uncialis (Diethyl ether) | MIC: 2.5 | ||||
Cladonia uncialis (Acetone) | MIC: 0.5 | ||||
Cladonia uncialis (Methanolic) | MIC: 10 | ||||
Cladonia foliacea (Chloroform) | MIC: 0.97 | [30] | |||
Cladonia foliacea (Diethyl ether) | MIC: 0.73 | ||||
Cladonia foliacea (Acetone) | MIC: 15.6 | ||||
Cladonia foliacea (Ethanol) | MIC: 3.9 | ||||
Xanthoria plitti (Methanol) | MIC: 7.8 IZ: 14.0 | Gentamicin (IZ: 29.0) | [25] | ||
Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 2) Benzyl Penicillin Sodium (MIC: 0.03) Tetracycline (MIC: 2) | [39] | ||
Cryptothecia striata (Methanol) | IZ: 16.5 | [31] | |||
Cryptothecia striata (Ethanolic) | IZ: 16 | ||||
Cryptothecia striata (Water) | IZ: 14 | ||||
Cryptothecia scripta (Methanol) | IZ: 22 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 17 | ||||
Cryptothecia scripta (Water) | IZ: 14 | ||||
Physcia parietina (Methanol) | IZ: 9.0 | Gentamicin (IZ: 29.0) | [25] | ||
Heterodermia speciosa (Methanol) | IZ: 7.0 | [21] | |||
Lobaria pulmonaria (Acetone) | RIZD: 105.41 | [29] | |||
Stereocaulon tomentosum (Acetone) | RIZD: 81.51 | ||||
Phaeographis dendritica (Acetone) | MIC: 250 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 125 | ||||
Phaeographis dendritica (Benzene) | MIC: 250 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 500 | ||||
Trypethelevirens (Acetone) | MIC: 500 | ||||
Trypethelevirens (Methanol) | MIC: 250 | ||||
Trypethelevirens (Benzene) | MIC: 500 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Chloramphenicol (Acetone) | MIC: 31.25 | Chloramphenicol (MIC: 31.25) Vancomycin (MIC: 15.63) | [53] | ||
Staphylococcus aureus 33591 | Usnea intermedia (Methanol) | MIC ≥ 512 | [41] | ||
Usnea filipendula (Methanol) | MIC: 256 | ||||
Usnea fulvoreagens (Methanol) | MIC: 256 | ||||
Methicillin-resistant Staphylococcus aureus | Usnea sp. 407 (Acetone) | IZ: 11.8 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | [28] | |
Usnea cf. scabrida 519 (Acetone) | IZ: 10.3 | ||||
Usnea sp. 523 (Acetone) | IZ: 9.8 | ||||
Usnea sp. 466 (Acetone) | IZ: 9.5 | ||||
Everniastrum sp. 419 (Acetone) | IZ: 12.0 | ||||
Evernia mesomorpha 458 (Acetone) | IZ: 9.0 | ||||
Evernia prunastri (Acetone) | MIC: 39 | [36] | |||
Pseudever niafurfuracea (Acetone) | MIC: 39 | ||||
Parmotrema ramoddense (Ethanol) | MIC: 96 IZ: 9.6 | Vancomycin (IZ: 14.2) | [40] | ||
Parmotrema tinctorum (Ethanol) | MIC: 2400 IZ: 6.9 | ||||
Parmotrema tinctorum (Hexane) | MIC: 2400 IZ: 7.1 | Vancomycin (IZ: 12.7) | |||
Parmotrema ramoddense (Hexane) | MIC: 60,000 IZ: 6.7 | Vancomycin (IZ: 13.1) | |||
Parmotrema ramoddense (Aqueous) | MIC: 12,000 IZ: 6.4 | Vancomycin (IZ: 13.5) | |||
Ramalina sp. 517 (Acetone) | IZ: 9.0 | [28] | |||
Ramalina implexa (n-Hexane/Dichloromethane) | MIC: 500 | Teicoplanin (MIC: 1) | [35] | ||
Roccella phycopsis (n-Hexane/Dichloromethane) | MIC: 1000 | ||||
Ramalina farinacea (Acetone) | MIC: 150 | [36] | |||
Methicillin-susceptible Staphylococcus aureus | Parmotrema tinctorum (Ethanol) | MIC: 2400 | Vancomycin (IZ: 20.8) | [40] | |
Parmotrema tinctorum (Hexane) | MIC: 2400 | ||||
Parmotrema ramoddense (Ethanol) | MIC: 19.2 | Vancomycin (IZ:13.4) | |||
Parmotrema ramoddense (Hexane) | MIC: 12,000 | ||||
Parmotrema ramoddense (Aqueous) | MIC: 2400 | ||||
Rhizoplaca chrysoleuca 431 (Acetone) | IZ: 11.8 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | [28] | ||
Rhizoplaca chrysoleuca 449 (Acetone) | IZ: 10.0 | ||||
Enterococcus faecium | Usnea sp. 407 (Acetone) | IZ: 23.0 | [28] | ||
Usnea sp. 471 (Acetone) | IZ: 15.0 | ||||
Usnea sp. 472 (Acetone) | IZ: 15.0 | ||||
Usnea cf. scabrida 519 (Acetone) | IZ: 14.5 | ||||
Usnea sp. 523 (Acetone) | IZ: 13.5 | ||||
Usnea sp. 466 (Acetone) | IZ: 16.0 | ||||
Usnea articulata 511 (Acetone) | IZ: 12.5 | ||||
Usnea steineri (Acetone) | MIC: 32 | ||||
Allocetraria ambigua 435 (Acetone) | IZ: 9.8 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | [28] | ||
Everniastrum sp. 412 (Acetone) | IZ: 13.0 | ||||
Everniastrum sp. 419 (Acetone) | IZ: 14.5 | ||||
Everniastrum nepalense 442 (Acetone) | IZ: 10.5 | ||||
Evernia mesomorpha 458 (Acetone) | IZ: 17.0 | ||||
Evernia divaricata 433 (Acetone) | IZ: 13.0 | ||||
Parmotrema sp. 514 (Acetone) | IZ: 15.0 | ||||
Flavocetraria cucullata 443 (Acetone) | IZ: 12.5 | ||||
Ramalina sp. 462 (Acetone) | IZ: 9.8 | ||||
Ramalina sp. 470 (Acetone) | IZ: 15.0 | ||||
Ramalina sp. 517 (Acetone) | IZ: 17.0 | ||||
Ramalina sp. 518 (Acetone) | IZ: 16.3 | ||||
Ramalina sp. 493 (Acetone) | IZ: 14.5 | ||||
Ramalina implexa (n-Hexane/Dichloromethane) | MIC: 500 | Teicoplanin (MIC ≤ 0.5) | [35] | ||
Roccella phycopsis (n-Hexane/Dichloromethane) | MIC: 1000 | ||||
Niebla ceruchoides 473 (Acetone) | IZ: 10.3 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | [28] | ||
Cladonia sp. 504 (Acetone) | IZ: 10.5 | ||||
Xanthoria parietina (Acetone) | MIC: 15.6 | Benzyl Penicillin Sodium (MIC: 8) Tetracycline (MIC: 2) | [39] | ||
Heterodermia sp. 535 (Acetone) | IZ: 11.5 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | [28] | ||
Lobaria sp. 403 (Acetone) | IZ: 9.0 | ||||
Rhizoplaca chrysoleuca 449 (Acetone) | IZ: 23.8 | ||||
Thamnolia vermicularis 445 (Acetone) | IZ: 11.0 | ||||
Enterococcus casseliflavus | Usnea barbata (Methanol/Ethyl acetate) | IZ: 20.0~22.0 | Levofloxacin (IZ: 25.0) Tetracycline (IZ: 26.0) | [22] | |
Listeria innocua | Evernia prunastri (Acetone) | MIC: 625 | [36] | ||
Pseudever niafurfuracea (Acetone) | MIC: 310 | ||||
Ramalina farinacea (Acetone) | MIC: 310 | ||||
Listeria monocytogenes | Cladonia foliacea (Chloroform) | MIC: 0.12 | [30] | ||
Cladonia foliacea (Diethyl ether) | MIC: 0.73 | ||||
Cladonia foliacea (Acetone) | MIC: 3.9 | ||||
Cladonia foliacea (Ethanol) | MIC: 3.9 | ||||
Micrococcus luteus | Cryptothecia striata (Methanol) | IZ: 20.0 | [31] | ||
Cryptothecia striata (Ethanolic) | IZ: 15.6 | ||||
Cryptothecia striata (Water) | IZ: 13.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 20.5 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 16.0 | ||||
Cryptothecia scripta (Water) | IZ: 15.0 | ||||
Streptococcus mutans | Usnea longissima (Methanol) | IZ: 14.0 | Streptomycin (IZ: 15.0) | [45] | |
Usnea longissima (Ethanol) | IZ: 15.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 12.0 | ||||
Usnea longissima (Acetone) | IZ: 12.0 | ||||
Cetraria braunsiana (Methanol) | IZ: 20.0 | ||||
Cetraria braunsiana (Ethanol) | IZ: 18.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 16.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 15.0 | ||||
Streptococcus pyogenes | Bulbothrix setschwanensis (Acetone) | MIC: 6250 | Rifampicin (MIC: 62.5) | [42] | |
Streptococcus faecalis | Cladonia foliacea (Chloroform) | MIC: 0.24 | [30] | ||
Cladonia foliacea (Diethyl ether) | MIC: 0.73 | ||||
Cladonia foliacea (Acetone) | MIC: 0.97 | ||||
Cladonia foliacea (Ethanol) | MIC: 0.97 | ||||
Micrococcus lysodeikticus | Parmelia crinite (Methanol) | IZ: 28.0 MIC: 940 | [27] | ||
Mycobacterium smegmatis | Usnea laevis (Acetone) | MIC: 6.25 | Rifampicin (MIC: 0.2) | [23] | |
Mycobacterium smegmatis (MDR-40) | Usnea laevis (Acetone) | MIC: 0.41 | Rifampicin (MIC: 100) | [23] | |
Mycobacterium smegmatis (MDR-R) | Usnea laevis (Acetone) | MIC: 0.81 | Rifampicin (MIC > 200) | [23] | |
Mycobacterium tuberculosis H37Ra | Usnea laevis (Acetone) | MIC: 25 | Rifampicin (MIC: 0.2) | [23] | |
Mycobacterium tuberculosisuberculosis | Usnea steineri (Acetone) | MIC: 32 | Isoniazid (MIC: 0.03) | [24] | |
Mycobacterium tuberculosis (MDR-V791) | Usnea laevis (Acetone) | MIC: 1.63 | Rifampicin (MIC > 200) | [23] | |
Mycobacterium tuberculosis (MDR-A8) | Usnea laevis (Acetone) | MIC: 6.25 | Rifampicin (MIC: 100) | [23] | |
Mycobacterium kansasii | Usnea steineri (Acetone) | MIC: 62 | Isoniazid (MIC: 0.05) | [24] | |
Mycobacterium avium | Usnea steineri (Acetone) | MIC: 62 | Isoniazid (MIC: 1.0) | [24] | |
Gram-negative bacteria | Salmonella typhi | Usnea longissima (n-Hexane) | IZ: 12.0 | Ampicillin (IZ: 17.0) | [37] |
Ramalina sinensis (Methanol) | MIC: 10,000 IZ: 26.0 | Chloramphenicol (IZ: 27.0) | [25] | ||
Xanthoria plitti (Methanol) | MIC: 9 | ||||
Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 0.5) Benzyl Penicillin Sodium (MIC: 4) Tetracycline (MIC: 1) | [39] | ||
Physcia parietina (Methanol) | MIC: 4000 IZ: 11.0 | Chloramphenicol (IZ: 27.0) | [25] | ||
Vibrio cholerae | Cryptothecia striata (Methanol) | IZ: 17.6 | [31] | ||
Cryptothecia striata (Ethanolic) | IZ: 16.3 | ||||
Cryptothecia striata (Water) | IZ: 12.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 19.0 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 18.3 | ||||
Cryptothecia scripta (Water) | IZ: 13.5 | ||||
Phaeographis dendritica (Acetone) | MIC: 62.5 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 125 | ||||
Phaeographis dendritica (Benzene) | MIC: 500 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 250 | ||||
Trypethelevirens (Acetone) | MIC: 125 | ||||
Trypethelevirens (Methanol) | MIC: 62.5 | ||||
Trypethelevirens (Benzene) | MIC: 250 | ||||
Aeromonas hydrophila | Cladonia foliacea (Chloroform) | MIC: 3.9 | |||
Cladonia foliacea (Diethyl ether) | MIC: 46.8 | ||||
Cladonia foliacea (Acetone) | MIC: 3.9 | ||||
Cladonia foliacea (Ethanol) | MIC: 3.9 | ||||
Pseudomonas aeruginosa | Usnea articulate (Methanol) | IZ: 28.0 | Gentamicin (IZ: 26.0) | [25] | |
Usnea florida (Methanol) | IZ: 18.0 | ||||
Usnea barbata (Methanol/Ethyl acetate) | IZ: 16.0~20.0 | Levofloxacin (IZ: 21.0) Tetracycline (IZ: 24.0) | [22] | ||
Usnea barbata (Acetone) | IZ: 17.0 | Ofloxacin (IZ: 19.3) Ceftriaxone (IZ: 21.0) | [49] | ||
Usnea barbata (Ethanol) | IZ: 20.0 | ||||
Usnea longissima (Methanol) | IZ: 16.0 | Streptomycin (IZ: 15.0) | [45] | ||
Usnea longissima (Ethanol) | IZ: 15.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 14.0 | ||||
Evernia prunastri (Dichloromethane) | MIC: 167 | [38] | |||
Evernia prunastri (n-Hexane) | MIC: 150 | ||||
Evernia prunastri (Acetonitrile) | MIC: 133 | ||||
Ramalina hossei (Methanol) | IZ: 13.0 | Chloramphenicol (IZ: 29.0) | [55] | ||
Ramalina conduplicans (Methanol) | IZ: 20.0 | ||||
Ramalina pacifica (Methanol) | IZ: 21.6 | ||||
Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 16) Tetracycline (MIC: 32) | [33] | ||
Cryptothecia striata (Methanol) | IZ: 17.0 | [31] | |||
Cryptothecia striata (Ethanolic) | IZ: 14.3 | ||||
Cryptothecia striata (Water) | IZ: 16.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 18.6 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 16.0 | ||||
Cryptothecia scripta (Water) | IZ: 13.0 | ||||
Pseudomonas fluorescens | Usnea barbata (Methanol-acetone) | IZ: 29.0 | [52] | ||
Enterobacter cloacae | Usnea florida (Methanol) | IZ: 25.0 | Gentamicin (IZ: 27.0) Tetracycline (IZ: 16.0) | [25] | |
Ramalina sinensis (Methanol) | IZ: 17.0 | ||||
Xanthoria parietina (Acetone) | MIC: 15.6 | Benzyl Penicillin Sodium (MIC: 4) | [39] | ||
Enterobacter cloacae CI | Xanthoria parietina (Acetone) | MIC: 62.5 | |||
Enterobacter aerogenes | Xanthoria parietina (Acetone) | MIC: 15.6 | Benzyl Penicillin Sodium (MIC: 4) | [39] | |
Enterobacter aerogenes CI | Xanthoria parietina (Acetone) | MIC: 62.5 | |||
Escherichia coli | Usnea florida (Methanol) | MIC: 8000 IZ: 27.0 | Gentamicin (IZ: 22.0) | [25] | |
Usnea longissima (Methanol) | IZ: 34.0 | Streptomycin (IZ: 28.0) | [45] | ||
Usnea longissima (Ethanol) | IZ: 32.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 28.0 | ||||
Usnea longissima (Acetone) | IZ: 26.0 | ||||
Usnea longissima (n-Hexane) | IZ: 14.0 | Ampicillin (IZ: 21.0) | [37] | ||
Usnea longissima (n-Hexane) | IZ: 17.0 | Amoxicillin (IZ: 15.8) Chloramphenicol (IZ: 31.2) | [48] | ||
Parmelia conspersa (Methanol) | MIC: 39.1 | Amracin (MIC: 0.97) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 78.125 | ||||
Parmelia perlata (Methanol) | MIC: 39.1 | ||||
Parmelia perlata (Acetone) | MIC: 39.1 | ||||
Parmelia crinite (Methanol) | IZ: 15.0 MIC: 3750 | [27] | |||
Parmelia sulcata (Acetone) | IZ: 24.0 MIC: 1560 | ||||
Bulbothrix setschwanensis (Acetone) | MIC: 6250 | Rifampicin (MIC: 4) | [42] | ||
Cetraria braunsiana (Methanol) | IZ: 22.0 | Streptomycin (IZ: 22.0) | [45] | ||
Cetraria braunsiana (Ethanol) | IZ: 20.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 20.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 18.0 | ||||
Evernia prunastri (Dichloromethane) | MIC: 500 | [38] | |||
Evernia prunastri (n-Hexane) | MIC > 500 | ||||
Evernia prunastri (Acetonitrile) | MIC: 250 | ||||
Ramalina sinensis (Methanol) | IZ: 18.0 | Gentamicin (IZ: 22.0) | [25] | ||
Ramalina hossei (Methanol) | IZ: 13.0 | Chloramphenicol (IZ: 26.6) | [55] | ||
