Trophoblast Function in Preeclampsia: Decoding the Mechanistic Roles of Coding and Non-Coding Genes
Abstract
1. Introduction
| Role | Gene | Expression Level | Observation | Reference |
|---|---|---|---|---|
| Trophoblast function | GLUT1 | ↓ | Regulated proliferation, migration, and invasion via MAPK and PI3K/AKT signaling | [45] |
| Syncytin 1 | ↓ | Attenuates the EMT process by promoting apoptosis, inhibiting proliferation, and invasion by suppressed the PI3K/Akt pathway | [18] | |
| Follistatin | ↓ | Key role of FST/GDF11/Smad2/3 signaling axis in trophoblast function regulation | [46] | |
| THBS4 | ↓ | Key role of TGF-β1/Smad signaling cascade in trophoblast function and placental vascular development | [38] | |
| SH3PXD2A-AS1 | ↑ | Regulate the invasion and migration of trophoblast cells | [47] | |
| ROS | DOCK1 | ↓ | DOCK1 regulates tube formation and trophoblast angiogenesis; its deficiency promotes apoptosis and ROS production | [26] |
| PRDX1 | ↓ | Regulate autophagy and ROS | [19] | |
| IREα-XBP1s axis | ROS regulated invasion and migration | [1] | ||
| Endothelial dysfunction and angiogenesis | ICAM1 and VCAM1 | ↑ | Diagnostic biomarker | [29] |
| sFlt-1 | ↑ | Diagnostic biomarker | [32] | |
| PlGF and sFlt1 | sFlt1/PlGF ratio: diagnostic biomarker | [35] | ||
| Htra4 | ↑ | Vascular endothelial injury | [48] | |
| sEng | ↑ | Diagnostic biomarker | [37] | |
| IGFBP2 | ↑ | Regulate trophoblast function and EMT in PE via PI3K/AKT; therapeutic target | [49] | |
| IGF2BP1 and neprilysin | ↑ | Potential therapeutic target | [43] | |
| IGF1 and IGF1R | ↓ | Biomarkers for the diagnosis and prognosis | [42] | |
| Inflammation | INHBA | ↑ | Biomarkers for diagnostic and treatment | [50] |
| TPBG, and OPRK1 | ↓ | |||
| NLRP3 | ↑ | miR-223-3p downregulation | [51] | |
| MAPK1 | ↑ | Differentiating marker between early-onset PE and gestational hypertension | [52] |
2. MicroRNAs (miRNAs) as Key Regulators of Trophoblast Function and PE Pathogenesis
| miRNA | Expression Level in PE | Observation | Reference |
|---|---|---|---|
| miR-16 | ↑ | Regulate proliferation and angiogenesis of mesenchymal stem cells in promoting PE; negatively regulated by Cyclin E1 and VEGFA | [61] |
| miR-31 | ↑ | Regulate trophoblast autophagy via SNHG5 | [64] |
| miR-17, miR-20a, miR-20b | ↑ | Regulate trophoblast and endothelial cells angiogenesis through EPHB4 and ephrin-B2 | [58] |
| miR-141 | ↑ | Regulate apoptosis, invasion, and vascularization by inhibiting CXCL12β/CXCR2/4 in trophoblast | [59] |
| miR-296 | ↑ | Regulate endothelial dysfunction and trophoblast invasion | [72] |
| miR-454 | ↓ | Promote trophoblast cell proliferation, apoptosis, and invasion via EPHB4 | [73] |
| miR-512 | ↑ | Regulate migration and invasion of trophoblast cells via USF2/PPP3R1 axis | [63] |
| miR-3935 | ↓ | Regulate trophoblast EMT through miR-3935/TRAF6/RGS2 axis | [60] |
| Let-7a | ↑ | Stimulate trophoblast apoptosis via Bcl-xl and YAP1 | [65] |
| miR-515-5p | ↑ | Inhibit trophoblast cell proliferation and invasion | [66] |
| miR-210 | ↑ | Stimulate apoptosis of trophoblast via NOTCH1 | [67] |
| miR-95-5p | ↑ | Regulate migration and invasion of trophoblast cells | [68] |
| miR-149-5p | ↑ | Inhibit trophoblast Eng expression | [69] |
| miR-18a | ↑ | Regulate inhibition of trophoblast cell invasion by transforming TGFβ | [70] |
| miR-146a-5p | ↑ | Inhibit trophoblast cell progression, invasion, and EMT | [71] |
3. Circular RNAs Linking Abnormal Trophoblast Function to PE
| miRNA | Expression Level | Target Biological Process | References |
|---|---|---|---|
