The Potential of β-Synuclein-Specific Regulatory T Cell Therapy as a Treatment for Progressive Multiple Sclerosis
Abstract
1. Multiple Sclerosis
2. Predispositions and Aetiology of MS
3. Immune and Degenerative Pathological Mechanisms
4. Grey Matter Damage and Its Importance in Pathology
5. Current Disease-Modifying Therapies
6. Clinical Trials and Proposed Therapies for Progressive MS
7. Regulatory T Cells’ Anti-Inflammatory and Neuroprotective Functions
8. Treg Dysfunction in MS
9. Therapeutic Use of Tregs
10. Beta-Synuclein
11. Immune Presentation, Recognition and Response to βsyn
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MS | Multiple sclerosis |
| MRI | Magnetic resonance imaging |
| PMS | Progressive multiple sclerosis |
| PPMS | Primary progressive multiple sclerosis |
| SPMS | Secondary progressive multiple sclerosis |
| RRMS | Relapsing-remitting multiple sclerosis |
| PIRA | Progression independent of relapse activity |
| Treg | Regulatory T cell |
| TCR | T cell receptor |
| EBV | Epstein–Barr virus |
| MBP | Myelin basic protein |
| βsyn | Beta-synuclein |
| DC | Dendritic cell |
| S1P | Sphingosine-1-phosphate |
| BTKi | Bruton’s tyrosine kinase inhibitor |
| HLA | Human leukocyte antigen |
| DR15 | Human leukocyte antigen allele DRB1:15*01 |
| CNS | Central nervous system |
| CSF | Cerebrospinal fluid |
| APC | Antigen presenting cell |
| EAE | Experimental autoimmune encephalomyelitis |
| CAR | Chimeric antigen receptor |
References
- Rida Zainab, S.; Zeb Khan, J.; Khalid Tipu, M.; Jahan, F.; Irshad, N. A review on multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2025, 567, 133–149. [Google Scholar] [CrossRef] [PubMed]
- The Multiple Sclerosis International Federation. Atlas of MS. Available online: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms (accessed on 12 April 2025).
- Olek, M.J. Multiple Sclerosis. Ann. Intern. Med. 2021, 174, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Pfleger, C.C.; Flachs, E.M.; Koch-Henriksen, N. Social consequences of multiple sclerosis (1): Early pension and temporary unemployment—A historical prospective cohort study. Mult. Scler. 2010, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.R.; Silva, S.; Lencastre, L.; Guerra, M.P. Biopsychosocial Correlates of Quality of Life in Multiple Sclerosis Patients. Int. J. Environ. Res. Public Health 2022, 19, 14431. [Google Scholar] [CrossRef]
- Kuutti, K.; Laakso, S.M.; Viitala, M.; Atula, S.; Soilu-Hanninen, M. Mortality and causes of death for people with multiple sclerosis: A Finnish nationwide register study. J. Neurol. 2025, 272, 370. [Google Scholar] [CrossRef]
- Sumelahti, M.L.; Verkko, A.; Kyto, V.; Sipila, J.O.T. Stable excess mortality in a multiple sclerosis cohort diagnosed 1970–2010. Eur. J. Neurol. 2024, 31, e16480. [Google Scholar] [CrossRef]
- University of California, San Francisco MS-EPIC Team; Cree, B.A.; Gourraud, P.A.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Hauser, S.L.; et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar] [CrossRef]
- Forsberg, L.; Spelman, T.; Klyve, P.; Manouchehrinia, A.; Ramanujam, R.; Mouresan, E.; Drahota, J.; Horakova, D.; Joensen, H.; Pontieri, L.; et al. Proportion and characteristics of secondary progressive multiple sclerosis in five European registries using objective classifiers. Mult. Scler. J. Exp. Transl. Clin. 2023, 9, 20552173231153557. [Google Scholar] [CrossRef]
- Brown, J.W.L.; Coles, A.; Horakova, D.; Havrdova, E.; Izquierdo, G.; Prat, A.; Girard, M.; Duquette, P.; Trojano, M.; Lugaresi, A.; et al. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA 2019, 321, 175–187, Erratum in JAMA 2020, 323, 1318. [Google Scholar] [CrossRef]
- Ziemssen, T.; Bhan, V.; Chataway, J.; Chitnis, T.; Campbell Cree, B.A.; Havrdova, E.K.; Kappos, L.; Labauge, P.; Miller, A.; Nakahara, J.; et al. Secondary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200064. [Google Scholar] [CrossRef]