Ramalina conduplicans (Methanol) | IZ: 14.3 | ||||
Ramalina pacifica (Methanol) | IZ: 16.0 | ||||
Ramalina fastigiata (Acetone) | MIC: 20,000 | Streptomycin (MIC: 62) | [43] | ||
Ramalina implexa (n-Hexane/Dichloromethane) | MIC: 500 | Colistin (MIC: 1) | [35] | ||
Roccella phycopsis (n-Hexane/Dichloromethane) | MIC: 1000 | ||||
Cladonia uncialis (Heptane) | MIC: 1000 | Chloramphenicol (MIC: 100) | [58] | ||
Cladonia uncialis (Diethyl ether) | MIC: 1000 | ||||
Cladonia uncialis (Acetone) | MIC: 100 | ||||
Cladonia uncialis (Methanolic) | MIC: 1000 | ||||
Xanthoria plitti (Methanol) | MIC: 10 IZ: 12.0 | Gentamicin (IZ: 22.0) | [25] | ||
Cryptothecia striata (Methanol) | IZ: 17.3 | [31] | |||
Cryptothecia striata (Ethanolic) | IZ: 16.0 | ||||
Cryptothecia striata (Water) | IZ: 12.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 23.0 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 16.6 | ||||
Cryptothecia scripta (Water) | IZ: 13.0 | ||||
Physcia parietina (Methanol) | MIC: 4000 IZ: 10.0 | Gentamicin (IZ: 22.0) | [25] | ||
Phaeographis dendritica (Acetone) | MIC: 125 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 125 | ||||
Phaeographis dendritica (Benzene) | MIC: 120~125 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 500 | ||||
Trypethelevirens (Acetone) | MIC: 250 | ||||
Trypethelevirens (Methanol) | MIC: 500 | ||||
Trypethelevirens (Benzene) | MIC: 250 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Escherichia coli (E245,O157:H7) | Usnea intermedia (Methanol) | MIC: 64 | [41] | ||
Usnea filipendula (Methanol) | MIC: 64 | ||||
Usnea fulvoreagens (Methanol) | MIC: 64 | ||||
Escherichia coli (E103,121,224,246,248,300,25922) | Usnea intermedia (Methanol) | MIC: 128 | [41] | ||
Usnea filipendula (Methanol) | MIC: 128 | ||||
Usnea fulvoreagens (Methanol) | MIC: 128 | ||||
Escherichia coli 101 | Usnea intermedia (Methanol) | MIC: 256 | [41] | ||
Usnea filipendula (Methanol) | MIC: 512 | ||||
Usnea fulvoreagens (Methanol) | MIC ≥ 512 | ||||
Escherichia coli (25922,O157:H7) | Usnea fulvoreagens (Methanol) | MIC: 512 | [41] | ||
Proteus mirabilis | Usnea articulate (Methanol) | MIC: 9000 IZ: 21.0 | Gentamicin (IZ: 22.0) | [25] | |
Parmelia conspersa (Methanol) | MIC: 39.1 | Amracin (MIC: 0.49) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 78.125 | ||||
Parmelia perlata (Methanol) | MIC: 156.25 | ||||
Parmelia perlata (Acetone) | MIC: 78.125 | ||||
Pseudevernia furfuracea (Methanol) | MIC: 630 | [33] | |||
Ramalina sinensis (Methanol) | IZ: 18.0 | Gentamicin (IZ: 22.0) | [25] | ||
Ramalina fraxinea (Acetone) | MIC: 10,000 | Streptomycin (MIC: 62) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 5000 | Streptomycin (MIC: 62) | |||
Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 0.03) Benzyl Penicillin Sodium (MIC: 4) Tetracycline (MIC: 32) | [39] | ||
Xanthoria plitti (Methanol) | IZ: 11.0 | Gentamicin (IZ: 22.0) | [25] | ||
Physcia parietina (Methanol) | IZ: 10.0 | ||||
Proteus mirabilis CI | Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 32) | [39] | |
Proteus rettgeri | Usnea articulate (Methanol) | IZ: 23.0 | Gentamicin (IZ: 21.0) | [25] | |
Usnea florida (Methanol) | IZ: 23.0 | ||||
Ramalina sinensis (Methanol) | IZ: 22.0 | ||||
Xanthoria plitti (Methanol) | MIC: 7 IZ: 10.0 | ||||
Proteus vulgaris | Usnea articulate (Methanol) | IZ: 29.0 | Gentamicin (IZ: 24.0) Tetracycline (IZ: 10.0) | [25] | |
Usnea florida (Methanol) | IZ: 29.0 | ||||
Parmelia conspersa (Methanol) | MIC: 39.1 | Amracin (MIC: 0.49) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 78.125 | ||||
Parmelia perlata (Methanol) | MIC: 78.125 | ||||
Parmelia perlata (Acetone) | MIC: 78.125 | ||||
Ramalina sinensis (Methanol) | IZ: 25.0 | Gentamicin (IZ: 24.0) Tetracycline (IZ: 10.0) | [25] | ||
Cladonia foliacea (Chloroform) | MIC: 3.9 | [30] | |||
Cladonia foliacea (Diethyl ether) | MIC: 46.8 | ||||
Cladonia foliacea (Acetone) | MIC: 3.9 | ||||
Cladonia foliacea (Ethanol) | MIC: 3.9 | ||||
Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 2) Benzyl Penicillin Sodium (MIC: 4) | [39] | ||
Proteus vulgaris CI | Xanthoria parietina (Acetone) | MIC: 15.6 | Cefotaxime (MIC: 32) | [39] | |
Citrobacter youngae | Usnea articulate (Methanol) | MIC: 4000 IZ: 16.0 | Gentamicin (IZ: 24.0) Tetracycline (IZ: 10.0) | [25] | |
Usnea florida (Methanol) | MIC: 6000 IZ: 16.0 | ||||
Ramalina sinensis (Methanol) | IZ: 24.0 | ||||
Citrobacter freundii | Usnea florida (Methanol) | MIC: 5000 IZ: 19.0 | Gentamicin (IZ: 23.0) Tetracycline (IZ: 15.0) | [25] | |
Ramalina sinensis (Methanol) | IZ: 21.0 | ||||
Xanthoria plitti (Methanol) | IZ: 12.0 | ||||
Physcia parietina (Methanol) | IZ: 11.0 | ||||
Salmonella enterica | Usnea articulate (Methanol) | MIC: 8000 | Gentamicin (IZ: 18.0) | [25] | |
Usnea florida (Methanol) | MIC: 10,000 | ||||
Agrobacterium tumefaciens | Usnea longissima (Methanol) | IZ: 24.0 | Streptomycin (IZ: 18.0) | [45] | |
Usnea longissima (Ethanol) | IZ: 22.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 23.0 | ||||
Usnea longissima (Acetone) | IZ: 21.0 | ||||
Cetraria braunsiana (Methanol) | IZ: 20.0 | ||||
Cetraria braunsiana (Ethanol) | IZ: 25.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 18.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 16.0 | ||||
Klebsiella pneumoniae | Parmelia conspersa (Methanol) | MIC: 156.25 | Amracin (MIC: 0.49) | [26] | |
Parmelia conspersa (Acetone) | MIC156.25 | ||||
Parmelia perlata (Methanol) | MIC: 156.25 | ||||
Parmelia perlata (Acetone) | MIC: 156.25 | ||||
Roccella phycopsis (n-Hexane/Dichloromethane) | MIC: 1000 | Colistin (MIC < 2) | [35] | ||
Xanthoria parietina (Acetone) | MIC: 62.5 | Cefotaxime (MIC: 1) Tetracycline (MIC: 16) | [39] | ||
Providencia rettgeri | Ramalina sinensis (Methanol) | MIC: 8000 | Gentamicin (IZ: 21.0) | [25] | |
Physcia parietina (Methanol) | MIC: 8000 IZ: 11.0 | ||||
Acinetobacter baumannii | Ramalina implexa (n-Hexane/Dichloromethane) | MIC: 500/1000 | Colistin (MIC: 0.78) | [35] | |
Shigella flexneri | Cryptothecia striata (Methanol) | IZ: 18.3 | [31] | ||
Cryptothecia striata (Ethanolic) | IZ: 15.6 | ||||
Cryptothecia striata (Water) | IZ: 14.5 | ||||
Cryptothecia scripta (Methanol) | IZ: 20.0 | ||||
Cryptothecia scripta (Ethanolic) | IZ: 19.0 | ||||
Cryptothecia scripta (Water) | IZ: 12.0 | ||||
Shigella dysenteriae | Cryptothecia striata (Methanol) | IZ: 18.5 | [31] | ||
Cryptothecia striata (Ethanolic) | IZ: 16.0 | ||||
Cryptothecia striata (Water) | IZ: 15.0 | ||||
Cryptothecia scripta (Methanol) | IZ: 21.5 | ||||
Cryptothecia scripta (Water) | IZ: 13.0 | ||||
Fungi | Cryptococcus neoformans | Bulbothrix setschwanensis (Acetone) | MIC: 6250 | Amphotericin B (MIC: 1.44) | [42] |
Candida albicans | Usnea barbata (Methanol/Ethyl acetate) | IZ: 13.0~16.0 | Fluconazole (IZ: 32.3) Voriconazole (IZ: 34.3) | [22] | |
Usnea longissima (Methanol) | IZ: 15.0 | Ketoconazole (IZ: 10.0) | [45] | ||
Usnea longissima (Ethanol) | IZ: 16.0 | ||||
Usnea longissima (Ethanol) | IZ: 11.0 | [44] | |||
Usnea longissima (Ethyl acetate) | IZ: 12.0 | Ketoconazole (IZ: 10.0) | [45] | ||
Usnea longissima (Acetone) | IZ: 14.0 | ||||
Parmelia conspersa (Methanol) | MIC: 39.1 | Ketoconazole (MIC: 1.95) | [26] | ||
Parmelia conspersa (Acetone) | MIC: 39.1 | ||||
Parmelia perlata (Methanol) | MIC: 78.125 | ||||
Parmelia perlata (Acetone) | MIC: 78.125 | ||||
Parmelia perlata (Methanol) | MIC: 78.125 | Ketoconazole (MIC: 1.95) | [26] | ||
Parmelia sulcata (Acetone) | MIC: 780 | [27] | |||
Cetraria braunsiana (Methanol) | IZ: 25.0 | Ketoconazole (IZ: 14.0) | [45] | ||
Cetraria braunsiana (Ethanol) | IZ: 30.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 28.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 27.0 | ||||
Evernia prunastri (Dichloromethane) | MIC: 150 | [38] | |||
Evernia prunastri (n-Hexane) | MIC: 150 | ||||
Evernia prunastri (Acetonitrile) | MIC: 38/IZ: 12 MIC > 7.5 | ||||
Ramalina fraxinea (Acetone) | MIC: 5000 | Ketoconazole (MIC: 39) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 625 | ||||
Cladonia uncialis (Heptane) | MIC: 750 | Amphothericin B (MIC: 1) | [58] | ||
Cladonia uncialis (Diethyl ether) | MIC: 750 | ||||
Cladonia uncialis (Acetone) | MIC: 750 | ||||
Cladonia uncialis (Methanolic) | MIC: 250 | ||||
Cladonia foliacea (Chloroform) | MIC: 500 | [30] | |||
Cladonia foliacea (Diethyl ether) | MIC: 375 | ||||
Cladonia foliacea (Acetone) | MIC: 500 | ||||
Cladonia foliacea (Ethanol) | MIC: 500 | ||||
Xanthoria plitti (Methanol) | MIC: 7 IZ: 10.0 | Gentamicin (IZ: 21.0) | [25] | ||
Heterodermia diademata (Ethyl acetate) | MIC: 230 | [21] | |||
Phaeographis dendritica (Acetone) | MIC: 250 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 125 | ||||
Phaeographis dendritica (Benzene) | MIC: 120~125 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 500 | ||||
Trypethelevirens (Acetone) | MIC: 250 | ||||
Trypethelevirens (Methanol) | MIC: 500 | ||||
Trypethelevirens (Benzene) | MIC: 250 | ||||
Trypethelevirens (Diethyl ether) | MIC: 250 | ||||
Candida albicans CI | Xanthoria parietina (Acetone) | MIC > 100 | Ketoconazole (MIC: 0.4) | [39] | |
Candida parapsilosis | Usnea barbata (Ethyl acetate) | IZ: 7.0 | Fluconazole (IZ: 25.7) Voriconazole (IZ: 30.7) | [22] | |
Candida glabrata | Cladonia foliacea (Chloroform) | MIC: 500 | [30] | ||
Cladonia foliacea (Diethyl ether) | MIC: 375 | ||||
Cladonia foliacea (Acetone) | MIC: 500 | ||||
Cladonia foliacea (Ethanol) | MIC: 500 | ||||
Cladosporium cladosporioides | Ramalina fraxinea (Acetone) | MIC: 5000 | Ketoconazole (MIC: 39) | [43] | |
Ramalina fastigiata (Acetone) | MIC: 2500 | ||||
Fusarium oxysporum | Usnea longissima (Methanol) | IZ: 14.0 | Ketoconazole (IZ: 12.0) | [45] | |
Usnea longissima (Ethanol) | IZ: 12.0 | ||||
Usnea longissima (Ethyl acetate) | IZ: 12.0 | ||||
Usnea longissima (Acetone) | IZ: 10.0 | ||||
Usnea hirta (Methanol) | IZ: 11.3 MIC: 3.125 | [44] | |||
Usnea hirta (Acetone) | IZ: 12.6 MIC: 6.25 | ||||
Cetraria braunsiana (Methanol) | IZ: 22.0 | Ketoconazole (IZ: 12.0) | [45] | ||
Cetraria braunsiana (Ethanol) | IZ: 25.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 24.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 22.0 | ||||
Ramalina fraxinea (Acetone) | MIC: 5000 | Ketoconazole (MIC: 78) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 2500 | ||||
Fusarium fujikuroi | Bryoria capillaris (Acetone) | MIC: 156.2 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | |
Bryoria capillaris (Methanol) | MIC: 312.5 | ||||
Parmotrema andinum (Propyl alcohol) | IZ: 20.7 | ||||
Gyalolechia subbracteata (Methyl alcohol) | IZ: 33.3 | ||||
Pyrenodesmia variabilis (Methyl alcohol) | IZ: 27.3 | ||||
Blennothallia crispa (Methyl alcohol) | IZ: 28.0 | ||||
Catapyrenium squamulosum (Acetone) | IZ: 5.0 | ||||
Fusarium solani | Alectoria sarmentosa (Ethanol) | IZ: 25.0 | AmphotericinB (MIC: 10) Flucytosine (MIC: 410) Itraconazole (MIC: 37) Voriconazole (MIC: 12) | [47] | |
Bryoria capillaris (Acetone) | MIC: 156.2 | ||||
Bryoria capillaris (Methanol) | MIC: 312.5 | ||||
Parmotrema andinum (Propyl alcohol) | IZ: 19.0 | ||||
Parmotrema austrosinense (Ethyl acetate) | IZ: 12.3 | ||||
Parmotrema grayanum (Ethyl acetate) | IZ: 15.3 | ||||
Parmotrema grayanum (Acetone) | IZ: 17 IR: 89 | ||||
Parmotrema thomsonii (Trichloromethane) | IZ: 18.0 | ||||
Parmotrema tinctorum (Ethyl acetate) | IZ: 18.6 | ||||
Flavoparmelia caperata (Acetone/Chloroform) | IZ: 10.3 | ||||
Hypogymnia nepalensis (Acetone) | IZ: 16.0 | ||||
Roccella montagnei (Methanol/Ethyl acetate) | IZ: 13.3 | ||||
Cladonia rangiferina (Ethanol) | IZ: 16.0 | ||||
Heterodermia diademata (Chloroform) | IZ: 20.0 | ||||
Teloschistes flavicans (Acetone) | IZ: 18.6 | ||||
Fusarium sp. | Ramalina hossei (Methanol) | IZ: 22.0 | Self-comparison (IZ: 34.6) | [55] | |
Ramalina conduplicans (Methanol) | IZ: 22.0 | ||||
Ramalina pacifica (Methanol) | IZ: 23.0 | ||||
Fusarium udum Butler | Parmelia reticulate (n-Hexane) | ED50: 43.7 | [27] | ||
Schizophyllum commune | Usnea barbata (Methanol-acetone) | IR: 51.60 | [21] | ||
Alternaria alternata | Usnea barbata (Methanol-acetone) | IR: 100 | [21] | ||
Ramalina fraxinea (Acetone) | MIC: 5000 | Ketoconazole (MIC: 78) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 2500 | ||||
Trichoderma viride | Usnea longissima (Ethanol) | IZ: 14.0 | [44] | ||
Ramalina fraxinea (Acetone) | MIC: 5000 | Ketoconazole (MIC: 78) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 2500 | ||||
Aspergillus niger | Parmelia conspersa (Methanol) | MIC: 39.1 | Ketoconazole (MIC: 0.97) | [26] | |