| circ_0090100 | ↑ | Regulate trophoblast cell proliferation, invasion, and apoptosis through circ_0090100/miR-139-5p/AHNAK axis | [79] |
| circ_0017068 | ↓ | Regulate trophoblast proliferation and apoptosis via miR-330-5p/XIAP axis | [80] |
| circ_0001326 | ↑ | Stimulate trophoblast cell proliferation, invasion, migration, and EMT via miR-188-3p/HTRA1 axis, | [78] |
| circ_0008726 | ↑ | Promote trophoblast migration, invasion, and EMT by miR-345-3p/RYBP signaling axis | [81] |
| CircRNA_06354 | N/A | Regulate angiogenesis | [77] |
| circ_0014736 | ↑ | Inhibit trophoblast proliferation, migration and invasion via miR-942-5p/GPR4 axis | [83] |
| Circ_0015382 | ↑ | Inhibit cell growth, invasion and migration via miR-149-5p/TFPI2 axis | [82] |
| Circ_0063517 | ↓ | Regulate angiogenesis | [84] |
| circ_0077109 | ↑ | Inhibit cell proliferation, invasion, and angiogenesis via miR-139-5p/HOXD10 axis | [85] |
| circ_0007445 | ↑ | Suppress trophoblast cell function via miR-4432/HTRA1 axis | [86] |
| hsa_circ_0002348 | ↑ | Inhibit cell proliferation and promote apoptosis | [87] |
| circPAPPA2 | ↑ | Inhibit cell proliferation and invasion | [88] |
| circ_0030042 | ↑ | Regulate cell growth, invasion, and EMT process | [89] |
| circUBAP2 | ↓ | Inhibit cell proliferation and migration | [90] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, I.; Dhar, R.; Singh, S.; Sharma, J.B.; Nag, T.C.; Mridha, A.R.; Jaiswal, P.; Biswas, S.; Karmakar, S. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci. Rep. 2021, 11, 18415. [Google Scholar] [CrossRef]
- Hornakova, A.; Kolkova, Z.; Holubekova, V.; Loderer, D.; Lasabova, Z.; Biringer, K.; Halasova, E. Diagnostic Potential of MicroRNAs as Biomarkers in the Detection of Preeclampsia. Genet. Test. Mol. Biomark. 2020, 24, 321–327. [Google Scholar] [CrossRef]
- Shan, Y.; Hou, B.; Wang, J.; Chen, A.; Liu, S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front. Immunol. 2024, 15, 1385950. [Google Scholar] [CrossRef]
- Todd, N.; McNally, R.; Alqudah, A.; Jerotic, D.; Suvakov, S.; Obradovic, D.; Hoch, D.; Hombrebueno, J.R.; Campos, G.L.; Watson, C.J.; et al. Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment. J. Clin. Endocrinol. Metab. 2020, 106, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Oancea, M.; Mihu, D.; Braicu, C.; Isachesku, E.; Nati, I.D.; Boitor-Borza, D.; Diculescu, D.M.; Strilciuc, S.; Pană, A. MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 5607. [Google Scholar] [CrossRef] [PubMed]
- Natenzon, A.; McFadden, P.; DaSilva-Arnold, S.C.; Zamudio, S.; Illsley, N.P. Diminished trophoblast differentiation in early onset preeclampsia. Placenta 2022, 120, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Farah, O.; Nguyen, C.; Tekkatte, C.; Parast, M.M. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 2020, 102, 4–9. [Google Scholar] [CrossRef]
- Goldman-Wohl, D.; Yagel, S. Regulation of trophoblast invasion: From normal implantation to pre-eclampsia. Mol. Cell. Endocrinol. 2002, 187, 233–238. [Google Scholar] [CrossRef]
- Sui, C.; Liao, Z.; Bai, J.; Hu, D.; Yue, J.; Yang, S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur. J. Med. Res. 2023, 28, 471. [Google Scholar] [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef]
- Staff, A.C. The two-stage placental model of preeclampsia: An update. J. Reprod. Immunol. 2019, 134–135, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hayder, H.; Shan, Y.; Chen, Y.; O’Brien, J.A.; Peng, C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front. Cell Dev. Biol. 2022, 10, 995462. [Google Scholar] [CrossRef] [PubMed]