- Muller, J.; Sharmin, S.; Lorscheider, J.; Ozakbas, S.; Karabudak, R.; Horakova, D.; Weinstock-Guttman, B.; Shaygannejad, V.; Etemadifar, M.; Alroughani, R.; et al. Standardized Definition of Progression Independent of Relapse Activity (PIRA) in Relapsing-Remitting Multiple Sclerosis. JAMA Neurol. 2025, 82, 614–625. [Google Scholar] [CrossRef]
- Giovannoni, G.; Popescu, V.; Wuerfel, J.; Hellwig, K.; Iacobaeus, E.; Jensen, M.B.; García-Domínguez, J.M.; Sousa, L.; De Rossi, N.; Hupperts, R.; et al. Smouldering multiple sclerosis: The ‘real MS’. Ther. Adv. Neurol. Disord. 2022, 15, 17562864211066751. [Google Scholar] [CrossRef]
- Briggs, F. Unraveling susceptibility to multiple sclerosis. Science 2019, 365, 1383–1384. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef]
- Ooi, J.D.; Petersen, J.; Tan, Y.H.; Huynh, M.; Willett, Z.J.; Ramarathinam, S.H.; Eggenhuizen, P.J.; Loh, K.L.; Watson, K.A.; Gan, P.Y.; et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 2017, 545, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, F.; Mayr, G.; Wendorff, M.; Boucher, G.; Ellinghaus, E.; Ellinghaus, D.; ElAbd, H.; Rosati, E.; Hubenthal, M.; Juzenas, S.; et al. Transethnic analysis of the human leukocyte antigen region for ulcerative colitis reveals not only shared but also ethnicity-specific disease associations. Hum. Mol. Genet. 2021, 30, 356–369. [Google Scholar] [CrossRef]
- Langefeld, C.D.; Ainsworth, H.C.; Cunninghame Graham, D.S.; Kelly, J.A.; Comeau, M.E.; Marion, M.C.; Howard, T.D.; Ramos, P.S.; Croker, J.A.; Morris, D.L.; et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 2017, 8, 16021. [Google Scholar] [CrossRef]
- Sturner, K.H.; Siembab, I.; Schon, G.; Stellmann, J.P.; Heidari, N.; Fehse, B.; Heesen, C.; Eiermann, T.H.; Martin, R.; Binder, T.M. Is multiple sclerosis progression associated with the HLA-DR15 haplotype? Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 2055217319894615. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Williamson, D.; Ashley-Koch, A. HLA-DR15 haplotype and multiple sclerosis: A HuGE review. Am. J. Epidemiol. 2007, 165, 1097–1109. [Google Scholar] [CrossRef]
- Klitz, W.; Maiers, M.; Spellman, S.; Baxter-Lowe, L.A.; Schmeckpeper, B.; Williams, T.M.; Fernandez-Vina, M. New HLA haplotype frequency reference standards: High-resolution and large sample typing of HLA DR-DQ haplotypes in a sample of European Americans. Tissue Antigens 2003, 62, 296–307. [Google Scholar] [CrossRef]
- Barrie, W.; Yang, Y.; Irving-Pease, E.K.; Attfield, K.E.; Scorrano, G.; Jensen, L.T.; Armen, A.P.; Dimopoulos, E.A.; Stern, A.; Refoyo-Martinez, A.; et al. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 2024, 625, 321–328. [Google Scholar] [CrossRef]
- Martin, R.; Sospedra, M.; Eiermann, T.; Olsson, T. Multiple sclerosis: Doubling down on MHC. Trends Genet. 2021, 37, 784–797. [Google Scholar] [CrossRef]
- Scholz, E.M.; Marcilla, M.; Daura, X.; Arribas-Layton, D.; James, E.A.; Alvarez, I. Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires. Front. Immunol. 2017, 8, 984. [Google Scholar] [CrossRef]
- Dai, S.; Huseby, E.S.; Rubtsova, K.; Scott-Browne, J.; Crawford, F.; Macdonald, W.A.; Marrack, P.; Kappler, J.W. Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules. Immunity 2008, 28, 324–334. [Google Scholar] [CrossRef]
- Miglioranza Scavuzzi, B.; van Drongelen, V.; Kaur, B.; Fox, J.C.; Liu, J.; Mesquita-Ferrari, R.A.; Kahlenberg, J.M.; Farkash, E.A.; Benavides, F.; Miller, F.W.; et al. The lupus susceptibility allele DRB1*03:01 encodes a disease-driving epitope. Commun. Biol. 2022, 5, 751. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jelcic, I.; Muhlenbruch, L.; Haunerdinger, V.; Toussaint, N.C.; Zhao, Y.; Cruciani, C.; Faigle, W.; Naghavian, R.; Foege, M.; et al. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell 2020, 183, 1264–1281.E20. [Google Scholar] [CrossRef]