Parmelia conspersa (Acetone) | MIC: 39.1 | ||||
Parmelia perlata (Methanol) | MIC: 39.1 | ||||
Parmelia perlata (Acetone) | MIC: 19.53 | ||||
Cetraria braunsiana (Methanol) | IZ: 14.0 | Ketoconazole (IZ: 12.0) | [45] | ||
Cetraria braunsiana (Ethanol) | IZ: 14.0 | ||||
Cetraria braunsiana (Ethyl Acetate) | IZ: 12.0 | ||||
Cetraria braunsiana (Acetone) | IZ: 12.0 | ||||
Ramalina fraxinea (Acetone) | MIC: 10,000 | Ketoconazole (MIC: 78) | [43] | ||
Ramalina fastigiata (Acetone) | MIC: 10,000 | ||||
Phaeographis dendritica (Acetone) | MIC: 500 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 250 | ||||
Phaeographis dendritica (Benzene) | MIC: 500 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 250 | ||||
Trypethelevirens (Acetone) | MIC: 500 | ||||
Trypethelevirens (Methanol) | MIC: 250 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Aspergillus flavus Mucor mucedo | Ramalina fastigiata (Acetone) | MIC: 20,000 | [43] | ||
Parmelia sulcata (Acetone) | MIC: 780 | [27] | |||
Ramalina fraxinea (Acetone) | MIC: 10,000 | ||||
Ramalina fastigiata (Acetone) | MIC: 5000 | Ketoconazole (MIC: 156) | [43] | ||
Saccharomyces cerevisiae | Parmelia sulcata (Acetone) | MIC: 780 | [27] | ||
Rhizoctonia bataticola | Parmelia reticulate (n-Hexane) | ED50: 25.1 | [27] | ||
Rhizoctonia solani Kühn | Parmelia reticulate (n-Hexane) | ED50: 29.4 | [27] | ||
Xanthoria parietina (Acetone) | MIC: 62.5 | Ketoconazole (MIC: 0.2) | [39] | ||
Sclerotium rolfsii Sacc | Parmelia reticulate (n-Hexane) | ED50: 43.7 | [27] | ||
Alternaria sp. | Ramalina hossei (Methanol) | IZ: 6.6 | Self-comparison (IZ: 51.0) | [55] | |
Ramalina conduplicans (Methanol) | IZ: 13.0 | ||||
Ramalina pacifica (Methanol | IZ: 18.0 | ||||
Curvularia sp. | Ramalina hossei (Methanol) | IZ: 18.0 | Self-comparison (IZ: 47.0) | [55] | |
Ramalina conduplicans (Methanol) | IZ: 21.3 | ||||
Ramalina pacifica (Methanol) | IZ: 22.0 | ||||
Penicillium chrysogenum | Ramalina fraxinea (Acetone) | MIC: 10,000 | Ketoconazole (MIC: 78) | [43] | |
Penicillium expansum | Ramalina fraxinea (Acetone) | MIC: 20,000 | Ketoconazole (MIC: 156) | [43] | |
Ramalina fastigiata (Acetone) | MIC: 20,000 | ||||
Penicillium chrysogenum | Ramalina fastigiata (Acetone) | MIC: 5000 | Ketoconazole (MIC: 78) | [43] | |
Penicillium verrucosum | Phaeographis dendritica (Acetone) | MIC: 125 | [32] | ||
Phaeographis dendriticaa (Methanol) | MIC: 62.5 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 500 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Trypethelevirens (Acetone) | MIC: 125 | ||||
Trypethelevirens (Benzene) | MIC: 250 | ||||
Botrytis cinerea | Xanthoria parietina (Acetone) | MIC > 100 | Ketoconazole (MIC: 0.2) | [39] | |
Phaeographis dendritica (Acetone) | MIC: 125 | [32] | |||
Phaeographis dendriticaa (Methanol) | MIC: 125 | ||||
Trypethelevirens (Diethyl ether) | MIC: 500 | ||||
Phaeographis dendritica (Diethyl ether) | MIC: 125 | ||||
Trypethelevirens (Acetone) | MIC: 500 | ||||
Achlya bisexualis | Usnea longissima (Acetone) | MIC: 200 | [46] | ||
Cladonia amaurocraea (Acetone) | MIC: 200 | ||||
Cladonia rangiferina (Acetone) | MIC: 200 | ||||
Saprolegnia parasitica | Usnea longissima (Acetone) | MIC: 200 | [46] | ||
Cladonia amaurocraea (Acetone) | MIC: 200 | ||||
Cladonia rangiferina (Acetone) | MIC: 200 | ||||
Pythium debaryanum | Parmelia reticulate (Ethyl acetate) | ED50: 48.4 | [27] | ||
Pythium sp. | Usnea longissima (Acetone) | MIC: 800 | [45] | ||
Cladonia amaurocraea (Acetone) | MIC: 800 | [46] | |||
Cladonia rangiferina (Acetone) | MIC: 1600 |
3. Antimicrobial Active Compounds of Lichens
3.1. Phenol (Carboxylic Acid) Derivatives
3.1.1. Monocyclic Derivatives
3.1.2. Depsides
3.1.3. Depsidones
3.1.4. Dibenzofuran Derivatives
3.1.5. Other Phenol Derivatives
3.2. Higher Fatty Acids and Esters
3.3. Other Categories
4. Potential Applications and Challenges of Lichen Antimicrobial Activity
4.1. Application Value of Lichen Antimicrobial Activity
4.2. Challenges in the Application of Lichen Antimicrobial Activity
Funding
Conflicts of Interest
References
- Gerasimova, J.; Ruthensteiner, B.; Beck, A. MicroCT as a Useful Tool for Analysing the 3D Structure of Lichens and Quantifying Internal Cephalodia in Lobaria pulmonaria. Appl. Microbiol. 2021, 1, 189–200. [Google Scholar] [CrossRef]
- Bhagarathi, L.K.; Maharaj, G.; DaSilva, P.N.B.; Subramanian, G. A review of the diversity of lichens and what factors affect their distribution in the neotropics. GSC Biol. Pharm. Sci. 2022, 20, 027–063. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Yang, J.H.; Woo, J.-J.; Oh, S.-O.; Hur, J.-S. Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea. Sustainability 2020, 12, 3769. [Google Scholar] [CrossRef]
- Bhagarathi, L.K.; DaSilva, P.N.B.; Subramanian, G.; Maharaj, G.; Kalika-Singh, S.; Pestano, F.; Phillips-Henry, Z.; Cossiah, C. An integrative review of the biology and chemistry of lichens and their ecological, ethnopharmacological, pharmaceutical and therapeutic potential. GSC Biol. Pharm. Sci. 2023, 23, 092–119. [Google Scholar] [CrossRef]
- Asplund, J.; Wardle, D.A. How lichens impact on terrestrial community and ecosystem properties. Biol. Rev. Camb. Philos. Soc. 2017, 92, 1720–1738. [Google Scholar] [CrossRef]
- Furmanek, Ł.; Czarnota, P.; Seaward, M.R.D. Antifungal activity of lichen compounds against dermatophytes: A review. J. Appl. Microbiol. 2019, 127, 308–325. [Google Scholar] [CrossRef]
- Bhagarathi, L.K.; Phillip, N.B.D.S.; Subramanian, G. lichen inventory and species diversity at coastal ecosystems at No. 63 Benab, Berbice, Guyana. Int. J. Sci. Res. Arch. 2024, 11, 737–756. [Google Scholar] [CrossRef]
- Letwin, L.; Malek, L.; Suntres, Z.; Christopher, L. Cytotoxic and antibiotic potential of secondary metabolites from the lichen Umbilicaria muhlenbergii. Curr. Pharm. Biotechnol. 2020, 21, 1516–1527. [Google Scholar]
- Boustie, J.; Tomasi, S.; Grube, M. Bioactive lichen metabolites: Alpine habitats as an untapped source. Phytochem. Rev. 2010, 10, 287–307. [Google Scholar] [CrossRef]
- Dziurowicz, P.; Fałowska, P.; Waszkiewicz, K.; Wietrzyk-Pełka, P.; Węgrzyn, M. Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi. Ecol. Quest. 2024, 35, 1–29. [Google Scholar] [CrossRef]
- Grimm, M.; Grube, M.; Schiefelbein, U.; Zühlke, D.; Bernhardt, J.; Riedel, K. The lichens’ microbiota, still a mystery? Front. Microbiol. 2021, 12, 623839. [Google Scholar] [CrossRef] [PubMed]
- Faluaburu, M.S.; Nakai, R.; Imura, S.; Naganuma, T. Phylotypic characterization of mycobionts and photobionts of Rock Tripe lichen in East Antarctica. Microorganisms 2019, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Alors, D.; Divakar, P.K.; Calchera, A.; Schmitt, I.; Crespo, A.; Molina, M.C. The Temporal Variation of Secondary Metabolites in the Mycobiont Culture and Thallus of Parmelina carporrhizans and Parmelina quercina Analyzed using High-Performance Liquid Chromatography. Separations 2023, 10, 399. [Google Scholar] [CrossRef]
- Kekuda, T.P.; Ranjitha, M.C.; Ghazala, F.; Vidya, P.; Vinayaka, K.S. Antimicrobial activity of selected corticolous macrolichens. Sci. Technol. Arts Res. J. 2016, 4, 169–174. [Google Scholar] [CrossRef]
- Kim, B.; Han, S.-R.; Lamichhane, J.; Park, H.; Oh, T.-J. Draft genome analysis of antimicrobial Streptomyces isolated from Himalayan lichen. J. Microbiol. Biotechnol. 2019, 29, 1144–1154. [Google Scholar] [CrossRef]
- Ren, M.; Jiang, S.; Wang, Y.; Pan, X.; Pan, F.; Wei, X. Discovery and excavation of lichen bioactive natural products. Front. Microbiol. 2023, 14, 1177123. [Google Scholar] [CrossRef]
- Ribeiro, J.; Luís, M.Â.; Rodrigues, B.; Santos, F.M.; Mesquita, J.; Boto, R.; Tomaz, C.T. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024, 10, 198. [Google Scholar] [CrossRef]
- Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 2014, 353, 57–62. [Google Scholar] [CrossRef]
- Popovici, V.; Matei, E.; Cozaru, G.C.; Bucur, L.; Gîrd, C.E.; Schröder, V.; Ozon, E.A.; Mitu, M.A.; Musuc, A.M.; Petrescu, S.; et al. Design, characterization, and anticancer and antimicrobial activities of mucoadhesive oral patches loaded with Usnea barbata (L.) F. H. Wigg ethanol extract F-UBE-HPMC. Antioxidants 2022, 11, 1801. [Google Scholar] [CrossRef]
- Wang, H.; Xuan, M.; Huang, C.; Wang, C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022, 27, 7469. [Google Scholar] [CrossRef]
- Adenubi, O.T.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. J. Ethnopharmacol. 2022, 298, 115657. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Calcan, S.I.; Cucolea, E.I.; Costache, T.; Rambu, D.; Schröder, V.; Gîrd, C.E.; Gherghel, D.; Vochita, G.; et al. Elemental analysis and in vitro evaluation of antibacterial and antifungal activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Plants 2022, 11, 32. [Google Scholar]
- Tatipamula, V.B.; Annam, S.S.P. Antimycobacterial activity of acetone extract and isolated metabolites from folklore medicinal lichen Usnea laevis Nyl. against drug-sensitive and multidrug-resistant tuberculosis strains. J. Ethnopharmacol. 2022, 282, 114641. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo Lucarini, M.G.T.A. Antimycobacterial activity of Usnea steineri and its major constituent (+)-usnic acid. Afr. J. Biotechnol. 2012, 12, 17. [Google Scholar]
- Bate, P.N.N.; Orock, A.E.; Nyongbela, K.D.; Babiaka, S.B.; Kukwah, A.; Ngemenya, M.N. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. J. King Saud Univ.-Sci. 2020, 32, 614–619. [Google Scholar] [CrossRef]
- Manojlović, N.T.; Rančić, A.B.; Décor, R.; Vasiljević, P.; Tomović, J. Determination of chemical composition and antimicrobial, antioxidant and cytotoxic activities of lichens Parmelia conspersa and Parmelia perlata. J. Food Meas. Charact. 2021, 15, 686–696. [Google Scholar] [CrossRef]
- González-Burgos, E.; Fernández-Moriano, C.; Gómez-Serranillos, M.P. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. Phytochemistry 2019, 165, 112051. [Google Scholar] [CrossRef]
- Oh, J.M.; Kim, Y.J.; Gang, H.-S.; Han, J.; Ha, H.-H.; Kim, H. Antimicrobial Activity of Divaricatic Acid Isolated from the Lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus. Molecules 2018, 23, 3068. [Google Scholar] [CrossRef]
- Kello, M.; Goga, M.; Kotorova, K.; Sebova, D.; Frenak, R.; Tkacikova, L.; Mojzis, J. Screening Evaluation of Antiproliferative, Antimicrobial and Antioxidant Activity of Lichen Extracts and Secondary Metabolites In Vitro. Plants 2023, 12, 611. [Google Scholar] [CrossRef]
- Yilmaz, M.; Turk, A.O.; Tay, T.; Kıvanc, M. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z. Naturforsch. C J. Biosci. 2004, 59, 249–254. [Google Scholar]
- Majumder, S.; Sinha, S. Phytochemical screening and antibacterial activity of two different species of crustose lichen from kalyani university campus, West Bengal, India. Int. J. Eng. Technol. Manag. Res. 2021, 8, 13–17. [Google Scholar] [CrossRef]
- Pradhan, S.; Dash, S.; Parida, S.; Sahoo, B.; Rath, B. Antioxidant and antimicrobial activities and GC/MS-based phytochemical analysis of two traditional Lichen species Trypethellium virens and Phaeographis dendritica. J. Genet. Eng. Biotechnol. 2023, 21, 41. [Google Scholar] [CrossRef]
- Pompilio, A.; Scocchi, M.; Mangoni, M.L.; Shirooie, S.; Serio, A.; Ferreira Garcia da Costa, Y.; Alves, M.S.; Karatoprak, G.S.; Süntar, I.; Di Bonaventura, G.; et al. Bioactive compounds: A goldmine for defining new strategies against pathogenic bacterial biofilms? Crit. Rev. Microbiol. 2023, 49, 117–149. [Google Scholar] [PubMed]
- Taylor, J.A.; Fourie, T.; Powell, M.; Chianella, I. Evidence for some antimicrobial properties of English churchyard lichens. Access Microbiol. 2023, 5, 000536.v4. [Google Scholar] [CrossRef]
- Zorrilla, J.G.; D’addabbo, T.; Roscetto, E.; Varriale, C.; Catania, M.R.; Zonno, M.C.; Altomare, C.; Surico, G.; Nimis, P.L.; Evidente, A. Antibiotic and Nematocidal Metabolites from Two Lichen Species Collected on the Island of Lampedusa (Sicily). Int. J. Mol. Sci. 2022, 23, 8471. [Google Scholar] [CrossRef]
- Aoussar, N.; Laasri, F.E.; Bourhia, M.; Manoljovic, N.; Mhand, R.A.; Rhallabi, N.; Ullah, R.; Shahat, A.A.; Noman, O.M.; Mellouki, F.; et al. Phytochemical analysis, cytotoxic, antioxidant, and antibacterial activities of lichens. Evid.-Based Complement. Altern. Med. 2020, 2020, 8104538. [Google Scholar]
- Watoni, A.H.; Nurdin, M. Antibacterial activity of usnic acid from Usnea longissima Ach. Pak. J. Pharm. Sci. 2020, 33, 1631–1639. [Google Scholar]