- Abdelazim, S.A.; Shaker, O.G.; Aly, Y.A.H.; Senousy, M.A. Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci. Rep. 2022, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.-H.; Wang, Y.-X.; Liu, T.-H. A comprehensive review of human trophoblast fusion models: Recent developments and challenges. Cell Death Discov. 2023, 9, 372. [Google Scholar] [CrossRef]
- Vornic, I.; Buciu, V.; Furau, C.G.; Gaje, P.N.; Ceausu, R.A.; Dumitru, C.S.; Barb, A.C.; Novacescu, D.; Cumpanas, A.A.; Latcu, S.C.; et al. Oxidative Stress and Placental Pathogenesis: A Contemporary Overview of Potential Biomarkers and Emerging Therapeutics. Int. J. Mol. Sci. 2024, 25, 12195. [Google Scholar] [CrossRef]
- Sánchez-Aranguren, L.C.; Prada, C.E.; Riaño-Medina, C.E.; Lopez, M. Endothelial dysfunction and preeclampsia: Role of oxidative stress. Front. Physiol. 2014, 5, 372. [Google Scholar] [CrossRef]
- Walker, O.S.; Ragos, R.; Wong, M.K.; Adam, M.; Cheung, A.; Raha, S. Reactive oxygen species from mitochondria impacts trophoblast fusion and the production of endocrine hormones by syncytiotrophoblasts. PLoS ONE 2020, 15, e0229332. [Google Scholar] [CrossRef]
- Wang, Y.N.; Chen, X.L.; Yang, J.; Gong, X.X.; Zhang, H.F.; Zhang, Y.M.; Zeng, D.F.; Chen, P.S.; Chen, H.B. Reduced syncytin-1 regulates trophoblast invasion and apoptosis in preeclampsia. Placenta 2024, 155, 32–41. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, J.; Li, S.; Li, A.; Fang, Z.; Zhao, M.; Zhang, M.; Wang, X. Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J. Assist. Reprod. Genet. 2023, 40, 1573–1587. [Google Scholar] [CrossRef]
- Assani, A.D.; Boldeanu, L.; Siloși, I.; Boldeanu, M.V.; Dijmărescu, A.L.; Assani, M.Z.; Manolea, M.M.; Văduva, C.C. Pregnancy Under Pressure: Oxidative Stress as a Common Thread in Maternal Disorders. Life 2025, 15, 1348. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- Laresgoiti-Servitje, E.; Gómez-López, N.; Olson, D.M. An immunological insight into the origins of pre-eclampsia. Hum. Reprod. Update 2010, 16, 510–524. [Google Scholar] [CrossRef]
- Molvarec, A.; Szarka, A.; Walentin, S.; Beko, G.; Karádi, I.; Prohászka, Z.; Rigó, J., Jr. Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod. Biol. Endocrinol. 2011, 9, 124. [Google Scholar] [CrossRef]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Pogula, A.L.; Muthulakshmi, R.; Thokali, S.; Pragathi, Y.; Periasamy, P. Vascular Inflammatory Genes as Predictors of Preeclampsia: A Systematic Review. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S5), S4324–S4326. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qin, X.; Zeng, W.; Wu, F.; Wei, X.; Li, Q.; Lin, Y. DOCK1 deficiency drives placental trophoblast cell dysfunction by influencing inflammation and oxidative stress, hallmarks of preeclampsia. Hypertens. Res. 2024, 47, 3434–3446. [Google Scholar] [CrossRef]
- Romero, R.; Chaiworapongsa, T. Preeclampsia: A link between trophoblast dysregulation and an antiangiogenic state. J. Clin. Investig. 2013, 123, 2775–2777. [Google Scholar] [CrossRef]
- Roberts, J.M.; Taylor, R.N.; Musci, T.J.; Rodgers, G.M.; Hubel, C.A.; McLaughlin, M.K. Preeclampsia: An endothelial cell disorder. Am. J. Obstet. Gynecol. 1989, 161, 1200–1204. [Google Scholar] [CrossRef]
- Kornacki, J.; Wirstlein, P.; Wender-Ozegowska, E. Markers of Endothelial Injury and Dysfunction in Early- and Late-Onset Preeclampsia. Life 2020, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Cerdeira, A.S.; Karumanchi, S.A. Angiogenic factors in preeclampsia and related disorders. Cold Spring Harb. Perspect. Med. 2012, 2, a006585. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Flint, E.J.; Cerdeira, A.S.; Redman, C.W.; Vatish, M. The role of angiogenic factors in the management of preeclampsia. Acta Obstet. Gynecol. Scand. 2019, 98, 700–707. [Google Scholar] [CrossRef]