- Mohme, M.; Hotz, C.; Stevanovic, S.; Binder, T.; Lee, J.H.; Okoniewski, M.; Eiermann, T.; Sospedra, M.; Rammensee, H.G.; Martin, R. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. Brain 2013, 136, 1783–1798. [Google Scholar] [CrossRef]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8, a028951. [Google Scholar] [CrossRef] [PubMed]
- Patsopoulos, N.A.; the Bayer Pharma MS Genetics Working Group; the Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist; ANZgene Consortium; GeneMSA; GGeneMSA; Esposito, F.; Reischl, J.; Lehr, S.; de Bakker, P.I.W. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 2011, 70, 897–912. [Google Scholar] [CrossRef]
- Ma, Q.; Shams, H.; Didonna, A.; Baranzini, S.E.; Cree, B.A.C.; Hauser, S.L.; Henry, R.G.; Oksenberg, J.R. Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Commun. Biol. 2023, 6, 342. [Google Scholar] [CrossRef]
- International Multiple Sclerosis Genetics Consortium; MultipleMS Consortium. Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 2023, 619, 323–331. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Robinson, W.H.; Steinman, L. Epstein-Barr virus and multiple sclerosis. Science 2022, 375, 264–265. [Google Scholar] [CrossRef]
- Tschochner, M.; Leary, S.; Cooper, D.; Strautins, K.; Chopra, A.; Clark, H.; Choo, L.; Dunn, D.; James, I.; Carroll, W.M.; et al. Identifying Patient-Specific Epstein-Barr Nuclear Antigen-1 Genetic Variation and Potential Autoreactive Targets Relevant to Multiple Sclerosis Pathogenesis. PLoS ONE 2016, 11, e0147567. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Lambe, J.; Ontaneda, D. Re-defining progression in multiple sclerosis. Curr. Opin. Neurol. 2025, 38, 188–196. [Google Scholar] [CrossRef]
- Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef]
- Calabrese, M.; Magliozzi, R.; Ciccarelli, O.; Geurts, J.J.; Reynolds, R.; Martin, R. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 2015, 16, 147–158. [Google Scholar] [CrossRef]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [Google Scholar] [CrossRef]
- Steinman, L.; Zamvil, S.S. Beginning of the end of two-stage theory purporting that inflammation then degeneration explains pathogenesis of progressive multiple sclerosis. Curr. Opin. Neurol. 2016, 29, 340–344. [Google Scholar] [CrossRef]
- Drake, S.S.; Zaman, A.; Simas, T.; Fournier, A.E. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech. Dis. 2023, 15, e1594. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Miron, V.; Cui, Q.; Wegner, C.; Antel, J.; Bruck, W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008, 131, 1749–1758. [Google Scholar] [CrossRef]
- Arneth, B. Contributions of T cells in multiple sclerosis: What do we currently know? J. Neurol. 2021, 268, 4587–4593. [Google Scholar] [CrossRef]
- Docampo, M.J.; Lutterotti, A.; Sospedra, M.; Martin, R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front. Immunol. 2021, 12, 787498. [Google Scholar] [CrossRef]
- van Langelaar, J.; Rijvers, L.; Smolders, J.; van Luijn, M.M. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front. Immunol. 2020, 11, 760. [Google Scholar] [CrossRef]
- DiCillo, E.B.; Kountikov, E.; Zhu, M.; Lanker, S.; Harlow, D.E.; Piette, E.R.; Zhang, W.; Hayward, B.; Heuler, J.; Korich, J.; et al. Patterns of autoantibody expression in multiple sclerosis identified through development of an autoantigen discovery technology. J. Clin. Investig. 2025, 135, e171948. [Google Scholar] [CrossRef]
- Bronge, M.; Hogelin, K.A.; Thomas, O.G.; Ruhrmann, S.; Carvalho-Queiroz, C.; Nilsson, O.B.; Kaiser, A.; Zeitelhofer, M.; Holmgren, E.; Linnerbauer, M.; et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 2022, 8, eabn1823. [Google Scholar] [CrossRef]
- Stangel, M.; Fredrikson, S.; Meinl, E.; Petzold, A.; Stuve, O.; Tumani, H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 2013, 9, 267–276. [Google Scholar] [CrossRef]