- Shcherbakova, A.; Strömstedt, A.A.; Göransson, U.; Gnezdilov, O.; Turanov, A.; Boldbaatar, D.; Kochkin, D.; Ulrich-Merzenich, G.; Koptina, A. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J. Microbiol. Biotechnol. 2021, 37, 129. [Google Scholar] [CrossRef]
- Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.M.; et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci. 2015, 16, 7861–7875. [Google Scholar] [CrossRef]
- Shiromi, P.S.A.I.; Hewawasam, R.P.; Jayalal, R.G.U.; Rathnayake, H.; Wijayaratne, W.M.D.G.B.; Wanniarachchi, D. Chemical Composition and Antimicrobial Activity of Two Sri Lankan Lichens, Parmotrema rampoddense, and Parmotrema tinctorum against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2021, 2021, 985325. [Google Scholar] [CrossRef]
- Oran, S.; Sahin, S.; Sahinturk, P.; Ozturk, S.; Demir, C. Antioxidant and Antimicrobial Potential, and HPLC Analysis of Stictic and Usnic Acids of Three Usnea Species from Uludag Mountain (Bursa, Turkey). Iran J. Pharm. Res. 2016, 15, 527–535. [Google Scholar] [PubMed]
- Maurya, I.K.; Singh, S.; Tewari, R.; Tripathi, M.; Upadhyay, S.; Joshi, Y. Antimicrobial activity of Bulbothrix setschwanensis (Zahlbr.) Hale lichen by cell wall disruption of Staphylococcus aureus and Cryptococcus neoformans. Microb. Pathog. 2018, 115, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites. Curr. Pharm. Biotechnol. 2016, 17, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Sepahvand, A.; Studzińska-Sroka, E.; Ramak, P.; Karimian, V. Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. J. Ethnopharmacol. 2021, 268, 113656. [Google Scholar] [CrossRef]
- Yadav, H.; Nayaka, S.; Dwivedi, M. Analytics on antimicrobial activity of lichen extract. J. Pure Appl. Microbiol. 2021, 15, 701–708. [Google Scholar] [CrossRef]
- Guo, S.Y.; Liu, W.X.; Han, L.F.; Chen, J.Z. Antifungal activity of lichen extracts and usnic acid for controlling the saprolegniasis. Int. J. Environ. Agric. Res. (IJOEAR) 2017, 3, 43–47. [Google Scholar] [CrossRef]
- Furmanek, Ł.; Czarnota, P.; Seaward, M.R.D. A review of the potential of lichen substances as antifungal agents: The effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch. Microbiol. 2022, 204, 523. [Google Scholar] [CrossRef]
- Maulidiyah, M.; Natsir, M.; Nazila, W.; Musdalifah, A.; Salim, L.O.A.; Nurdin, M. Isolation and antibacterial activity of diffractic acid compound from lichen Usnea blepharea Motyka. J. Appl. Pharm. Sci. 2021, 11, 121–130. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Gîrd, C.E.; Popescu, A.; Matei, E.; Cozaru, G.C.; Schröder, V.; Ozon, E.A.; Fița, A.C.; Lupuliasa, D.; et al. Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H.Wigg from Călimani Mountains, Romania. Pharmaceuticals 2022, 15, 829. [Google Scholar] [CrossRef]
- Basiouni, S.; Fayed, M.A.A.; Tarabees, R.; El-Sayed, M.; Elkhatam, A.; Töllner, K.-R.; Hessel, M.; Geisberger, T.; Huber, C.; Eisenreich, W.; et al. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020, 10, 353. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Guo, Q.; Ding, H. Identification and antibacterial activity of Thamnolia vermicularis and Thamnolia subuliformis. J. Microbiol. Methods 2022, 203, 106628. [Google Scholar] [CrossRef]
- Bazarnova, Y.; Politaeva, N.; Lyskova, N. Research for the lichen Usnea barbata metabolites. Z. Fur. Naturforschung Sect. C-J. Biosci. 2018, 73, 291–296. [Google Scholar] [CrossRef]
- Saranyapiriya Gunasekaran, V.P.R.S. Antibacterian and antioxidant activity of lichen Usnea rubrotincta, Ramalina dumeticola, Cladonia verticillata and theri chemical constituents. Malays. J. Anal. Sci. 2016, 20, 1–13. [Google Scholar] [CrossRef]
- Sargsyan, R.; Gasparyan, A.; Tadevosyan, G.; Panosyan, H. Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express 2021, 11, 110. [Google Scholar] [CrossRef]
- Ankith, G.N.; Rajesh, M.R.; Karthik, K.N.; Avinash, H.C.; Kekuda, P.T.; Vinayaka, K.S. Antibacterian and antifungal activity of three Ramallina species. J. Drug Deliv. Ther. 2017, 65, 34–38. [Google Scholar]
- Londoñe-Bailon, P.; Sánchez-Robinet, C.; Alvarez-Guzman, G. In vitro antibacterial, antioxidant and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiacoatra). Polar Sci. 2019, 22, 100477. [Google Scholar] [CrossRef]
- Dieu, A.; Millot, M.; Champavier, Y.; Mambu, L.; Chaleix, V.; Sol, V.; Gloaguen, V. Uncommon Chlorinated Xanthone and Other Antibacterial Compounds from the Lichen Cladonia incrassata. Planta Medica 2014, 80, 931–935. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Hołderna-Kędzia, E.; Galanty, A.; Bylka, W.; Kacprzak, K.; Ćwiklińska, K. In vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis. Nat. Prod. Res. 2015, 29, 2302–2307. [Google Scholar]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsidones with Biological Interest. Planta Medica 2022, 88, 855–880. [Google Scholar] [CrossRef]
- Vega-Bello, M.J.; Moreno, M.L.; Estellés-Leal, R.; Hernández-Andreu, J.M.; Prieto-Ruiz, J.A. Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities. Molecules 2023, 28, 7317. [Google Scholar] [CrossRef]
- Asplund, J.; van Zuijlen, K.; Roos, R.E.; Birkemoe, T.; Klanderud, K.; Lang, S.I.; Wardle, D.A.; Nybakken, L. Contrasting responses of plant and lichen carbon-based secondary compounds across an elevational gradient. Funct. Ecol. 2021, 35, 330–341. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J. Fungi 2023, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Do, T.-H.; Duong, T.-H.; Nguyen, H.T.; Nguyen, T.-H.; Sichaem, J.; Nguyen, C.H.; Nguyen, H.-H.; Long, N.P. Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules 2022, 27, 2871. [Google Scholar] [CrossRef]
- Sweidan, A.; Chollet-Krugler, M.; Sauvager, A.; van de Weghe, P.; Chokr, A.; Bonnaure-Mallet, M.; Tomasi, S.; Bousarghin, L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia 2017, 121, 164–169. [Google Scholar] [CrossRef]
- Hao, Y.-M.; Yan, Y.-C.; Zhang, Q.; Liu, B.-Q.; Wu, C.-S.; Wang, L.-N. Phytochemical composition, antimicrobial activities, and cholinesterase inhibitory properties of the lichen Usnea diffracta Vain. Front. Chem. 2022, 10, 1063645. [Google Scholar] [CrossRef]
- Mallavadhani, U.V.; Boddu, R.; Rathod, B.B.; Setty, P.R. Stereoselective synthesis of the lichen metabolite, (+) montagnetol and its congeners as antimicrobial agents. Synth. Commun. 2018, 48, 2992–2999. [Google Scholar] [CrossRef]
- Duong, T.H.; Huynh, B.L.C.; Chavasiri, W.; Chollet-Krugler, M.; Nguyen, V.K.; Nguyen, T.H.T.; Hansen, P.E.; Le Pogam, P.; Thüs, H.; Boustie, J.; et al. New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry 2017, 137, 156–164. [Google Scholar] [CrossRef]
- Sultana, N.; Afolayan, A.J. A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton. J. Asian Nat. Prod. Res. 2011, 13, 1158–1164. [Google Scholar] [CrossRef]
- Hyung Koo, M.; Shin, M.J.; Ju Kim, M.; Lee, S.; Eun So, J.; Hee Kim, J.; Lee, J.H.; Suh, S.-S.; Joung Youn, U. Bioactive secondary metabolites isolated from the Antarctic Lichen Himantormia lugubris. Chem. Biodivers. 2022, 19, e202200374. [Google Scholar] [CrossRef]
- Türk, H.; Yılmaz, M.; Tay, T.; Türk, A.Ö.; Kıvanç, M. Antimicrobial Activity of Extracts of Chemical Races of the Lichen Pseudevernia furfuracea and their Physodic Acid, Chloroatranorin, Atranorin, and Olivetoric Acid Constituents. Z. Fur. Naturforschung Sect. C-J. Biosci. 2006, 61, 499–507. [Google Scholar] [CrossRef]
- Ristić, S.; Ranković, B.; Kosanić, M.; Stanojković, T.; Stamenković, S.; Vasiljević, P.; Manojlović, I.; Manojlović, N. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J. Food Sci. Technol. 2016, 53, 2804–2816. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Uddin, Z.; Song, Y.; Li, Z.; Kim, J.; Ban, Y.; Park, K. Bacterial neuraminidase inhibition by phenolic compounds from Usnea longissima. S. Afr. J. Bot. 2019, 120, 326–330. [Google Scholar] [CrossRef]
- Rai, H.; Gupta, R.K.; Verma, D.; Gupta, S.; Mitra, D.; Das Mohapatra, P.K.; Al-Meshal, A.S.; Sami, R.; Ashour, A.A.; Shafie, A. Assessment of antimicrobial activity of lichenic compounds isolated from Menegazzia terebrata (Hoffm.) A. Massal. J. Biobased Mater. Bioenergy 2022, 16, 418–423. [Google Scholar] [CrossRef]
- Kokubun, T.; Shiu, W.K.P.; Gibbons, S. Inhibitory Activities of Lichen-Derived Compounds against Methicillin- and Multidrug-Resistant Staphylococcus aureus. Planta Medica 2007, 73, 176–179. [Google Scholar] [CrossRef]
- Bellio, P.; Segatore, B.; Mancini, A.; Di Pietro, L.; Bottoni, C.; Sabatini, A.; Brisdelli, F.; Piovano, M.; Nicoletti, M.; Amicosante, G.; et al. Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine 2015, 22, 223–230. [Google Scholar] [CrossRef]
- Paguirigan, J.A.; Liu, R.; Im, S.M.; Hur, J.-S.; Kim, W. Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens. Plant Pathol. J. 2022, 38, 25–32. [Google Scholar] [CrossRef]
- Mohammadi, M.; Bagheri, L.; Badreldin, A.; Fatehi, P.; Pakzad, L.; Suntres, Z.; van Wijnen, A.J. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chem. Interact. 2022, 351, 109768. [Google Scholar] [CrossRef]
- Bui, V.-M.; Duong, T.-H.; Nguyen, T.-N.; Nguyen, N.-H.; Nguyen, H.-H.; Chavasiri, W.; Nguyen, K.-P.; Huynh, B.-L. Two new phenolic compounds from the Vietnamese lichen Parmotrema tinctorum. Nat. Prod. Res. 2022, 36, 3429–3434. [Google Scholar] [CrossRef]
- Nugraha, A.S.; Untari, L.F.; Laub, A.; Porzel, A.; Franke, K.; Wessjohann, L.A. Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen: Parmelia cetrata Ach. Nat. Prod. Res. 2021, 35, 5001–5010. [Google Scholar] [CrossRef]
- Studzinska-Sroka, E.; Galanty, A.; Bylka, W. Atranorin—An Interesting Lichen Secondary Metabolite. Mini-Rev. Med. Chem. 2017, 17, 1633–1645. [Google Scholar] [CrossRef]
- Pompilio, A.; Pomponio, S.; Di Vincenzo, V.; Crocetta, V.; Nicoletti, M.; Piovano, M.; Garbarino, J.; Di Bonaventura, G. Antimicrobial and Antibiofilm Activity of Secondary Metabolites of Lichens against Methicillin-Resistant Staphylococcus aureus Strains from Cystic Fibrosis Patients. Futur. Microbiol. 2013, 8, 281–292. [Google Scholar] [CrossRef]
- Hassan, S.T.S.; Šudomová, M.; Berchová-Bímová, K.; Gowrishankar, S.; Rengasamy, K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Nishanth, K.S.; Sreerag, R.S.; Deepa, I.; Mohandas, C.; Nambisan, B. Protocetraric acid: An excellent broad spectrum compound from the lichen Usnea albopunctata against medically important microbes. Nat. Prod. Res. 2015, 29, 574–577. [Google Scholar] [CrossRef]
- Manojlovic, N.; Rankovic, B.; Kosanic, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cy-totoxic activities of some their major metabolites. Phytomedicine 2012, 19, 1166–1172. [Google Scholar]
- Carpentier, C.; Queiroz, E.F.; Marcourt, L.; Wolfender, J.-L.; Azelmat, J.; Grenier, D.; Boudreau, S.; Voyer, N. Dibenzofurans and Pseudodepsidones from the Lichen Stereocaulon paschale Collected in Northern Quebec. J. Nat. Prod. 2017, 80, 210–214. [Google Scholar] [CrossRef]
- Liang, X.; Chen, W.; Jiang, B.; Xiao, C.-J. Dibenzofurans from nature: Biosynthesis, structural diversity, sources, and bioactivities. Bioorganic Chem. 2024, 144, 107107. [Google Scholar] [CrossRef]
- Galanty, A.; Paśko, P.; Podolak, I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem. Rev. 2019, 18, 527–548. [Google Scholar] [CrossRef]
- Ramis, I.B.; Vianna, J.S.; Reis, A.J.; von Groll, A.; Ramos, D.F.; Viveiros, M.; da Silva, P.E.A. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus. Planta Medica 2018, 84, 1265–1270. [Google Scholar] [CrossRef]
- Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. J. Nat. Prod. 2020, 83, 26–35. [Google Scholar] [CrossRef]
- Bangalore, P.K.; Pedapati, R.K.; Pranathi, A.N.; Batchu, U.R.; Misra, S.; Estharala, M.; Sriram, D.; Kantevari, S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol. Divers. 2023, 27, 811–836. [Google Scholar] [CrossRef]
- Tozatti, M.G.; Ferreira, D.S.; Flauzino, L.G.; da Silva Moraes, T.; Martins, C.H.G.; Groppo, M.; Andrade e Silva, M.L.; Januário, A.H.; Pauletti, P.M.; Cunhaa, W.R. Activity of the lichen Usnea steineri and its major metabolites against Gram-positive, Multidrug-resistant Bacteria. Nat. Prod. Commun. 2016, 11, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Guo, Q.; Su, G.; Yang, A.; Hu, Z.; Qu, C.; Wan, Z.; Li, R.; Tu, P.; Chai, X. Usnic Acid Derivatives with Cytotoxic and Antifungal Activities from the Lichen Usnea longissima. J. Nat. Prod. 2016, 79, 1373–1380. [Google Scholar] [CrossRef]
- Kocovic, A.; Jeremic, J.; Bradic, J.; Sovrlic, M.; Tomovic, J.; Vasiljevic, P.; Andjic, M.; Draginic, N.; Grujovic, M.; Mladenovic, K.; et al. Phytochemical Analysis, Antioxidant, Antimicrobial, and Cytotoxic Activity of Different Extracts of Xanthoparmelia stenophylla Lichen from Stara Planina, Serbia. Plants 2022, 11, 1624. [Google Scholar] [CrossRef]