- Grummer, M.A.; Sullivan, J.A.; Magness, R.R.; Bird, I.M. Vascular endothelial growth factor acts through novel, pregnancy-enhanced receptor signalling pathways to stimulate endothelial nitric oxide synthase activity in uterine artery endothelial cells. Biochem. J. 2009, 417, 501–511. [Google Scholar] [CrossRef]
- Gladstone, R.A.; Snelgrove, J.W.; McLaughlin, K.; Hobson, S.R.; Windrim, R.C.; Melamed, N.; Hladunewich, M.; Drewlo, S.; Kingdom, J.C. Placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt1): Powerful new tools to guide obstetric and medical care in pregnancy. Obstet. Med. 2025, 18, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Margioula-Siarkou, G.; Margioula-Siarkou, C.; Petousis, S.; Margaritis, K.; Alexandratou, M.; Dinas, K.; Sotiriadis, A.; Mavromatidis, G. Soluble endoglin concentration in maternal blood as a diagnostic biomarker of preeclampsia: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 366–381. [Google Scholar] [CrossRef]
- Shi, H.; Mao, Y.; Cui, J.; Ma, R.; Yang, Z.; Zhao, Y. THBS4 downregulation alters trophoblast function in preeclampsia via the TGF-β1/Smad signaling cascade. Am. J. Physiol. Cell Physiol. 2025, 329, C170–C182. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Y.; Li, L.; Li, X.; Ying, J.; Li, S.; Wu, L.; Li, L. Pre-eclampsia intronic polyadenylation enriched in VEGFA-VEGFR2 signaling pathway. Heliyon 2024, 10, e39495. [Google Scholar] [CrossRef] [PubMed]
- Nikuei, P.; Malekzadeh, K.; Rajaei, M.; Nejatizadeh, A.; Ghasemi, N. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia. Iran. J. Reprod. Med. 2015, 13, 251–262. [Google Scholar] [PubMed]
- Coskun, E.; Ekmekci, O.B.; Gungor, Z.; Tuten, A.; Oncul, M.; Hamzaoğlu, K.; Gok, K.; Ekmekci, H. Evaluation of vascular peroxidase 1, humanin, MOTS-c and miR-200c expression levels in untreated preeclampsia patients. Mol. Biol. Rep. 2024, 52, 66. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Huang, X.; Meng, S.; Wang, S. Investigating Serum and Placental Levels of IGF-1 and IGF-1R in Preeclampsia Patients and Their Clinical Implications. Int. J. Womens Health 2025, 17, 729–738. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, H.; Pan, Y.; Lu, D. IGF2BP1 Enhances Neprilysin mRNA Stability to Promote Proliferation, Invasion, and Angiogenesis in Placental Trophoblasts. Int. J. Gen. Med. 2025, 18, 967–980. [Google Scholar] [CrossRef]
- Sibiak, R.; Ozegowska, K.; Wender-Ozegowska, E.; Gutaj, P.; Mozdziak, P.; Kempisty, B. Fetomaternal Expression of Glucose Transporters (GLUTs)-Biochemical, Cellular and Clinical Aspects. Nutrients 2022, 14, 2025. [Google Scholar] [CrossRef]
- Pei, J.; Liao, Y.; Bai, X.; Li, M.; Wang, J.; Li, X.; Zhang, H.; Sui, L.; Kong, Y. Dysregulated GLUT1 results in the pathogenesis of preeclampsia by impairing the function of trophoblast cells. Sci. Rep. 2024, 14, 23761. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, L.; Zhang, C.; Xi, Q.; Lv, J.; Huo, W.; Zhu, L.; Zhu, R.; Zhang, Y. Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas. Placenta 2022, 121, 145–154. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, S.; Liu, H.; Gao, Y.; Yang, X.; Ren, Z.; Gao, Y.; Xiao, L.; Hu, H.; Yu, Y.; et al. Association of lncRNA SH3PXD2A-AS1 with preeclampsia and its function in invasion and migration of placental trophoblast cells. Cell Death Dis. 2020, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Ma, X.; Wang, F.; Su, Y.; Chang, Y.; Xin, H. Htra4 promotes vascular endothelial cell injury and is associated with the early-onset of preeclampsia. Sci. Rep. 2025, 15, 11752. [Google Scholar] [CrossRef]