- Rothstein, T.L. Gray Matter Matters: A Longitudinal Magnetic Resonance Voxel-Based Morphometry Study of Primary Progressive Multiple Sclerosis. Front. Neurol. 2020, 11, 581537. [Google Scholar] [CrossRef]
- Jacobsen, C.; Hagemeier, J.; Myhr, K.M.; Nyland, H.; Lode, K.; Bergsland, N.; Ramasamy, D.P.; Dalaker, T.O.; Larsen, J.P.; Farbu, E.; et al. Brain atrophy and disability progression in multiple sclerosis patients: A 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1109–1115. [Google Scholar] [CrossRef]
- Calabrese, M.; Poretto, V.; Favaretto, A.; Alessio, S.; Bernardi, V.; Romualdi, C.; Rinaldi, F.; Perini, P.; Gallo, P. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 2012, 135, 2952–2961. [Google Scholar] [CrossRef]
- Calabrese, M.; De Stefano, N.; Atzori, M.; Bernardi, V.; Mattisi, I.; Barachino, L.; Rinaldi, L.; Morra, A.; McAuliffe, M.M.; Perini, P.; et al. Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J. Neurol. 2008, 255, 581–586. [Google Scholar] [CrossRef]
- van Munster, C.E.; Jonkman, L.E.; Weinstein, H.C.; Uitdehaag, B.M.; Geurts, J.J. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience 2015, 303, 446–461. [Google Scholar] [CrossRef]
- Dangond, F.; Donnelly, A.; Hohlfeld, R.; Lubetzki, C.; Kohlhaas, S.; Leocani, L.; Ciccarelli, O.; Stankoff, B.; Sormani, M.P.; Chataway, J.; et al. Facing the urgency of therapies for progressive MS—A Progressive MS Alliance proposal. Nat. Rev. Neurol. 2021, 17, 185–192. [Google Scholar] [CrossRef]
- Zhong, Y.; Stauss, H.J. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024, 13, 797. [Google Scholar] [CrossRef]
- Ridley, B.; Minozzi, S.; Gonzalez-Lorenzo, M.; Del Giovane, C.; Piggott, T.; Filippini, G.; Peryer, G.; Foschi, M.; Tramacere, I.; Baldin, E.; et al. Immunomodulators and immunosuppressants for progressive multiple sclerosis: A network meta-analysis. Cochrane Database Syst. Rev. 2024, 9, CD015443. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K.; Freedman, M.S.; Cohen, B.A.; Cree, B.A.C.; Markowitz, C.E. Sphingosine 1-phosphate receptor modulators in multiple sclerosis treatment: A practical review. Ann. Clin. Transl. Neurol. 2024, 11, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Siponimod: A Review in Secondary Progressive Multiple Sclerosis. CNS Drugs 2020, 34, 1191–1200, Erratum in CNS Drugs 2021, 35, 133. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, C.; Pugliatti, M.; Vermersch, P.; Grigoriadis, N.; Alkhawajah, M.; Airas, L.; Oreja-Guevara, C. Diagnosis and treatment of progressive multiple sclerosis: A position paper. Eur. J. Neurol. 2023, 30, 9–21. [Google Scholar] [CrossRef]
- La Mantia, L.; Vacchi, L.; Di Pietrantonj, C.; Ebers, G.; Rovaris, M.; Fredrikson, S.; Filippini, G. Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst. Rev. 2012, 1, CD005181. [Google Scholar] [CrossRef]
- Lorenzut, S.; Negro, I.D.; Pauletto, G.; Verriello, L.; Spadea, L.; Salati, C.; Musa, M.; Gagliano, C.; Zeppieri, M. Exploring the Pathophysiology, Diagnosis, and Treatment Options of Multiple Sclerosis. J. Integr. Neurosci. 2025, 24, 25081. [Google Scholar] [CrossRef]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef]
- Chisari, C.G.; Bianco, A.; Brescia Morra, V.; Calabrese, M.; Capone, F.; Cavalla, P.; Chiavazza, C.; Comi, C.; Danni, M.; Filippi, M.; et al. Effectiveness of Ocrelizumab in Primary Progressive Multiple Sclerosis: A Multicenter, Retrospective, Real-world Study (OPPORTUNITY). Neurotherapeutics 2023, 20, 1696–1706. [Google Scholar] [CrossRef]
- Krbot Skoric, M.; Basic Kes, V.; Grbic, N.; Lazibat, I.; Pavelin, S.; Mirosevic Zubonja, T.; Komso, M.; Kidemet Piskac, S.; Abicic, A.; Piskac, D.; et al. Ocrelizumab in people with primary progressive multiple sclerosis: A real-world multicentric study. Mult. Scler. Relat. Disord. 2024, 89, 105776. [Google Scholar] [CrossRef]