- Sudarwanti, C.S.; Imran, I.; Yanti, N.A.; Musdalifah, A.; Nurdin, M.; Maulidiyah, M. Antimicrobial activity of acetone extract and usnic acid constituent of lichen Usnea longissima (ach.). Int. Res. J. Pharm. 2018, 9, 89–98. [Google Scholar] [CrossRef]
- Luzina, O.A.; Salakhutdinov, N.F. Usnic acid and its derivatives for pharmaceutical use: A patent review (2000–2017). Expert Opin. Ther. Pat. 2018, 28, 477–491. [Google Scholar] [CrossRef]
- Dieu, A.; Mambu, L.; Champavier, Y.; Chaleix, V.; Sol, V.; Gloaguen, V.; Millot, M. Antibacterial activity of the lichens Usnea Florida and Flavoparmelia caperata (Parmeliaceae). Nat. Prod. Res. 2020, 34, 3358–3362. [Google Scholar] [CrossRef]
- Gupta, V.K.; Verma, S.; Gupta, S.; Singh, A.; Pal, A.; Srivastava, S.K.; Srivastava, P.K.; Singh, S.C.; Darokar, M.P. Membrane-damaging potential of natural L-(−)-usnic acid in Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3375–3383. [Google Scholar] [CrossRef]
- Goel, M.; Kalra, R.; Ponnan, P.; Jayaweera, J.A.A.S.; Kumbukgolla, W.W. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Lichen Ramalina roesleri. Microb. Pathogenesis 2020, 150, 104676. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, S.Y.; Nguyen, D.L.; So, J.E.; Kim, K.H.; Kim, J.H.; Han, S.J.; Suh, S.-S.; Lee, J.H.; Youn, U.J. Stereocalpin B, a New Cyclic Depsipeptide from the Antarctic Lichen Ramalina terebrata. Metabolites 2022, 12, 141. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Wu, H.; Yuan, M.; Zheng, C.; Xu, H. Xanthone Glucosides: Isolation, Bioactivity and Synthesis. Molecules 2021, 26, 5575. [Google Scholar] [CrossRef]
- Le Pogam, P.; Boustie, J. Xanthones of Lichen Source: A 2016 Update. Molecules 2016, 21, 294. [Google Scholar] [CrossRef] [PubMed]
- Resende, D.I.S.P.; Pereira-Terra, P.; Inácio, Â.S.; Da Costa, P.M.; Pinto, E.; Sousa, E.; Pinto, M.M.M. Lichen Xanthones as Models for New Antifungal Agents. Molecules 2018, 23, 2617. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.-K.; Nguyen-Si, H.-V.; Devi, A.P.; Poonsukkho, P.; Sangvichien, E.; Tran, T.-N.; Yusuke, H.; Mitsunaga, T.; Chavasiri, W. Eumitrins F-H: Three new xanthone dimers from the lichen Usnea baileyi and their biological activities. Nat. Prod. Res. 2023, 37, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Sweidan, A.; Smida, I.; Chollet-Krugler, M.; Sauvager, A.; Vallet, J.; Gouault, N.; Oliviero, N.; Tamanai-Shacoori, Z.; Burel, A.; van de Weghe, P.; et al. Lichen butyrolactone derivatives disrupt oral bacterial membrane. Fitoterapia 2019, 137, 104274. [Google Scholar] [CrossRef]
- James, P.J.C.; Vuong, D.; Moggach, S.A.; Lacey, E.; Piggott, M.J. Synthesis, Characterization, and Bioactivity of the Lichen Pigments Pulvinamide, Rhizocarpic Acid, and Epanorin and Congeners. J. Nat. Prod. 2023, 86, 550–556. [Google Scholar] [CrossRef]
- Shrestha, G.; Thompson, A.; Robison, R.; St Clair, L.L. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. Pharm. Biol. 2016, 54, 413–418. [Google Scholar]
- Gandhi, A.D.; Umamahesh, K.; Sathiyaraj, S.; Suriyakala, G.; Velmurugan, R.; Al Farraj, D.A.; Gawwad, M.R.A.; Murugan, K.; Babujanarthanam, R.; Saranya, R. Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. J. Infect. Public Health 2022, 15, 491–497. [Google Scholar] [CrossRef]
- Ngoc, T.N.; Kuo, P.C.; Trung, H.T.; Tuong Vi, L.N.; Hung, Q.T.; Dunge, L.T.; Trinh, N.D.; Trung, N.O.; Khoa, N.C.; Hai, H.V.; et al. A new triterpenoid and other compounds from lichens Cryptothecia faveomaculata Makhija & Patw. Nat. Prod. Res. 2021, 35, 1349–1356. [Google Scholar]
- Boudagga, S.; Bouslama, L.; Papetti, A.; Colombo, R.; Arous, F.; Jaouani, A. Antiviral activity of Inonotusin A an active compound isolated from Boletus bellinii and Boletus subtomentosus. Biologia 2022, 77, 3645–3655. [Google Scholar] [CrossRef]
- Reichling, J. Antiviral and Virucidal Properties of Essential Oils and Isolated Compounds—A Scientific Approach. Planta Medica 2022, 88, 587–603. [Google Scholar] [CrossRef]
- Vu, T.H.; Le Lamer, A.-C.; Lalli, C.; Boustie, J.; Samson, M.; Dévéhat, F.L.-L.; Le Seyec, J. Depsides: Lichen Metabolites Active against Hepatitis C Virus. PLoS ONE 2015, 10, e0120405. [Google Scholar] [CrossRef]
- Lai, D.; Odimegwu, D.C.; Esimone, C.; Grunwald, T.; Proksch, P. Phenolic Compounds with In Vitro Activity against Respiratory Syncytial Virus from the Nigerian Lichen Ramalina farinacea. Planta Medica 2013, 79, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.T.S.; Šudomová, M.; Berchová-Bímová, K.; Šmejkal, K.; Echeverría, J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules 2019, 24, 2912. [Google Scholar] [CrossRef]
- Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Kiselev, O.I.; Salakhutdinov, N.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem. 2014, 22, 6826–6836. [Google Scholar]
- Oh, E.; Wang, W.; Park, K.-H.; Park, C.; Cho, Y.; Lee, J.; Kang, E.; Kang, H. (+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Sokolov, D.N.; Zarubaev, V.V.; Shtro, A.A.; Marina, P.P.; Olga, A.L.; Nina, I.K.; Nariman, F.S.; Oleg, I.K. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A(H1N1)2009. Bioorg. Med. Chem. Lett. 2012, 22, 7060–7064. [Google Scholar]
- Cirillo, D.; Borroni, E.; Festoso, I.; Monti, D.; Romeo, S.; Mazier, D.; Verotta, L. Synthesis and antimycobacterial activity of (+)-usnic acid conjugates. Arch. Der Pharm. 2018, 351, e1800177. [Google Scholar] [CrossRef]
- Renjini, A.S.; Celestin Baboo, R.V.; Sirajudheenm, K.; Saranya, S.M.; Sarika, P.V. An overview on pharmaceutical applications of lichen secondary metabolites. Int. J. Pharm. Sci. Rev. Res. 2024, 84, 14. [Google Scholar]
- Francolini, I.; Piozzi, A.; Donelli, G. Usnic acid: Potential role in management of wound infections. Adv. Exp. Med. Biol. 2019, 1214, 31–41. [Google Scholar]
- Nunes, P.S.; Rabelo, A.S.; de Souza, J.C.C.; Santana, B.V.; da Silva, T.M.M.; Serafini, M.R.; Menezes, P.d.P.; Lima, B.d.S.; Cardoso, J.C.; Alves, J.C.S.; et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm. 2016, 513, 473–482. [Google Scholar] [CrossRef]
- Luzina, O.A.; Salakhutdinov, N.F. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. Russ. J. Bioorganic Chem. 2016, 42, 115–132. [Google Scholar] [CrossRef]
- Bilen, S.; Sirtiyah, A.M.A.; Terzi, E. Therapeutic effects of beard lichen, Usnea barbata extract against Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 87, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Cha, J.; Chiang, J.; Tran, G.; Giaever, G.; Nislow, C.; Hur, J.-S.; Kwak, Y.-S. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J. Appl. Microbiol. 2016, 121, 1580–1591. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Qing, T.; Ren, Z.; Yu, D.; Couch, L.; Ning, B.; Mei, N.; Shi, L.; Tolleson, W.H.; et al. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch. Toxicol. 2017, 91, 1293–1307. [Google Scholar] [CrossRef]
- Stan, M.S.; Constanda, S.; Grumezescu, V.; Andronescu, E.; Ene, A.M.; Holban, A.M.; Vasile, B.S.; Mogoantă, L.; Bălşeanu, T.-A.; Mogoşanu, G.D. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonela enterica early biofilm growth. Appl. Surf. Sci. 2015, 12, 63. [Google Scholar]
- Poulsen-Silva, E.; Gordillo-Fuenzalida, F.; Atala, C.; Moreno, A.A.; Otero, M.C. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023, 13, 805. [Google Scholar] [CrossRef]
- Zakeri, Z.; Junne, S.; Jäger, F.; Dostert, M.; Otte, V.; Neubauer, P. Lichen cell factories: Methods for the isolation of photobiont and mycobiont partners for defined pure and co-cultivation. Microb. Cell Factories 2022, 21, 80. [Google Scholar] [CrossRef]
- Staropoli, A.; Iacomino, G.; De Cicco, P.; Woo, S.L.; Di Costanzo, L.; Vinale, F. Induced secondary metabolites of the beneficial fungus Trichoderma harzianum M10 through OSMAC approach. Chem. Biol. Technol. Agric. 2023, 10, 28. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, W.; Wang, Z.; Chen, X.; Lv, P.; Xu, J. A novel strategy for D-psicose and lipase co-production using a co-culture system of engineered Bacillus subtilis and Escherichia coli and bioprocess analysis using metabolomics. Bioresour. Bioprocess. 2021, 8, 77. [Google Scholar] [CrossRef]
- Schilling, C.; Koffas, M.A.G.; Sieber, V.; Schmid, J. Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synth. Biol. 2020, 9, 3353–3363. [Google Scholar] [CrossRef]
- Gül, E.; Çelik, V. Biyofarmasötik keşif, geliştirme ve uretimin güncel paradigması olarak mikroorganizmaların metabolik mühendisliği: Sentetik biyolojinin katkıları. Dicle Üniversitesi Fen Bilim. Enstitüsü Derg. 2022, 11, 427–458. [Google Scholar]
- Woodley, J.M. Advances in biological conversion technologies: New opportunities for reaction engineering. React. Chem. Eng. 2020, 5, 632–640. [Google Scholar] [CrossRef]
- Nielsen, J. Cell factory engineering for improved production of natural products. Nat. Prod. Rep. 2019, 36, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
- Fordjour, E.; Mensah, E.O.; Hao, Y.; Yang, Y.; Liu, X.; Li, Y.; Liu, C.-L.; Bai, Z. Toward improved terpenoids biosynthesis: Strategies to enhance the capabilities of cell factories. Bioresour. Bioprocess. 2022, 9, 6. [Google Scholar] [CrossRef]
- Dreyling, L.; Boch, S.; Lumbsch, H.T.; Schmitt, I. Surveying lichen diversity in forests: A comparison of expert mapping and eDNA metabarcoding of bark surfaces. MycoKeys 2024, 106, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Arya, M.; Vishwakarma, S.K. Advancements in methods used for identification of lichens. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1450–1460. [Google Scholar]
- Kukwa, M.; Rodriguez-Flakus, P.; Aptroot, A.; Flakus, A. Two new species of Astrothelium from Sud Yungas in Bolivia and the first discovery of vegetative propagules in the family Trypetheliaceae (lichen-forming Dothideomycetes, Ascomycota). MycoKeys 2023, 95, 83–100. [Google Scholar] [CrossRef]
- Josephine, J.R.J.G. The emergence of in-silico models in drug target Interaction system: A comprehensive review. Biosci. Biotechnol. Res. Asia 2024, 1, 11–24. [Google Scholar]
- Xu, Y.; Chen, X.; Yuan, Z.; Ni, B.-J. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions. Environ. Sci. Technol. 2018, 52, 2835–2843. [Google Scholar] [CrossRef]
- Siafaka, P.I.; Bülbül, E.Ö.; Okur, M.E.; Karantas, I.D.; Okur, N.Ü. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023, 9, 753. [Google Scholar] [CrossRef]
- Rosalba, T.P.F.; Matos, G.D.R.; Salvador, C.E.M.; Andrade, C.K.Z. Rational Design and Multicomponent Synthesis of Lipid–Peptoid Nanocomposites towards a Customized Drug Delivery System Assembly. Molecules 2023, 28, 5725. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhang, J.Z.; Wu, B.; Xu, C.C.; Pang, H.H.; Tu, Q.C.; Lu, Y.Q.; Guo, Q.Y.; Xia, F.; Wang, J.G. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J. Nanobiotechnol. 2023, 21, 456. [Google Scholar] [CrossRef]
- Shreiber-Livne, I.; Sulimani, L.; Shapira, A.; Procaccia, S.; Meiri, D.; Sosnik, A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv. Transl. Res. 2023, 13, 3192–3203. [Google Scholar] [CrossRef] [PubMed]
- Nija, B. Prodrug approach: NSAID conjugates of platinum compounds as anti-cancer agents. Iraqi J. Pharm. Sci. 2023, 32, 1–13. [Google Scholar]
- Maulidiyah, M.; Suilowati, P.E.; Musdalifah, A.; Kusmalwaty, T.; Imran, I.; Azis, T.; Watoni, A.H.; Hasan, A.; Salim, L.O.A.; Nurdin, M. Antioxidant activity of secondary metabolite compounds from lichen Teloschistes flavicans. Biointerface Res. Appl. Chem. 2021, 11, 13878–13884. [Google Scholar]
- Oliveira, T.F.M.J. Techniquesfor chemical identification of metabolites produced by endophytic microorganims. Arq. Do Mudi 2022, 26, 52–66. [Google Scholar]
- Wang, X.; Zhang, Y.; Wu, N.; Cao, J.; Tao, Y.; Yu, R. A Method to Separate Two Main Antioxidants from Lepidium latifolium L. Extracts Using Online Medium Pressure Chromatography Tower and Two-Dimensional Inversion/Hydrophobic Interaction Chromatography Based on Online HPLC-DPPH Assay. Separations 2021, 8, 238. [Google Scholar] [CrossRef]
- Clements, T.; Rautenbach, M.; Ndlovu, T.; Khan, S.; Khan, W. A Metabolomics and Molecular Networking Approach to Elucidate the Structures of Secondary Metabolites Produced by Serratia marcescens Strains. Front. Chem. 2021, 9, 633870. [Google Scholar] [CrossRef]
- Attia, K.A.M.; El-Desouky, E.A.; Abdelfatah, A.M.; Abdelshafi, N.A. Simultaneous analysis of the of levamisole with triclabendazole in pharmaceuticals through developing TLC and HPLC–PDA chromatographic techniques and their greenness assessment using GAPI and AGREE methods. BMC Chem. 2023, 17, 163. [Google Scholar] [CrossRef]