- Meng, S.; Qin, Y.; Lyu, C.; Wang, S. IGFBP2 Modulates Trophoblast Function and Epithelial–Mesenchymal Transition in Preeclampsia via the PI3K/AKT Signaling Pathway. Curr. Issues Mol. Biol. 2025, 47, 478. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhao, Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Front. Immunol. 2022, 13, 883404. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Lu, D. MicroRNA-223-3p downregulates the inflammatory response in preeclampsia placenta via targeting NLRP3. BMC Pregnancy Childbirth 2024, 24, 175. [Google Scholar] [CrossRef]
- Soobryan, N.; Reddy, K.; Ibrahim, U.H.; Moodley, J.; Kumar, A.; Mackraj, I. Identification of gene signature markers in gestational hypertension and early-onset pre-eclampsia. Placenta 2024, 145, 1–8. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Braicu, C.; Calin, G.A.; Berindan-Neagoe, I. MicroRNAs and cancer therapy—From bystanders to major players. Curr. Med. Chem. 2013, 20, 3561–3573. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol 2018, 9, 402. [Google Scholar] [CrossRef]
- Gerede, A.; Stavros, S.; Danavasi, M.; Potiris, A.; Moustakli, E.; Machairiotis, N.; Zikopoulos, A.; Nikolettos, K.; Drakakis, P.; Nikolettos, N.; et al. MicroRNAs in Preeclampsia: Bridging Diagnosis and Treatment. J. Clin. Med. 2025, 14, 2003. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chen, Y.; Wu, C.; Cao, Z.; Xia, L.; Meng, J.; He, L.; Yang, C.; Wang, Z. MicroRNAs: Key regulators of the trophoblast function in pregnancy disorders. J. Assist. Reprod. Genet. 2023, 40, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, L.; Zhang, H.; Hachy, S.; Satohisa, S.; Laurent, L.C.; Parast, M.; Zheng, J.; Chen, D.B. Preeclampsia up-regulates angiogenesis-associated microRNA (ie., miR-17,-20a, and-20b) that target ephrin-B2 and EPHB4 in human placenta. J. Clin. Endocrinol. Metab. 2012, 97, E1051–E1059. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, X.; Wang, L.; Chen, F.; Cen, H.; Shi, L. Hypoxia-induced microRNA-141 regulates trophoblast apoptosis, invasion, and vascularization by blocking CXCL12β/CXCR2/4 signal transduction. Biomed. Pharmacother. 2019, 116, 108836. [Google Scholar] [CrossRef]
- Jin, M.; Xu, S.; Li, J.; Yao, Y.; Tang, C. MicroRNA-3935 promotes human trophoblast cell epithelial-mesenchymal transition through tumor necrosis factor receptor-associated factor 6/regulator of G protein signaling 2 axis. Reprod. Biol. Endocrinol. 2021, 19, 134. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Zhao, G.; Liu, D.; Du, L.; Wang, Z.; Hu, Y.; Hou, Y. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J. 2012, 279, 4510–4524. [Google Scholar] [CrossRef]
- Gubbiotti, M.A.; Vallet, S.D.; Ricard-Blum, S.; Iozzo, R.V. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol. 2016, 55, 7–21. [Google Scholar] [CrossRef]
- Halari, C.D.; Nandi, P.; Sidhu, J.; Sbirnac, M.; Zheng, M.; Lala, P.K. Decorin-induced, preeclampsia-associated microRNA-512-3p restrains extravillous trophoblast functions by targeting USF2/PPP3R1 axis. Front. Cell Dev. Biol. 2022, 10, 1014672. [Google Scholar] [CrossRef]
- Yang, L.; Liu, C.; Zhang, C.; Shang, R.; Zhang, Y.; Wu, S.; Long, Y. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine. Bioengineered 2022, 13, 7221–7237. [Google Scholar] [CrossRef]
- Zha, W.; Guan, S.; Liu, N.; Li, Y.; Tian, Y.; Chen, Y.; Wang, Y.; Wu, F. Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia. Sci. Total Environ. 2020, 745, 139919. [Google Scholar] [CrossRef]