- Roos, I.; Leray, E.; Casey, R.; Horakova, D.; Havrdova, E.; Izquierdo, G.; Madueno, S.E.; Patti, F.; Edan, G.; Debouverie, M.; et al. Effects of High- and Low-Efficacy Therapy in Secondary Progressive Multiple Sclerosis. Neurology 2021, 97, e869–e880. [Google Scholar] [CrossRef]
- Watson, C.; Thirumalai, D.; Barlev, A.; Jones, E.; Bogdanovich, S.; Kresa-Reahl, K. Treatment Patterns and Unmet Need for Patients with Progressive Multiple Sclerosis in the United States: Survey Results from 2016 to 2021. Neurol. Ther. 2023, 12, 1961–1979. [Google Scholar] [CrossRef]
- Susin-Calle, S.; Martinez-Rodriguez, J.E.; Munteis, E.; Villoslada, P. Ongoing phase 2 agents for multiple sclerosis: Could we break the phase 3 trial deadlock? Expert. Opin. Investig. Drugs 2025, 34, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, T.L.; Cohen, J.A.; Alvarez, E.; Nair, K.V.; Boster, A.; Katz, J.; Pardo, G.; Pei, J.; Raut, P.; Merchant, S.; et al. Safety results of administering ocrelizumab per a shorter infusion protocol in patients with primary progressive and relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 46, 102454. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Kappos, L.; Montalban, X.; Craveiro, L.; Chognot, C.; Hughes, R.; Koendgen, H.; Pasquarelli, N.; Pradhan, A.; Prajapati, K.; et al. Safety of Ocrelizumab in Patients With Relapsing and Primary Progressive Multiple Sclerosis. Neurology 2021, 97, e1546–e1559. [Google Scholar] [CrossRef]
- Newsome, S.D.; Krzystanek, E.; Selmaj, K.W.; Dufek, M.; Goldstick, L.; Pozzilli, C.; Figueiredo, C.; Townsend, B.; Kletzl, H.; Bortolami, O.; et al. Subcutaneous Ocrelizumab in Patients With Multiple Sclerosis: Results of the Phase 3 OCARINA II Study. Neurology 2025, 104, e213574. [Google Scholar] [CrossRef] [PubMed]
- Vermersch, P.; Brieva-Ruiz, L.; Fox, R.J.; Paul, F.; Ramio-Torrenta, L.; Schwab, M.; Moussy, A.; Mansfield, C.; Hermine, O.; Maciejowski, M.; et al. Efficacy and Safety of Masitinib in Progressive Forms of Multiple Sclerosis: A Randomized, Phase 3, Clinical Trial. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1148. [Google Scholar] [CrossRef] [PubMed]
- Vermersch, P.; Granziera, C.; Mao-Draayer, Y.; Cutter, G.; Kalbus, O.; Staikov, I.; Dufek, M.; Saubadu, S.; Bejuit, R.; Truffinet, P.; et al. Inhibition of CD40L with Frexalimab in Multiple Sclerosis. N. Engl. J. Med. 2024, 390, 589–600. [Google Scholar] [CrossRef]
- Naydovich, L.R.; Orthmann-Murphy, J.L.; Markowitz, C.E. Beyond relapses: How BTK inhibitors are shaping the future of progressive MS treatment. Neurotherapeutics 2025, 22, e00602. [Google Scholar] [CrossRef]
- Fox, R.J.; Bar-Or, A.; Traboulsee, A.; Oreja-Guevara, C.; Giovannoni, G.; Vermersch, P.; Syed, S.; Li, Y.; Vargas, W.S.; Turner, T.J.; et al. Tolebrutinib in Nonrelapsing Secondary Progressive Multiple Sclerosis. N. Engl. J. Med. 2025, 392, 1883–1892. [Google Scholar] [CrossRef]
- Cheshmavar, M.; Mirmosayyeb, O.; Badihian, N.; Badihian, S.; Shaygannejad, V. Rituximab and glatiramer acetate in secondary progressive multiple sclerosis: A randomized clinical trial. Acta Neurol. Scand. 2021, 143, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; et al. Phase 2 Trial of Ibudilast in Progressive Multiple Sclerosis. N. Engl. J. Med. 2018, 379, 846–855. [Google Scholar] [CrossRef]
- Nakamura, K.; Zheng, Y.; Mahajan, K.R.; Cohen, J.A.; Fox, R.J.; Ontaneda, D. Effect of ibudilast on thalamic magnetization transfer ratio and volume in progressive multiple sclerosis. Mult. Scler. 2023, 29, 1257–1265. [Google Scholar] [CrossRef]
- Fox, R.J.; Raska, P.; Barro, C.; Karafa, M.; Konig, V.; Bermel, R.A.; Chase, M.; Coffey, C.S.; Goodman, A.D.; Klawiter, E.C.; et al. Neurofilament light chain in a phase 2 clinical trial of ibudilast in progressive multiple sclerosis. Mult. Scler. 2021, 27, 2014–2022. [Google Scholar] [CrossRef]