- Sarethy, P.S.A.I. Biotechnology-based profiling of lichens and their metabolites for therapeutic applications. Curr. Appl. Sci. Technol. 2024, 2, e256497. [Google Scholar]
- Yang, D.; Eun, H.; Prabowo, C.P.S. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int. J. Mol. Sci. 2023, 24, 8923. [Google Scholar] [CrossRef]
- Bauer, J.; Waltenberger, B.; Noha, S.M.; Schuster, D.; Rollinger, J.M.; Boustie, J.; Chollet, M.; Stuppner, H.; Werz, O. Discovery of Depsides and Depsidones from Lichen as Potent Inhibitors of Microsomal Prostaglandin E2 Synthase-1 Using Pharmacophore Models. ChemMedChem 2012, 7, 2077–2081. [Google Scholar] [CrossRef]
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC (µg/mL)/IZ (mm) | |||||
4-Chlororcinol | Methicillin-resistant Staphylococcus aureus | MIC: 1–17 | Teicoplanin (MIC: 1) | [35] | |
Enterococcus faecalis | MIC: 75 | Teicoplanin (MIC ≤ 0.5) | |||
Acinetobacter baumannii | MIC: 300 | Colistin (MIC: 0.78) | |||
Klebsiella pneumoniae | Colistin (MIC < 2) | ||||
Orcinol | Enterococcus faecium | MIC: 9.37 | Teicoplanin (MIC ≤ 0.5) | [35] | |
Methicillin-resistant Staphylococcus aureus | MIC: 18.75 | Colistin (MIC: 1) | |||
Escherichia coli | MIC: 9.37 | Teicoplanin (MIC: 1) | |||
Pseudomonas aeruginosa | MIC: 300 | Colistin (MIC: 4) | |||
Methyl β-orcinol-carboxylate | Streptococcus gordonii | MIC: 375 | Doxycycline (MIC: 0.13) | [64] | |
Porphyromonas gingivalis | MIC: 93.75 | Doxycycline (MIC: 0.51) | |||
Orsellinic acid | Fusarium fujikuroi | MIC: 15.1 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | |
Methyl β-orsellinate | Enterococcus faecium | IZ: 13.0 | Apramycin (IZ: 21.0) | [63] | |
Staphylococcus aureus | IZ: 18.0 | Apramycin (IZ: 21.0) | [67] | ||
Staphylococcus aureus | MIC: 62.5 | Streptomycin (MIC: 2) | [68] | ||
Bacillus subtilis Bacillus cereus | MIC: 125 | Streptomycin (MIC: 4) | |||
Staphylococcus epidermidis | Streptomycin (MIC: 2) | ||||
Acinetobacter baumannii | IZ: 16.0 | Apramycin (IZ: 20.0) | [63] | ||
Helicobacter pylori | IZ: 27.0 | [44] | |||
Escherichia coli | MIC: 62.5 | Streptomycin (MIC: 4) | [68] | ||
Shigella sonnei | MIC: 125 | ||||
Methyl 5-bromo-β-orsellinate | Staphylococcus aureus | IZ: 12.0 | [67] | ||
Methyl 3,5-dibromo-orsellinate | Staphylococcus aureus | IZ: 29.0 MIC: 4 | [67] | ||
Ethyl everninate | Candida albicans | MIC: 64 | [65] | ||
Atranol | Staphylococcus aureus | IC50 ≥ 200,000 | Kanamycin (IC50: 42) | [69] | |
Escherichia coli | Kanamycin (IC50: 9) | ||||
Dibutyl phthalate | Candida albicans | MIC: 64 | [65] | ||
Methyl orsellinate | Staphylococcus aureus | IZ: 13.0 | [67] | ||
Helicobacter pylori | IZ: 22.0 | [44] | |||
Orsellinaldehyde | Staphylococcus aureus | IZ: 6.6 | Gentamicin (IZ: 12.3) | [65] | |
Methyl-2,4-dihydroxy3,6-dimethylbenzoate | Candida albicans | MIC: 64 | [65] | ||
2-Ethylhexyl-4-methoxy orsellinate | Staphylococcus aureus | IZ: 6.2 | Gentamicin (IZ: 12.3) | [65] | |
Escherichia coli | IZ: 6.3 | Gentamicin (IZ: 12.4) | |||
(+) Montagnetol | Staphylococcus aureus | MIC: 0.5 | Streptomycin (MIC: 0.007) | [66] | |
Salmonella typhi Pseudomonas aeruginosa | MIC: 0.25 | Streptomycin (MIC: 0.015) | |||
Escherichia coli | MIC: 0.5 | Streptomycin (MIC: 0.125) | |||
Candida albicans | MIC: 0.125 | Streptomycin (MIC: 0.031) | [66] | ||
(−) Montagnetol | Staphylococcus aureus | MIC: 0.5 | Streptomycin (MIC: 0.007) | [66] | |
Salmonella typhi | MIC: 0.25 | Streptomycin (MIC: 0.015) | |||
Escherichia coli | Streptomycin (MIC: 0.125) | ||||
Pseudomonas aeruginosa | MIC: 0.5 | Streptomycin (MIC: 0.015) | |||
Candida albicans | MIC: 0.125 | Streptomycin (MIC: 0.031) | |||
Staphylococcus aureus | MIC: 0.125 | Streptomycin (MIC: 0.007) | [66] | ||
(+) Montagnetol homologs 3 | Salmonella typhi | MIC: 0.125 | Streptomycin (MIC: 0.015) | ||
Pseudomonas aeruginosa | MIC: 0.062 | Streptomycin (MIC: 0.015) | |||
Escherichia coli | MIC: 0.5 | Streptomycin (MIC: 0.125) | |||
Staphylococcus aureus | MIC: 0.5 | Streptomycin (MIC: 0.007) | [66] | ||
(+) Montagnetol homologs 6 | Salmonella typhi Pseudomonas aeruginosa | MIC: 0.25 | Streptomycin (MIC: 0.015) | ||
Escherichia coli | Streptomycin (MIC: 0.125) | ||||
Candida albicans | MIC: 0.062 | Streptomycin (MIC: 0.031) |
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC/EC50/ED50 (µg/mL)/IZ (mm)/IR (%) | |||||
Chloroatranorin | Staphylococcus aureus | MIC: 6240 | [70] | ||
Bacillus cereus | |||||
Bacillus subtilis | |||||
Listeria monocytogenes | MIC: 3120 | [70] | |||
Proteus vulgaris | MIC: 6240 | ||||
Aeromonas hydrophila | MIC: 3120 | ||||
Yersinia enterocolitica | MIC: 6240 | ||||
Candida albicans | MIC: 12,520 | [70] | |||
Candida glabrata | |||||
Anziaic acid | Bacillus cereus | MIC: 500 | Streptomycin (MIC: 16) | [71] | |
2′-O-Methyl anziaic acid | Bacillus cereus | MIC: 62.5 | Streptomycin (MIC: 16) | [71] | |
Staphylococcus aureus | MIC: 250 | Streptomycin (MIC: 31) | |||
Escherichia coli | MIC: 1000 | Streptomycin (MIC: 62) | [71] | ||
Proteus mirabilis | MIC: 500 | Streptomycin (MIC: 62) | |||
Cladosporium cladosporioides | MIC: 250 | Ketoconazole (MIC: 39) | [71] | ||
Candida albicans | |||||
Trichoderma viride | MIC: 250 | Ketoconazole (MIC: 78) | |||
Fusarium oxysporum | |||||
Alternaria alternate | |||||
Mucor mucedo | MIC: 500 | Ketoconazole (MIC: 156) | |||
Penicillium expansum | |||||
Aspergillus niger | MIC: 500 | Ketoconazole (MIC: 78) | |||
Penicillium chrysogenum | |||||
Aspergillus flavus | MIC: 1000 | Ketoconazole (MIC: 312) | |||
Barbatic acid | Bacillus subtilis | MIC: 31.25 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | |
Staphylococcus aureus | MIC: 62.5 | Chloramphenicol (MIC: 31.25) Vancomycin (MIC: 15.63) | |||
4′-O-Demethylbarbatic acid | Streptococcus gordonii | MIC: 218 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | MIC: 10.94 | Doxycycline (MIC: 0.13) | [38] | ||
3-Hydroxy-5methylphenyl-2-hydroxy-4-methoxy-6-methylbenzoate | Staphylococcus aureus | IZ: 6.6 | Gentamicin (IZ: 12.3) | [65] | |
Candida albicans | MIC: 32 | [65] | |||
Diffractaic acid | Staphylococcus aureus | IZ: 17.3 | [62] | ||
Mycobacteria | MIC: 15.6 | [47] | |||
Escherichia coli | IZ: 12.8 | [62] | |||
Fusarium fujikuroi | MIC: 16.3 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | ||
Diffractic acid | Staphylococcus aureus | IZ: 17.3 | Amoxicillin (IZ: 22.0) Chloramphenicol (IZ: 30.8) | [48] | |
Escherichia coli | IZ: 12.8 | Amoxicillin (IZ: 15.8) Chloramphenicol (IZ: 31.2) | |||
Evernic acid | Staphylococcus aureus | MIC: 0.98 | [62] | ||
Staphylococcus aureus-1199B | MIC: 128 | Norfloxacin (MIC: 32) | [74] | ||
Escherichia coli | MIC: 31.25 | [62] | |||
Pseudomonas aeruginosa | MIC: 125 | ||||
Candida albicans | MIC: 62.5 | [62] | |||
8-Hydroxybarbatic acid | Bacillus subtilis | MIC: 125 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | |
Methyl evernate | Bacillus cereus | MIC: 125 | Streptomycin (MIC: 16) | [43] | |
Bacillus subtilis | MIC: 250 | Streptomycin (MIC: 16) | |||
Staphylococcus aureus | MIC: 500 | Streptomycin (MIC: 31) | |||
Escherichia coli | MIC: 1000 | Streptomycin (MIC: 62) | [43] | ||
Proteus mirabilis | |||||
Candida albicans | MIC: 250 | Ketoconazole (MIC: 39) | [43] | ||
Cladosporium cladosporioides | |||||
Alternaria alternate | Ketoconazole (MIC: 78) | ||||
Penicillium expansum Mucor mucedo | MIC: 500 | Ketoconazole (MIC: 156) | |||
Fusarium oxysporum Trichoderma viride | Ketoconazole (MIC: 78) | ||||
Penicillium chrysogenum Aspergillus niger | MIC: 1000 | Ketoconazole (MIC: 78) | |||
Aspergillus flavus | Ketoconazole (MIC: 312) | ||||
2′-Omethylevernol | Staphylococcus aureus | IZ: 6.4 | Gentamicin (IZ: 12.3) | [65] | |
Candida albicans | MIC: 64 | ||||
Atranorin | Staphylococcus aureus-1199B | MIC: 128 | Norfloxacin (MIC: 32) | [74] | |
Staphylococcus aureus | MIC: 31 | Streptomycin (MIC: 31.25) | [30,53,80] | ||
Methicillin-susceptible Staphylococcus aureus (Sa1,Sa10,Sa13) | MIC: 128 | [81] | |||
Methicillin-resistant Staphylococcus aureus (Sa3,Sa14) | MIC: 128 | ||||
Methicillin-resistant Staphylococcus aureus (Sa15) | MIC: 64 | ||||
Bacillus mycoides | MIC: 15~31 | Streptomycin (MIC: 7.81) | [80] | ||
Bacillus subtilis | MIC: 15.63~70.7 | Streptomycin (MIC: 7.81) Erythromycin (MIC: 4.2) Gentamycin (MIC: 5) | |||
Bacillus subtilis | MIC: 15.6/15.63 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [30,53] | ||
Sarcina lutea | MIC: 21.5 | Erythromycin (MIC: 4.6) Gentamycin (MIC: 4.5) | |||
Listeria monocytogenes | MIC: 15.6 | [30] | |||
Streptococcus faecalis | MIC: 250 IZ: 17.8~33.0 | Erythromycin (MIC: 4) Gentamycin (MIC: 5) | [30,80] | ||
Bacillus cereus | MIC: 1.2 | [30] | |||
Mycobacterium tuberculosisuberculosis | MIC: 250 | Levofloxacin (MIC: 0.015) | [80] | ||
Mycolicibacterium aurum | |||||
Mycobacterium tuberculosis (MDR-A8) | MIC > 200 | Rifampicin (MIC: 100) | [23] | ||
Mycobacterium smegmatis (MDR-40) | |||||
Mycobacterium tuberculosis (MDR-V791) | MIC > 200 | Rifampicin (MIC > 200) | |||
Mycobacterium smegmatis (MDR-R) | |||||
Proteus vulgaris | MIC: 5/62.5 | Erythromycin (MIC: 5.1) Gentamycin (MIC: 4.6) | [30,80] | ||
Aeromonas hydrophila | MIC: 31.2 | [30] | |||
Escherichia coli | MIC: 8.3~31 | Streptomycin (MIC: 31.25) Erythromycin (MIC: 4.7) Gentamycin (MIC: 5.1) | [80] | ||
Enterobacter cloacae | MIC: 31/1000 | ||||
Klebsiella pneumoniae | MIC: 8.3~31/500 | ||||
Candida glabrata | MIC: 500 | [30] | |||
Candida albicans | MIC: 17/250~500 | Erythromycin (MIC: 5) Gentamycin (MIC: 4.9) Ketoconazole (MIC: 1.95) | [30,80] | ||
Sclerotium rolfsii Sacc | ED50: 39.70 | [27] | |||
Aspergillus fumigatus | MIC: 250/500 | Ketoconazole (MIC: 3.9) | [80] | ||
Cryptococcus (Naganishia) diffluens | MIC: 15.7 | Erythromycin (MIC: 5.8) Gentamycin (MIC: 5.5) | [80] | ||
Cryptococcus neoformans | MIC > 250 | Ketoconazole (MIC: 25) | [80] | ||
Epidermophyton floccosum | |||||
Paecilomyces variotii | MIC: 250 | Ketoconazole (MIC: 1.95) | [80] | ||
Trichoderma harzianum | Ketoconazole (MIC: 7.81) | ||||
Botrytis cinerea | Ketoconazole (MIC: 1.95) | ||||
Fusarium oxysporum | MIC: 500 | Ketoconazole (MIC: 3.9) | [80] | ||
Mucor mucedo | Ketoconazole (MIC: 31.25) | ||||
Penicillium purpurescens | MIC: 500~1000 | Ketoconazole (MIC: 3.9) | [80] | ||
Penicillium verrucosum | |||||
Aspergillus flavus | |||||
Divaricatic acid | Bacillus subtilis | MIC: 7 | Vancomycin (MIC: 0.78) Cefotaxime (MIC: 0.5) | [28] | |
Staphylococcus aureus 0027 | MIC: 64 | Vancomycin (MIC: 25) Cefotaxime (MIC: 64) | |||
Staphylococcus epidermidis | MIC: 16 | Vancomycin (MIC: 25) Cefotaxime (MIC: 0.5) | |||
Enterococcus faecium | MIC: 16 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | |||
Methicillin-resistant Staphylococcus aureus | MIC: 30 | Vancomycin (MIC: 25) Cefotaxime (MIC > 256) | |||
Streptococcus mutans | MIC: 32 | Vancomycin (MIC: 12.5) Cefotaxime (MIC: 0.5) | |||
Micrococcus luteus | MIC: 40 | Vancomycin (MIC: 25) Cefotaxime (MIC: 1) | |||
Pseudomonas aeruginosa | MIC: 128 | Vancomycin (MIC: 31.25) Cefotaxime (MIC: 32) | [28] | ||
Candida albicans | MIC: 20 | Vancomycin (MIC > 100) Cefotaxime (MIC > 256) | [28] | ||
Perlatolic acid | Methicillin-resistant Staphylococcus aureus | MIC: 32 | Clindamycin (MIC: 8192) Erythromycin (MIC: 1024) Gentamicin (MIC: 256) Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8) | [75] | |
Thamnolic acid | Bacillus cereus | MIC: 400 | [62] | ||
Bacillus subtilis | |||||
Listeria monocytogenes | MIC: 200 | ||||
Micrococcus luteus | |||||
Proteus vulgaris | MIC: 400 | [62] | |||
Sclerotium rolfsii Sacc | MIC: 200 | [62] | |||
Candida krusei | MIC: 400 | ||||
Aspergillus fumigatus | |||||
Alternaria alternate | |||||
Squamatic acid | Staphylococcus aureus | MIC: 1,250,000 | Chloramphenicol (MIC: 5) | [58] | |
Sekikaic acid | Staphylococcus aureus | IR: 50 | [62] | ||
Streptococcus mutans | IR: 60 | ||||
Streptomyces viridochromogenes | IR: 55 | ||||
Bacillus subtilis | IR: 15 MIC: 125 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53,62] | ||
Escherichia coli | IR: 78 | [62] | |||
Hyperhomosekikaic acid | Bacillus subtilis | MIC: 125 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) | [53] | |
Lecanorin | Candida albicans | MIC: 64 | [65] | ||
Ramalic acid /Obtusatic acid | Staphylococcus aureus | MIC: 1000 | Streptomycin (MIC: 31) | [43] | |
Bacillus cereus | MIC: 125 | Streptomycin (MIC: 16) | |||
Bacillus subtilis | MIC: 500 | Streptomycin (MIC: 16) | |||
Proteus mirabilis Escherichia coli | MIC: 1000 | Streptomycin (MIC: 62) | [43] | ||