- Nunode, M.; Hayashi, M.; Nagayasu, Y.; Sawada, M.; Nakamura, M.; Sano, T.; Fujita, D.; Ohmichi, M. miR-515-5p suppresses trophoblast cell invasion and proliferation through XIAP regulation in preeclampsia. Mol. Cell. Endocrinol. 2023, 559, 111779. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, W.; Liu, X.; Liu, X.; Tao, H.; Wu, D.; Zhao, Y.; Zou, L. MicroRNA-210 regulates human trophoblast cell line HTR-8/SVneo function by attenuating Notch1 expression: Implications for the role of microRNA-210 in pre-eclampsia. Mol. Reprod. Dev. 2019, 86, 896–907. [Google Scholar] [CrossRef]
- Ni, H.; Wang, X.; Qu, H.; Gao, X.; Yu, X. MiR-95-5p involves in the migration and invasion of trophoblast cells by targeting low density lipoprotein receptor-related protein 6. J. Obstet. Gynaecol. Res. 2021, 47, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Xiaobo, Z.; Qizhi, H.; Zhiping, W.; Tao, D. Down-regulated miR-149-5p contributes to preeclampsia via modulating endoglin expression. Pregnancy Hypertens. 2019, 15, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Li, Z.; Wang, Y.; Yu, X.; Shao, X.; Li, Y.X.; Peng, C.; Zhao, Y.; Wang, Y.L. miR-18a Contributes to Preeclampsia by Downregulating Smad2 (Full Length) and Reducing TGF-β Signaling. Mol. Ther. Nucleic Acids 2020, 22, 542–556. [Google Scholar] [CrossRef]
- Peng, P.; Song, H.; Xie, C.; Zheng, W.; Ma, H.; Xin, D.; Zhan, J.; Yuan, X.; Chen, A.; Tao, J.; et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol. Res. 2021, 54, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Guo, T.; Xu, J.; Yuan, D.; Lin, M.; Yang, M. Elevated Expression of miR-296 in Human Placentas and Serum Samples From Pregnancies With Preeclampsia. Br. J. Biomed. Sci. 2023, 80, 11004. [Google Scholar] [CrossRef]
- Wang, F.; Yan, J. MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed. Pharmacother. 2018, 107, 746–753. [Google Scholar] [CrossRef]
- Drula, R.; Braicu, C.; Neagoe, I.B. Current advances in circular RNA detection and investigation methods: Are we running in circles? Wiley Interdiscip. Rev. RNA 2024, 15, e1850. [Google Scholar] [CrossRef]
- Zhou, C.; Qi, M.; Xu, Z.; Li, X.; Bai, J.; Yang, Y. Regulatory role of circRNAs in mammalian pregnancy. Reprod. Biol. 2025, 25, 101042. [Google Scholar] [CrossRef]
- Song, W.; Chen, X.; Wu, H.; Rahimian, N. Circular RNAs as a novel class of potential therapeutic and diagnostic biomarkers in reproductive biology/diseases. Eur. J. Med. Res. 2024, 29, 643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Yu, F.; Li, X.; Chen, X.; Zhu, D.; Sun, J.; Huang, Q.; Li, M.; Sun, M.; et al. CircRNA_06354 might promote early-onset preeclampsia in humans via hsa-miR-92a-3p/vascular endothelial growth factor-A. J. Hypertens. 2023, 41, 494–507. [Google Scholar] [CrossRef]
- Gao, X.; Qu, H.; Zhang, Y. Circ_0001326 suppresses trophoblast cell proliferation, invasion, migration and epithelial-mesenchymal transition progression in preeclampsia by miR-188-3p/HtrA serine peptidase 1 axis. J. Hypertens. 2023, 41, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Zhou, L.; Ma, Y.; Huang, Y. Circ_0090100 induces AHNAK expression to inhibit trophoblast cell proliferation and invasion and accelerate cell apoptosis by segregating miR-139-5p in preeclampsia. Hum. Cell 2025, 38, 67. [Google Scholar] [CrossRef]
- Wang, W.; Shi, J.; Zheng, L. Identification of Circular RNA circ_0017068 as a Regulator of Proliferation and Apoptosis in Trophoblast Cells by miR-330-5p/XIAP Axis. Reprod. Sci. 2022, 29, 2414–2427. [Google Scholar] [CrossRef]