- Bermel, R.A.; Fedler, J.K.; Kaiser, P.; Novalis, C.; Schneebaum, J.; Klingner, E.A.; Williams, D.; Yankey, J.W.; Ecklund, D.J.; Chase, M.; et al. Optical coherence tomography outcomes from SPRINT-MS, a multicenter, randomized, double-blind trial of ibudilast in progressive multiple sclerosis. Mult. Scler. 2021, 27, 1384–1390. [Google Scholar] [CrossRef]
- Spain, R.I.; Hildebrand, A.; Waslo, C.S.; Rooney, W.D.; Emmons, J.; Schwartz, D.L.; Freedman, M.S.; Paz Soldan, M.M.; Repovic, P.; Solomon, A.J.; et al. Processing speed and memory test performance are associated with different brain region volumes in Veterans and others with progressive multiple sclerosis. Front. Neurol. 2023, 14, 1188124. [Google Scholar] [CrossRef]
- Newsome, S.D.; Fitzgerald, K.C.; Hughes, A.; Beier, M.; Koshorek, J.; Wang, Y.; Maldonado, D.P.; Shoemaker, T.; Malik, T.; Bayu, T.; et al. Intranasal insulin for improving cognitive function in multiple sclerosis. Neurotherapeutics 2025, 22, e00581. [Google Scholar] [CrossRef]
- Chataway, J.; Williams, T.; Blackstone, J.; John, N.; Braisher, M.; De Angelis, F.; Bianchi, A.; Calvi, A.; Doshi, A.; Apap Mangion, S.; et al. Effect of repurposed simvastatin on disability progression in secondary progressive multiple sclerosis (MS-STAT2): A phase 3, randomised, double-blind, placebo-controlled trial. The Lancet 2025, 406, 1611–1624. [Google Scholar] [CrossRef]
- Hincelin-Mery, A.; Nicolas, X.; Cantalloube, C.; Pomponio, R.; Lewanczyk, P.; Benamor, M.; Ofengeim, D.; Krupka, E.; Hsiao-Nakamoto, J.; Eastenson, A.; et al. Safety, pharmacokinetics, and target engagement of a brain penetrant RIPK1 inhibitor, SAR443820 (DNL788), in healthy adult participants. Clin. Transl. Sci. 2024, 17, e13690. [Google Scholar] [CrossRef]
- Nylander, A.; Anderson, A.; Rowles, W.; Hsu, S.; Lazar, A.A.; Mayoral, S.R.; Pease-Raissi, S.E.; Green, A.; Bove, R. Re-WRAP (Remyelination for women at risk of axonal loss and progression): A phase II randomized placebo-controlled delayed-start trial of bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 2023, 134, 107333. [Google Scholar] [CrossRef]
- Kramer, J.; Bar-Or, A.; Turner, T.J.; Wiendl, H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol. 2023, 19, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Albelo-Martinez, M.; Rizvi, S. Progressive multiple sclerosis: Evaluating current therapies and exploring future treatment strategies. Neurotherapeutics 2025, 22, e00601. [Google Scholar] [CrossRef]
- Hamad, A.A.; Amer, B.E.; Hawas, Y.; Mabrouk, M.A.; Meshref, M. Masitinib as a neuroprotective agent: A scoping review of preclinical and clinical evidence. Neurol. Sci. 2024, 45, 1861–1873. [Google Scholar] [CrossRef]
- Bierhansl, L.; Hartung, H.P.; Aktas, O.; Ruck, T.; Roden, M.; Meuth, S.G. Thinking outside the box: Non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov. 2022, 21, 578–600. [Google Scholar] [CrossRef]
- Oh, J.; Bar-Or, A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat. Rev. Neurol. 2022, 18, 466–475. [Google Scholar] [CrossRef]
- Hausler, D.; Weber, M.S. Towards Treating Multiple Sclerosis Progression. Pharmaceuticals 2024, 17, 1474. [Google Scholar] [CrossRef]
- Shokati, A.; Nikbakht, M.; Sahraian, M.A.; Saeedi, R.; Asadollahzadeh, E.; Rezaeimanesh, N.; Chahardouli, B.; Gharaylou, Z.; Mousavi, S.A.; Ai, J.; et al. Cell therapy with placenta-derived mesenchymal stem cells for secondary progressive multiple sclerosis patients in a phase 1 clinical trial. Sci. Rep. 2025, 15, 16005. [Google Scholar] [CrossRef]
- Abata Therapeutics. Abata Therapeutics Receives FDA Fast Track Designation for ABA-101 for the Treatment of Progressive Multiple Sclerosis. Available online: https://web.archive.org/web/20250710195500/https://abatatx.com/abata-therapeutics-receives-fda-fast-track-designation-for-aba-101-for-the-treatment-of-progressive-multiple-sclerosis/ (accessed on 23 April 2025).