Candida albicans | MIC: 250 | Ketoconazole (MIC: 39) | [43] | ||
Cladosporium cladosporioides | MIC: 500 | Ketoconazole (MIC: 39) | |||
Trichoderma viride | Ketoconazole (MIC: 78) | ||||
Penicillium expansum Mucor mucedo | MIC: 1000 | Ketoconazole (MIC: 156) | |||
Penicillium chrysogenum Aspergillus niger Alternaria alternate Fusarium oxysporum | Ketoconazole (MIC: 78) | ||||
Aspergillus flavus | Ketoconazole (MIC: 312) | ||||
3′-Hydroxyl-5′-propylphenyl 2,4-dihydroxyl-6-methylbenzoate | Aliivibrio fischeri | IR: 95.5 | [79] | ||
Lecanoric acid | Clavibacter michiganensis subsp. michiganensis | MIC > 500 | Oxolinic acid (MIC: 31.25) Oxytetracycline (MIC: 125) | [76] | |
Aliivibrio fischeri | IR: 100 | [79] | |||
Fusarium fujikuroi | MIC: 14.8 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | ||
Rhizoctonia solani Kühn | EC50: 35.12 | [76] | |||
Olivetoric acid | Bacillus cereus Bacillus subtilis Staphylococcus aureus | MIC: 623.48 | [70] | ||
Listeria monocytogenes | MIC: 2493.92 | ||||
Streptococcus faecalis | MIC: 9999.66 | ||||
Salmonella Typhimurium | MIC: 19,975.34 | [70] | |||
Escherichia coli | |||||
Proteus vulgaris | MIC: 2493.92 | ||||
Aeromonas hydrophila | |||||
Yersinia enterocolitica | MIC: 623.48 | ||||
Candida albicans Candida glabrata | MIC: 1246.96 | [70] | |||
Fusarium fujikuroi | MIC: 1000 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | ||
3′-Hydroxyl-5′-pentylphenyl 2,4-dihydroxyl-6-methylbenzoate | Aliivibrio fischeri | IR: 89 | [79] | ||
(+)-Erythrin | Streptococcus gordonii | MIC: 750 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | MIC: 375 | Doxycycline (MIC: 0.13) | |||
Gyrophoric acid | Bacillus subtilis | MIC: 19 | [62] |
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC/IC50 (µg/mL or µM)/IR/RIZD (%) | |||||
Salazinic acid | Bacillus mycoides | MIC: 0.0008/0.015 | Streptomycin (MIC: 7.81) | [59,84] | |
Bacillus subtilis | MIC: 0.0008/0.0312 | Streptomycin (MIC: 7.81) | [59,84] | ||
Bacillus cereus | MIC: 63 | [59] | |||
Staphylococcus aureus | MIC: 0.125 | Streptomycin (MIC: 15.72) | [84] | ||
Mycobacterium smegmatis MDR-R | MIC: 50 | Rifampicin (MIC > 200) | [23] | ||
Mycobacterium smegmatis MDR-40 | MIC: 50 | Rifampicin (MIC: 100) | [23] | ||
Mycobacterium smegmatismegmatis | MIC: 100 | Rifampicin (MIC: 0.2) | [23] | ||
Mycobacterium tuberculosis H37Ra | MIC > 200 | ||||
Mycobacterium tuberculosis MDR-A8 | |||||
Mycobacterium tuberculosis MDR-V791 | |||||
Mycolicibacterium aurum | MIC: 250 | [27] | |||
Penicillium verrucosum | MIC: 0.5 | Ketoconazole (MIC: 3.9) | [84] | ||
Klebsiella pneumoniae | MIC: 0.5 | Streptomycin (MIC: 31.25) | [84] | ||
Escherichia coli | MIC: 1 | Streptomycin (MIC: 31.25) | [84] | ||
Candida albicans | MIC: 0.25 | Ketoconazole (MIC: 1.95) | [84] | ||
Aspergillus flavus | MIC: 1 | Ketoconazole (MIC: 3.9) | [84] | ||
Aspergillus fumigatus | |||||
Penicillium purpurescens | |||||
Fusarium udum Butler | IC50: 88.20 | [59] | |||
Protocetraric acid | Bacillus mycoides | MIC: 0.015/15 | Streptomycin (MIC: 7.81) | [59,83,84] | |
Bacillus subtilis | MIC: 0.015/15/64 | Streptomycin (MIC: 7.81) | [59,84] | ||
Staphylococcus aureus | MIC: 0.015/32/12.5/15 | Streptomycin (MIC: 15.72) | [59,83,84] | ||
Mycobacterium smegmatismegmatis | MIC: 2 | Ciprofloxacin (MIC: 4) | [84] | ||
Mycobacterium tuberculosisuberculosis | MIC: 125 | [59] | |||
Staphylococcus epidermidis | MIC: 64 | Ciprofloxacin (MIC: 4) | [83] | ||
Streptococcus faecalis | MIC: 64 | Ciprofloxacin (MIC: 2) | |||
Vibrio cholerae | MIC: 2 | Ciprofloxacin (MIC: 4) | [83] | ||
Proteus vulgaris | MIC: 4 | Ciprofloxacin (MIC: 4) | [83] | ||
Escherichia coli | MIC: 4 | Ciprofloxacin (MIC: 2) | |||
Pseudomonas aeruginosa | MIC: 8 | Ciprofloxacin (MIC: 4) | |||
Salmonella typhi | MIC: 500/0.5 | [59,84] | |||
Klebsiella pneumoniae | MIC: 1000/1 | Streptomycin (MIC: 31.25) | [83,84] | ||
Proteus mirabilis | MIC: 16 | Ciprofloxacin (MIC: 1) | [83] | ||
Penicillium purpurescens | MIC: 1 | Ciprofloxacin (MIC: 2) Amphotericin B (MIC: 4) | [83] | ||
Fusarium fujikuroi | MIC: 12.6 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | ||
Penicillium verrucosum | MIC: 0.5 | Ketoconazole (MIC: 3.9) | [84] | ||
Candida albicans | MIC: 64/0.25 | Amphotericin B (MIC: 1) Ketoconazole (MIC: 1.95) | [83,84] | ||
Campylobacter gastri | MIC: 64 | Amphotericin B (MIC: 1) | [83] | ||
Aspergillus flavus | MIC: 125 | Amphotericin B (MIC: 4) | [83] | ||
Aspergillus fumigatus | MIC: 0.25 | Ketoconazole (MIC: 3.9) | [84] | ||
Candida tropicalis | MIC: 125 | Amphotericin B (MIC: 2) | |||
Candida glabrata | MIC: 250 | Amphotericin B (MIC: 1) | [83] | ||
Trichophyton rubrum | MIC: 1000/1 | Amphotericin B (MIC: 4) | [59,83] | ||
Variolaric acid | Streptococcus gordonii | MIC: 375 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | Doxycycline (MIC: 0.13) | ||||
Escherichia coli | IR: 3.2 | [59] | |||
Stictic acid | Francisella tularensis | IC50: 13 | [59] | ||
Yersinia pestis | IC50: 27 | ||||
Norstictic acid | Fusarium fujikuroi | MIC: 16.1 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | |
Psoromic acid | Bacillus cereus | MIC: 62.5 | Streptomycin (MIC: 4) | [68] | |
Bacillus subtilis | |||||
Mycobacterium tuberculosisuberculosis | MIC: 3.2~4.1 | [82] | |||
Mycobacterium tuberculosisuberculosis | MIC: 62.5 | [59] | |||
Streptococcus gordonii | MIC: 11.72 | Doxycycline (MIC: 0.51) | [64] | ||
Staphylococcus epidermidis | MIC: 125 | Streptomycin (MIC: 2) | [68] | ||
Staphylococcus aureus | MIC: 250 | Streptomycin (MIC: 2) | |||
Escherichia coli | MIC: 125 IR: 18.2 | Streptomycin (MIC: 4) | [59,68] | ||
Shigella sonnei | MIC: 250 | Streptomycin (MIC: 4) | [68] | ||
Porphyromonas gingivalis | MIC: 5.86 | Doxycycline (MIC: 0.13) | [64] | ||
Hypoconstictic acid | Staphylococcus aureus | MIC: 31 | Streptomycin (MIC: 2) | [68] | |
Bacillus subtilis | MIC: 250 | Streptomycin (MIC: 4) | |||
Bacillus cereus | |||||
Staphylococcus epidermidis | MIC > 250 | Streptomycin (MIC: 2) | |||
Escherichia coli | MIC: 62.5 | Streptomycin (MIC: 4) | [68] | ||
Shigella sonnei | MIC > 250 | Streptomycin (MIC: 4) | |||
2’-O-Methylhypostictic acid | Bacillus cereus | MIC: 31 | Streptomycin (MIC: 2) | [68] | |
Staphylococcus epidermidis | MIC: 62.5 | ||||
Bacillus subtilis | Streptomycin (MIC: 4) | ||||
Menegazziaic acid | Staphylococcus aureus | MIC > 250 | Streptomycin (MIC: 2) | [68] | |
Staphylococcus epidermidis | |||||
Bacillus cereus | MIC: 250 | Streptomycin (MIC: 4) | |||
Bacillus subtilis | |||||
Escherichia coli | MIC: 31 | Streptomycin (MIC: 4) | [68] | ||
Shigella sonnei | MIC: 250 | ||||
Pannarin | Methicillin-resistant Staphylococcus aureus | bactericidal action | [59] | ||
Galbinic acid | Bacillus cereus | MIC: 62.5 | Streptomycin (MIC: 4) | [68] | |
Bacillus subtilis | |||||
Staphylococcus aureus | MIC: 250 | Streptomycin (MIC: 2) | |||
Staphylococcus epidermidis | MIC > 250 | ||||
Shigella sonnei | MIC > 250 | Streptomycin (MIC: 4) | [68] | ||
Escherichia coli | MIC: 125 | ||||
Lobaric acid | Staphylococcus aureus-1199B (NorA) | MIC: 8 | Norfloxacin (MIC: 32) | [74] | |
XU212 (TetkmecA) | MIC: 32 | Tetracycline (MIC: 128) | |||
Methicillin-resistant Staphylococcus aureus-16 | Oxacillin (MIC: 512) | ||||
RN4220 (MsrA) | Erythromycin (MIC: 128) | ||||
Mycobacterium tuberculosis MDR-A8 Mycobacterium smegmatis MDR-40 | MIC: 50 | Rifampicin (MIC: 100) | [23] | ||
Mycobacterium tuberculosis MDR-V791 Mycobacterium smegmatis MDR-R | Rifampicin (MIC > 200) | ||||
Mycobacterium smegmatismegmatis | Rifampicin (MIC: 0.2) | ||||
Methicillin-resistant Staphylococcus aureus-15 | MIC: 64 | Oxacillin (MIC: 32) | [74] | ||
Staphylococcus aureus-ATCC 25923 | Norfloxacin (MIC: 32) | ||||
Methicillin-resistant Staphylococcus aureus | MIC: 64 | Clindamycin (MIC: 8192) Erythromycin (MIC: 1024) Gentamicin (MIC: 256) Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8) | [75] | ||
Mycobacterium tuberculosisH37Ra | MIC: 100 | Rifampicin (MIC: 0.2) | [23] | ||
Clavibacter michiganensis subsp. michiganensis | MIC: 250 | Oxolinic acid (MIC: 31.25) Oxytetracycline (MIC: 125) | [76] | ||
Streptococcus mutans | MIC: 20 | Penicillin G (MIC: 0.15) | [85] | ||
Porphyromonas gingivalis | MIC: 80 | Penicillin G (MIC: 0.29) | |||
Himantormione A | Staphylococcus aureus | IC50: 3590 | Kanamycin (IC50: 42) | [69] | |
Himantormione B | Staphylococcus aureus | IC50: 701 | |||
α-Collatolic acid | Methicillin-resistant Staphylococcus aureus | MIC: 128 | Clindamycin (MIC: 8192) Erythromycin (MIC: 1024) Gentamicin (MIC: 256) Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8) | [75] | |
Escherichia coli | IR: 103.4 | [59] | |||
Physodic acid | Bacillus subtilis | MIC: 0.8 MIC: 6240 | [59,70] | ||
Bacillus mycoides | MIC: 1.6 | ||||
Staphylococcus aureus | RIZD: 118.78 MIC: 25,000 | [29,70] | |||
Staphylococcus aureus-1199B (NorA) | MIC: 16 | Norfloxacin (MIC: 32) | [74] | ||
Staphylococcus aureus-ATCC 25923 | MIC: 32 | Norfloxacin (MIC: 1) | |||
Methicillin-resistant Staphylococcus aureus-15 | Oxacillin (MIC: 32) | ||||
Staphylococcus aureus-XU212 | Tetracycline (MIC: 128) | ||||
Methicillin-resistant Staphylococcus aureus-16 | Oxacillin (MIC: 512) | ||||
Staphylococcus aureus-RN4220 | Erythromycin (MIC: 128) | ||||
Bacillus cereus | MIC: 3120 | [70] | |||
Listeria monocytogenes | |||||
Streptococcus faecalis | MIC: 25,000 | ||||
Proteus vulgaris | MIC: 25,000 | [70] | |||
Yersinia enterocolitica | MIC: 3120 | ||||
Candida albicans | MIC: 3120 | [70] | |||
Candida glabrata | |||||
3-Hydroxyphysodic acid | Staphylococcus aureus-RN4220 (MsrA) | MIC: 32 | Erythromycin (MIC: 128) | [74] | |
Staphylococcus aureus-ATCC 25923 | MIC: 64 | Norfloxacin (MIC: 1) | |||
Staphylococcus aureus-1199B (NorA) | Norfloxacin (MIC: 32) | ||||
EMethicillin-resistant Staphylococcus aureus-16 | Oxacillin (MIC: 512) | ||||
EMethicillin-resistant Staphylococcus aureus-15 | Oxacillin (MIC: 32) | ||||
Staphylococcus aureus-XU212 (Tetk, mecA) | MIC: 128 | Tetracycline (MIC: 128) | |||
Hypoprotocetraric acid | Streptococcus gordonii | MIC: 250 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | MIC: 62.5 | Doxycycline (MIC: 0.13) | |||
Conhypoprotocetraric acid | Streptococcus gordonii | MIC: 700 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | MIC: 175 | Doxycycline (MIC: 0.13) | [64] | ||
Fumarprotocetraric acid | Bacillus cereus | MIC: 4.6 | [30] | ||
Bacillus subtilis | |||||
Listeria monocytogenes | |||||
Streptococcus faecalis | MIC: 150 | ||||
Staphylococcus aureus | MIC: 37.5 | ||||
Klebsiella pneumoniae | MIC: 31 | [59] | |||
Proteus vulgaris | MIC: 37.5 | [30] | |||
Aeromonas hydrophila | MIC: 150 | ||||
Candida albicans | MIC: 18.7 | [30] | |||
Candida glabrata |
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC/IC50 (µg/mL or µM)/IZ (mm)/BEC (µg/mL) | |||||
Usnic acid | Staphylococcus aureus | MIC: 7.81, 1.0, 21, 0.15, 156 | Chloramphenicol (MIC: 31.25) Vancomycin (MIC: 15.63) Streptomycin (MIC: 15.72) Tetracycline (MIC < 0.06) Ampicillin (MIC < 0.06) | [20,38,53,84,93] | |
Methicillin-susceptible Staphylococcus aureus (Sa3,Sa13) | MIC: 2 | [81] | |||
Methicillin-resistant Staphylococcus aureus (Sa1, Sa10,Sa14, Sa15) | MIC: 8 | ||||
Methicillin-resistant Staphylococcus aureus | MIC: 25~50 | [20] | |||
Bacillus subtilis | IZ: 15.0~21.0, 7.81, 0.5 MIC: 0.0008 | Chloramphenicol (MIC: 7.81) Vancomycin (MIC: 7.81) Streptomycin (MIC: 7.81) | [20,21,53,84] | ||
Bacillus cereus | IZ: 23.7 | Chloramphenicol (IZ: 22.3) | [94] | ||
Bacillus mycoides | MIC: 0.0008 | Streptomycin (MIC: 7.81) | [84] | ||
Bacillus megaterium | IZ: 17.0~22.0 | [21] | |||
Enterococcus casseliflavus | IZ: 19.7 | Levofloxacin (IZ: 25.0) Tetracycline (IZ: 26.0) | [22] | ||
Streptococcus pyogenes | IZ: 12.0 | Levofloxacin (IZ: 21.0) Tetracycline (IZ: 27.0) | [22] | ||
Streptococcus pneumoniae | IZ: 17.0, 17.3 | Levofloxacin (IZ: 22.0) Tetracycline (IZ: 30.7) Ofloxacin (IZ: 19.3) Ceftriaxone (IZ: 21.0) | [22,49] | ||
Mycobacterium abscessus ATCC 19977 | MIC: 18.15 | Amikacin (MIC: 1.71) Ciprofloxacin (MIC: 3.02) Clarithromycin (MIC: 0.67) | [88] | ||
Mycobacterium abscessus AT07 | MIC: 9.07 | Amikacin (MIC: 3.41) Ciprofloxacin (MIC: 6.03) Clarithromycin (MIC: 0.17) | [88] | ||
Mycobacterium abscessus AT46 | Amikacin (MIC: 1.71) Ciprofloxacin (MIC: 12.07) Clarithromycin (MIC: 0.33) | ||||
Mycobacterium abscessus AT52 | Amikacin (MIC: 6.83) Ciprofloxacin (MIC: 24.14) Clarithromycin (MIC: 171.13) | ||||
Mycobacterium tuberculosis H37Ra | MIC: 50 | Rifampicin (MIC: 0.2) | [23] | ||
Mycobacterium tuberculosis MDR-A8 | MIC: 25 | Rifampicin (MIC: 100) | |||