- Shu, C.; Xu, P.; Han, J.; Han, S.; He, J. Upregulation of circRNA hsa_circ_0008726 in Pre-eclampsia Inhibits Trophoblast Migration, Invasion, and EMT by Regulating miR-345-3p/RYBP Axis. Reprod. Sci. 2022, 29, 2829–2841. [Google Scholar] [CrossRef]
- Hu, Z.; Dong, C.; Dong, Q. Circ_0015382 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-149-5p/TFPI2 axis. Placenta 2021, 108, 73–80. [Google Scholar] [CrossRef]
- Ren, J.; Cai, J. circ_0014736 induces GPR4 to regulate the biological behaviors of human placental trophoblast cells through miR-942-5p in preeclampsia. Open Med. 2023, 18, 20230645. [Google Scholar] [CrossRef]
- Li, W.; Yu, N.; Fan, L.; Chen, S.H.; Wu, J.L. Circ_0063517 acts as ceRNA, targeting the miR-31-5p-ETBR axis to regulate angiogenesis of vascular endothelial cells in preeclampsia. Life Sci. 2020, 244, 117306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, M. Circ_0077109 sponges miR-139-5p and upregulates HOXD10 in trophoblast cells as potential mechanism for preeclampsia progression. Am. J. Reprod. Immunol. 2022, 88, e13609. [Google Scholar] [CrossRef]
- Shao, W.; Cui, J.; Wang, W. Circ_0007445 inhibits trophoblast cell proliferation, migration and invasion by mediating the miR-4432/HTRA1 axis in preeclampsia. J. Hypertens. 2024, 42, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, Y.; An, P.; Zhao, H.; Li, X.; Xiong, Y. Hsa_circ_0002348 regulates trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia. J. Transl. Med. 2023, 21, 509. [Google Scholar] [CrossRef]
- Liao, W.; Zeng, H.; Jiang, X.; Deng, X.; Tu, S.; Lan, H.; Tang, L.; Dong, W.; Ding, C. CircPAPPA2 plays a role in preeclampsia pathogenesis via regulation of the miR-942/miR-5006-3p. BMC Pregnancy Childbirth 2024, 24, 414. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, Y.; Zhao, M.; Yin, X. Circ_0030042 inhibits trophoblast cell growth, invasion and epithelial-mesenchymal transition process in preeclampsia via miR-942-5p/LITAF. J. Reprod. Immunol. 2024, 162, 104205. [Google Scholar] [CrossRef]
- Qi, T.; Zhang, D.; Shi, X.; Li, M.; Xu, H. Decreased circUBAP2 Expression Is Associated with Preeclampsia by Limiting Trophoblast Cell Proliferation and Migration. Reprod. Sci. 2021, 28, 2237–2245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oancea, M.; Strilciuc, S.; Zanoaga, O.; Ciocan, C.; Malutan, A.; Păunescu, I.; Boitor, D.; Braicu, C.; Mihu, D. Trophoblast Function in Preeclampsia: Decoding the Mechanistic Roles of Coding and Non-Coding Genes. Int. J. Mol. Sci. 2025, 26, 11709. https://doi.org/10.3390/ijms262311709
Oancea M, Strilciuc S, Zanoaga O, Ciocan C, Malutan A, Păunescu I, Boitor D, Braicu C, Mihu D. Trophoblast Function in Preeclampsia: Decoding the Mechanistic Roles of Coding and Non-Coding Genes. International Journal of Molecular Sciences. 2025; 26(23):11709. https://doi.org/10.3390/ijms262311709
Chicago/Turabian StyleOancea, Mihaela, Stefan Strilciuc, Oana Zanoaga, Cristina Ciocan, Andrei Malutan, Ingrid Păunescu, Dan Boitor, Cornelia Braicu, and Dan Mihu. 2025. "Trophoblast Function in Preeclampsia: Decoding the Mechanistic Roles of Coding and Non-Coding Genes" International Journal of Molecular Sciences 26, no. 23: 11709. https://doi.org/10.3390/ijms262311709
APA StyleOancea, M., Strilciuc, S., Zanoaga, O., Ciocan, C., Malutan, A., Păunescu, I., Boitor, D., Braicu, C., & Mihu, D. (2025). Trophoblast Function in Preeclampsia: Decoding the Mechanistic Roles of Coding and Non-Coding Genes. International Journal of Molecular Sciences, 26(23), 11709. https://doi.org/10.3390/ijms262311709