- Ortuño-Sahagún, D.; Hermosillo-Abundis, C.; Reyes-Mata, M.P.; Arias Carrión, Ó. CAR T cells for multiple sclerosis: Engineering T cells to disrupt chronic B cell-driven neuroinflammation. Mult Scler Relat Disord 2025, 104, 106812. [Google Scholar] [CrossRef]
- Qin, C.; Dong, M.-H.; Zhou, L.-Q.; Chu, Y.-H.; Pang, X.-W.; He, J.-Y.; Shang, K.; Xiao, J.; Zhu, L.; Ye, H.; et al. Anti-BCMA CAR-T therapy in patients with progressive multiple sclerosis. Cell 2025, 188, 6414–6423.e6411. [Google Scholar] [CrossRef]
- Dikiy, S.; Rudensky, A.Y. Principles of regulatory T cell function. Immunity 2023, 56, 240–255. [Google Scholar] [CrossRef]
- Chen, H.; Peng, H.; Wang, P.C.; Zou, T.; Feng, X.M.; Wan, B.W. Role of regulatory T cells in spinal cord injury. Eur. J. Med. Res. 2023, 28, 163. [Google Scholar] [CrossRef]
- Osmond, G. Anti-Inflammatory and Neuroprotective Effects of Tregs That May Be Beneficial in Treating MS. Created in BioRender. Available online: https://BioRender.com/2bc08o0 (accessed on 26 October 2025).
- Kalia, V.; Penny, L.A.; Yuzefpolskiy, Y.; Baumann, F.M.; Sarkar, S. Quiescence of Memory CD8+ T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4. Immunity 2015, 42, 1116–1129. [Google Scholar] [CrossRef]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef]
- Dhainaut, M.; Coquerelle, C.; Uzureau, S.; Denoeud, J.; Acolty, V.; Oldenhove, G.; Galuppo, A.; Sparwasser, T.; Thielemans, K.; Pays, E.; et al. Thymus-derived regulatory T cells restrain pro-inflammatory Th1 responses by downregulating CD70 on dendritic cells. EMBO J. 2015, 34, 1336–1348. [Google Scholar] [CrossRef]
- Tekguc, M.; Wing, J.B.; Osaki, M.; Long, J.; Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2023739118. [Google Scholar] [CrossRef]
- Akkaya, B.; Oya, Y.; Akkaya, M.; Al Souz, J.; Holstein, A.H.; Kamenyeva, O.; Kabat, J.; Matsumura, R.; Dorward, D.W.; Glass, D.D.; et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 2019, 20, 218–231. [Google Scholar] [CrossRef]
- Grover, P.; Goel, P.N.; Greene, M.I. Regulatory T Cells: Regulation of Identity and Function. Front. Immunol. 2021, 12, 750542. [Google Scholar] [CrossRef]
- Scheinecker, C.; Goschl, L.; Bonelli, M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J. Autoimmun. 2020, 110, 102376. [Google Scholar] [CrossRef]
- Iikuni, N.; Lourenco, E.V.; Hahn, B.H.; La Cava, A. Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. J. Immunol. 2009, 183, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Gravano, D.M.; Vignali, D.A. The battle against immunopathology: Infectious tolerance mediated by regulatory T cells. Cell. Mol. Life Sci. 2012, 69, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Barrat, F.J.; Cua, D.J.; Boonstra, A.; Richards, D.F.; Crain, C.; Savelkoul, H.F.; de Waal-Malefyt, R.; Coffman, R.L.; Hawrylowicz, C.M.; O’Garra, A. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 2002, 195, 603–616. [Google Scholar] [CrossRef]
- Diefenhardt, P.; Nosko, A.; Kluger, M.A.; Richter, J.V.; Wegscheid, C.; Kobayashi, Y.; Tiegs, G.; Huber, S.; Flavell, R.A.; Stahl, R.A.K.; et al. IL-10 Receptor Signaling Empowers Regulatory T Cells to Control Th17 Responses and Protect from GN. J. Am. Soc. Nephrol. 2018, 29, 1825–1837. [Google Scholar] [CrossRef]
- Ito, M.; Komai, K.; Mise-Omata, S.; Iizuka-Koga, M.; Noguchi, Y.; Kondo, T.; Sakai, R.; Matsuo, K.; Nakayama, T.; Yoshie, O.; et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019, 565, 246–250. [Google Scholar] [CrossRef]
- Villares, R.; Cadenas, V.; Lozano, M.; Almonacid, L.; Zaballos, A.; Martinez, A.C.; Varona, R. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur. J. Immunol. 2009, 39, 1671–1681. [Google Scholar] [CrossRef]
- Gultner, S.; Kuhlmann, T.; Hesse, A.; Weber, J.P.; Riemer, C.; Baier, M.; Hutloff, A. Reduced Treg frequency in LFA-1-deficient mice allows enhanced T effector differentiation and pathology in EAE. Eur. J. Immunol. 2010, 40, 3403–3412. [Google Scholar] [CrossRef]