Mycobacterium tuberculosis MDR-V791 Mycobacterium smegmatismegmatis MDR-R | MIC: 12.5 | Rifampicin (MIC > 200) | |||
Mycobacterium smegmatismegmatis | MIC: 12.5 | Rifampicin (MIC: 0.2) | |||
Mycobacterium smegmatismegmatis MDR-40 | MIC: 12.5 | Rifampicin (MIC: 100) | |||
Clavibacter michiganensis subsp. michiganensis | MIC: 7.812 | Oxolinic acid (MIC: 31.25) Oxytetracycline (MIC: 125) | [76] | ||
Pseudomonas aeruginosa | IZ: 16.7 MIC: 133 | Ofloxacin (IZ: 19.3) Ceftriaxone (IZ: 21.0) | [38,49] | ||
Escherichia coli | MIC: 20, 0.25, 225 | Streptomycin (MIC: 31.25) | [20,38,84] | ||
Escherichia coli | IZ: 7.0, 18.6, 16 | Levofloxacin (IZ: 31.0) Tetracycline (IZ: 21.0) Chloramphenicol (IZ: 23.2) Ampicillin (IZ: 21.0) | [22,37,94] | ||
Klebsiella pneumoniae | MIC: 0.0625 IZ: 11.3 | Streptomycin (MIC: 31.25) Chloramphenicol (IZ: 17.5) | [84,94] | ||
Proteus mirabilis | MIC < 10,000 | Tetracycline (MIC > 128) Ampicillin (MIC > 128) | [93] | ||
Salmonella typhi | IZ: 14.0, 18.1 | Ampicillin (IZ: 17.0) Chloramphenicol (IZ: 23.8) | [37,94] | ||
Salmonella enterica | MIC < 10,000 | Tetracycline (MIC: 2) Ampicillin (MIC: 1) | [93] | ||
Salmonella typhimurium | Tetracycline (MIC: 2) Ampicillin (MIC: 2) | ||||
Vibrio harveyi | MIC: 20 | [20] | |||
Fusarium fujikuroi | MIC: 18.6 | Amphotericin B (MIC: 3) Isavuconazole (MIC: 5) Natamycin (MIC: 4) Posaconazole (MIC: 0.65) Voriconazole (MIC: 3.7) Fluconazole (MIC: 90) Itraconazole (MIC: 27) | [47] | ||
Achlya bisexualis | MIC: 8 | [46] | |||
Pythium sp. | |||||
Saprolegnia parasitica | MIC: 2 | ||||
Aspergillus flavus | MIC: 0.5 | Ketoconazole (MIC: 3.9) | [84] | ||
Aspergillus fumigatus | MIC: 0.125 | Ketoconazole (MIC: 3.9) | |||
Aspergillus niger | MIC: 10 | Amphotericin B (MIC: 0.98) Fluconazole (MIC: 250) | |||
Penicillium purpurescens | MIC: 0.5 | Ketoconazole (MIC: 3.9) | [84] | ||
Penicillium verrucosum | [93] | ||||
Candida albicans | MIC: 0.25 | Ketoconazole (MIC: 1.95) | [84] | ||
Saccharomyces cerevisiae | MIC: 5 | Fluconazole (MIC: 7.81) | [93] | ||
Malassezia | IZ: 20.0 | [95] | |||
(+)-Usnic acid | Staphylococcus aureus | MIC: 7.5, 12.5, IZ: 20.0 | Vancomycin (MIC: 1.47) | [87,91,96] | |
Staphylococcus aureus-ATCC 25923 | MIC: 16 | Norfloxacin (MIC: 1) | [74] | ||
Staphylococcus aureus XU212 (Tetk, mecA) | Tetracycline (MIC: 128) | ||||
Staphylococcus aureus RN4220 (MsrA) | MIC: 8 | Erythromycin (MIC: 128) | [74] | ||
Staphylococcus aureus-1199B (NorA) | Norfloxacin (MIC: 32) | ||||
Methicillin-resistant Staphylococcus aureus-15 | MIC: 16 | Oxacillin (MIC: 32) | [74] | ||
Methicillin-resistant Staphylococcus aureus-16 | Oxacillin (MIC: 512) | ||||
Staphylococcus epidermidis | MIC: 3.12 | Vancomycin (MIC: 2.95) | [91] | ||
Staphylococcus haemolyticus | MIC: 12.5 | Vancomycin (MIC: 2.95) | |||
Staphylococcus haemolyticus | MIC: 25 | [87] | |||
Bacillus subtilis | MIC: 8 | Streptomycin (MIC: 4) | [68] | ||
Bacillus cereus | |||||
Mycobacterium avium | MIC: 16 | Isoniazid (MIC: 1.0) | [24] | ||
Mycobacterium tuberculosisuberculosis | MIC: 8 IZ: 8 | Isoniazid (MIC: 0.03) | [24,87] | ||
Mycobacterium kansasii | MIC: 8 | Isoniazid (MIC: 0.05) | [24] | ||
Enterococcus faecium | MIC > 50, 6.25 | [44,87] | |||
Escherichia coli | MIC: 31 | [68] | |||
Helicobacter pylori | MIC: 4~8 | [87] | |||
Candida albicans | MIC: 64 | [65] | |||
Candida orthopsilosis | BEC50: 3.9 BEC80: 31.25 | [87] | |||
Candida parapsilosis | BEC50: 3.9 BEC80: 62.5 | ||||
(−)-Usnic acid | Staphylococcus aureus | IZ: 25~40 MIC: 100 | [87] | ||
Staphylococcus aureus | MIC: 2.4, 2.5, 7.5 | Chloramphenicol (MIC: 5) | [30,57,58] | ||
Methicillin-resistant Staphylococcus aureus | MIC: 2.5~7.5 | [58] | |||
Methicillin-resistant Staphylococcus aureus (Cl) | MIC: 25~50 32~128 | Oxacillin (MIC: 0.078) Oxacillin (MIC: 16–128) | [97,98] | ||
Bacillus cereus | MIC: 0.15 | [30] | |||
Bacillus subtilis | MIC: 0.61 | ||||
Streptococcus faecalis | MIC: 0.15 | ||||
Listeria monocytogenes | MIC: 0.31 | [30] | |||
Proteus vulgaris | MIC: 0.15 | ||||
Aeromonas hydrophila | MIC: 1.2 | ||||
Candida albicans | MIC: 0.15 | [30] | |||
Candida glabrata | |||||
Usenamine E | Candida albicans | MIC: 64 | [65] | ||
Usenamine F | Candida albicans | MIC: 64 | [65] | ||
Usenamine G | Candida albicans | MIC: 64 | [65] | ||
Usenamine H | Candida albicans | MIC: 64 | [65] | ||
Isousone | Trichophyton rubrum spp. | MIC: 41 | [92] | ||
Usone | Trichophyton rubrum spp. | MIC: 41 | [92] | ||
Perfluorophenacyl | Bacillus subtilis | IZ: 12.0 MIC: 158.1 | Streptomycin (IZ: 33.0 MIC: 3) | [90] | |
1, 3, 7, 9-Tetrahydroxy-2, 8-dimethyl-4, 6-di (ethanoyl) dibenzofuran | Escherichia coli | IC50: 18 | [99] | ||
2,6-Difluorophenyl | Salmonella Typhi | MIC: 11 | [90] | ||
Bacillus subtilis | Streptomycin (IZ: 33.0 MIC: 3) | ||||
Escherichia coli | MIC: 6 | Streptomycin (IZ: 37.0 MIC: 3) | |||
2-Acylnaphthalenyl | Mtb H37Rv | MIC: 5.3 | [89] | ||
3,4-Difluorophenacyl | Bacillus subtilis | IZ: 12.0 MIC: 172.8 | Penicillin (IZ: 28.0 MIC: 3.5) Streptomycin (IZ: 24.0 MIC: 8.1) | [89] | |
Mtb H37Rv | MIC: 5.4 | ||||
N-Acylmorpholinyl | Bacillus subtilis | IZ: 12.0 MIC: 90.7 | Penicillin (IZ: 28.0 MIC: 3.5) Streptomycin (IZ: 24.0 MIC: 8.1) | [89] | |
Didymic acid | Staphylococcus aureus | MIC: 7.5 | [57] | ||
Condidymic acid | Staphylococcus aureus | MIC: 7.5 | [57] | ||
3-Fluoro-5-trifluoromethylphenyl | Salmonella Typhi | MIC: 10 | [90] | ||
Hexanoic acid | Bacillus subtilis | MIC: 3 | Streptomycin (IZ: 33.0 MIC: 3) | [90] | |
Streptococcus mutans | MIC: 7 | ||||
Salmonella Typhi | MIC: 3 | [90] |
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC (µg/mL)/IZ (mm) | |||||
3-Chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-one | Staphylococcus aureus | IZ: 9.5 | [102] | ||
Enterococcus faecium | IZ: 10.0 | ||||
2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one | Epidermophyton floccosum | MIC: 4 | [102] | ||
Trichophyton rubrum Microsporum canis | MIC: 8 | ||||
Lepraric acid | Streptococcus gordonii | MIC > 2500 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | MIC: 625 | Doxycycline (MIC: 0.13) | |||
Eumitrin F | Bacillus subtilis | MIC: 62.5 | [103] | ||
Escherichia coli | MIC: 62.5 | [103] | |||
Eumitrin G | Bacillus subtilis | MIC: 62.5 | [103] | ||
Escherichia coli | MIC: 62.5 | [103] | |||
Eumitrin H | Bacillus subtilis | MIC: 62.5 | [103] | ||
Escherichia coli | MIC: 62.5 | [103] | |||
Hybocarpone | Staphylococcus aureus | MIC: 4 | Norfloxacin (MIC: 1) | [74] | |
Staphylococcus aureus-RN4220 (MsrA) | Erythromycin (MIC: 128) | ||||
Methicillin-resistant Staphylococcus aureus-15 | Oxacillin (MIC: 32) | ||||
Methicillin-resistant Staphylococcus aureus-16 | MIC: 8 | Oxacillin (MIC: 512) | |||
Staphylococcus aureus-1199B (NorA) | Norfloxacin (MIC: 32) | ||||
Staphylococcus aureus-XU212 (Tetk, mecA) | Tetracycline (MIC: 128) |
Compounds | Structures | Object Strains | Samples | Positive Control | References |
---|---|---|---|---|---|
MIC/ED50 (µg/mL)/IZ (mm) | |||||
Protolichesterinic acid | Methicillin-resistant Staphylococcus aureus | MIC: 64 | Clindamycin (MIC: 8192) Erythromycin (MIC: 1024) Gentamicin (MIC: 256) Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8) | [75] | |
Pythium debaryanum | ED50: 16.07 | Hexaconazole (ED50: 25.92) | [27] | ||
Rhizoctonia solani | ED50: 23.09 | ||||
Constipatic acid | Candida albicans | MIC: 64 | [65] | ||
Lichesterinic acid B-10 | Porphyromonas gingivalis | MIC: 0.073 | Doxycycline (MIC: 0.13) | [104] | |
Lichesterinic acid B-7 | Porphyromonas gingivalis | MIC: 75 | |||
Lichesterinic acid B-12 | Porphyromonas gingivalis | MIC: 0.037 | |||
Lichesterinic acid B-13 | Porphyromonas gingivalis | MIC: 0.293 | |||
18R-hydroxy-dihydroalloprotolichesterinic acid | Candida albicans | MIC: 64 | [65] |
Compounds | Structures | Object Strains | Samples | Positive Control Antibiotics | References |
---|---|---|---|---|---|
MIC (µg/mL or µM)/IC50/EC50 (µg/mL)/IZ (mm) | |||||
Rhizocarpic acid | Bacillus subtilis | MIC: 50 | Tetracycline (MIC: 6.3) | [105] | |
Staphylococcus aureus | MIC: 32 | Norfloxacin (MIC: 1) | [74] | ||
RN4220 (MsrA) | Erythromycin (MIC: 128) | ||||
Methicillin-resistant Staphylococcus aureus-15 | Oxacillin (MIC: 32) | ||||
Methicillin-resistant Staphylococcus aureus-16 | Oxacillin (MIC: 512) | ||||
Staphylococcus aureus-1199B (NorA) | MIC: 64 | Norfloxacin (MIC: 32) | |||
XU212 (Tetk, mecA) | Tetracycline (MIC: 128) | ||||
7-Hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one | Bacillus subtilis | MIC: 2620 | [107] | ||
Klebsiella pneumoniae | MIC: 1290 | ||||
Escherichia coli Pseudomonas aeruginosa | MIC: 1560 | ||||
Candida albicans | MIC: 6250 | ||||
Aspergillus fumigatus | MIC: 7250 | ||||
Stereocalpin A | Escherichia coli | IC50: 28 | [99] | ||
Stereocalpin B | Escherichia coli | IC50: 30 | [99] | ||
Epiforellic acid | Methicillin-resistant Staphylococcus aureus | MIC: 32 | Clindamycin (MIC: 8192) Erythromycin (MIC: 1024) Gentamicin (MIC: 256) Levofloxacin (MIC ≤ 0.5) Oxacillin (MIC: 8) | [75] | |
Cryptothecin A | Candida albicans | Weak activity | [108] | ||
Vulpinic acid | Methicillin-resistant Staphylococcus aureus | MIC: 31,250 | [106] | ||
Streptococcus gordonii | MIC: 187.5 | Doxycycline (MIC: 0.51) | [64] | ||
Clavibacter michiganensis subsp. michiganensis | MIC: 3.9 | Oxolinic acid (MIC: 31.25) Oxytetracycline (MIC: 125) | [76] | ||
Porphyromonas gingivalis | MIC: 375 | Doxycycline (MIC: 0.13) | [64] | ||
Sclerotinia sclerotiorum | EC50: 2.8 | [76] | |||
Uridine | Escherichia coli | IZ: 6.3 | Gentamicin (IZ: 12.4) | [65] | |
4-(Acylamino)butyramides | Candida albicans | MIC: 64 | [65] | ||
(+)-Roccellic acid | Streptococcus gordonii | MIC: 46.9 | Doxycycline (MIC: 0.51) | [64] | |
Porphyromonas gingivalis | Doxycycline (MIC: 0.13) | ||||
Caperatic acid | Staphylococcus aureus | MIC: 10 | [96] |
Compounds | Structures | Object Strains | Samples | Positive Control Antibiotics | References |
---|---|---|---|---|---|
IC50/ED50 (µg/mL or µM)/IZ (mm)/IR (%)/SI | |||||
Methyl β-orcinol-carboxylate | Hepatitis C Virus | IC50: 50.6 | [111] | ||
Atranol | Hepatitis C Virus | IC50: 40.3 | Telaprevir (IC50: 0.18) Erlotinib (IC50: 0.64) | ||
Methyl orsellinate | Hepatitis C Virus | IC50 > 100 | |||
Barbatic acid | Epstein–Barr virus | IC50 > 100 | [62] | ||
Diffractic acid | Epstein–Barr virus | IC50: >100 | [62] | ||
Evernic acid | Epstein–Barr virus | IR: 64.6 | [62] | ||
Atranorin | Hepatitis C virus | IC50: 22.3 SI > 4.5 | Telaprevir (IC50: 0.18) Erlotinib (IC50: 0.64) | [111] | |
Sekikaic acid | Respiratory syncytial virus rg | IC50: 5.69 SI: 5.46 | [62,112] | ||
Respiratory syncytial virus A2 | IC50: 7.7 | ||||
Psoromic acid | Herpes Simplex Virus Type 1 | IC50: 1.9 SI: 163.2 | Acyclovir (IC50: 2.6 SI: 119.2) | [113] | |
Herpes Simplex Virus Type 2 | IC50: 2.7 SI: 114.8 | Acyclovir (IC50: 2.8 SI: 110.7) | |||
Usnic acid | Herpes simplex type 1 virus | IZ > 4 | [20] | ||
Polio type 1 virus | IZ > 4 | ||||
(+)-Usnic acid | Severe acute respiratory Syndrome Coronavirus 2 | IC50: 7.99 SI: 6.26 | Chloroquine (IC50: 6.16 SI: 13.07) Remdesivir (IC50: 2.25 SI: 4.24) Lopinavir (IC50: 10.8 SI: 6.74) | [115] | |
Severe acute respiratory Syndrome Coronavirus 2 Alpha (B.1.1.7) | IC50: 6.05 SI: 5.8 | Chloroquine (IC50: 2.64) Remdesivir (IC50: 1.47) Lopinavir (IC50: 11.8) | |||
Severe acute respiratory Syndrome Coronavirus 2 Beta (B.1.351) | IC50: 2.92 SI: 11.1 | Chloroquine (IC50: 6.22) Remdesivir (IC50: 6.48) Lopinavir (IC50: 15.3) | |||
A(H1N1)pdm09 influenza virus | ED50: 51.7 SI: 5.9 | [87,116] | |||
Epstein–Barr virus activation | ED50: 1.0 | ||||
(−)-Usnic acid | A(H1N1)pdm09 influenza virus | ED50: 14.5 SI: 14.4 | [87,116] | ||
Epstein–Barr virus | ED50: 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Lu, J.; Liang, F.; Ding, H.; Xiao, C. Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. Int. J. Mol. Sci. 2025, 26, 3136. https://doi.org/10.3390/ijms26073136
Tian H, Lu J, Liang F, Ding H, Xiao C. Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. International Journal of Molecular Sciences. 2025; 26(7):3136. https://doi.org/10.3390/ijms26073136
Chicago/Turabian StyleTian, Hongqiao, Junlin Lu, Fangrong Liang, Haiyan Ding, and Chaojiang Xiao. 2025. "Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors" International Journal of Molecular Sciences 26, no. 7: 3136. https://doi.org/10.3390/ijms26073136
APA StyleTian, H., Lu, J., Liang, F., Ding, H., & Xiao, C. (2025). Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors. International Journal of Molecular Sciences, 26(7), 3136. https://doi.org/10.3390/ijms26073136