- Glatigny, S.; Duhen, R.; Arbelaez, C.; Kumari, S.; Bettelli, E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci. Rep. 2015, 5, 7834. [Google Scholar] [CrossRef]
- Pasciuto, E.; Burton, O.T.; Roca, C.P.; Lagou, V.; Rajan, W.D.; Theys, T.; Mancuso, R.; Tito, R.Y.; Kouser, L.; Callaerts-Vegh, Z.; et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell 2020, 182, 625–640.e624. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.A.; Malpass, K.H.; Anderton, S.M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 2007, 179, 958–966. [Google Scholar] [CrossRef]
- Raposo, C.; Graubardt, N.; Cohen, M.; Eitan, C.; London, A.; Berkutzki, T.; Schwartz, M. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J. Neurosci. 2014, 34, 10141–10155. [Google Scholar] [CrossRef]
- Dombrowski, Y.; O’Hagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 2017, 20, 674–680. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.; Li, H.; Xu, P.; Wang, Z.; Shao, F.; Shao, A.; Zhang, J. Regulatory T Cells Secrete IL10 to Suppress Neuroinflammation in Early Stage after Subarachnoid Hemorrhage. Medicina 2023, 59, 1317. [Google Scholar] [CrossRef]
- Moreno, M.; Guo, F.; Mills Ko, E.; Bannerman, P.; Soulika, A.; Pleasure, D. Origins and significance of astrogliosis in the multiple sclerosis model, MOG peptide EAE. J. Neurol. Sci. 2013, 333, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Yan, J.; Csurhes, P.; Greer, J.; McCombe, P. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome. J. Neuroimmunol. 2015, 286, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, L.; Yang, C.; Ren, C.; Zhou, K.; Wang, B.; Zhang, Z.; Wang, Y.; Jin, K.; Yang, G.Y. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front. Cell. Neurosci. 2015, 9, 361. [Google Scholar] [CrossRef]
- Liston, A.; Pasciuto, E.; Fitzgerald, D.C.; Yshii, L. Brain regulatory T cells. Nat. Rev. Immunol. 2024, 24, 326–337. [Google Scholar] [CrossRef]
- Bacchetta, R.; Barzaghi, F.; Roncarolo, M.G. From IPEX syndrome to FOXP3 mutation: A lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 2018, 1417, 5–22. [Google Scholar] [CrossRef]
- Verreycken, J.; Baeten, P.; Broux, B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum. Vaccin Immunother. 2022, 18, 2153534. [Google Scholar] [CrossRef]
- Noori-Zadeh, A.; Mesbah-Namin, S.A.; Bistoon-Beigloo, S.; Bakhtiyari, S.; Abbaszadeh, H.A.; Darabi, S.; Rajabibazl, M.; Abdanipour, A. Regulatory T cell number in multiple sclerosis patients: A meta-analysis. Mult. Scler. Relat. Disord. 2016, 5, 73–76. [Google Scholar] [CrossRef]
- Lifshitz, G.V.; Zhdanov, D.D.; Lokhonina, A.V.; Eliseeva, D.D.; Lyssuck, E.Y.; Zavalishin, I.A.; Bykovskaia, S.N. Ex vivo expanded regulatory T cells CD4+CD25+FoxP3+CD127Low develop strong immunosuppressive activity in patients with remitting-relapsing multiple sclerosis. Autoimmunity 2016, 49, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.D.; Lam, A.D.; Chiu, C.; Tran, G.T.; Hall, B.M.; Hodgkinson, S.J. Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Sci. Rep. 2021, 11, 10476. [Google Scholar] [CrossRef]
- Astier, A.L.; Hafler, D.A. Abnormal Tr1 differentiation in multiple sclerosis. J. Neuroimmunol. 2007, 191, 70–78. [Google Scholar] [CrossRef]
- Fritzsching, B.; Haas, J.; Konig, F.; Kunz, P.; Fritzsching, E.; Poschl, J.; Krammer, P.H.; Bruck, W.; Suri-Payer, E.; Wildemann, B. Intracerebral human regulatory T cells: Analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PLoS ONE 2011, 6, e17988. [Google Scholar] [CrossRef] [PubMed]
- Danikowski, K.M.; Jayaraman, S.; Prabhakar, B.S. Regulatory T cells in multiple sclerosis and myasthenia gravis. J. Neuroinflamm. 2017, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Sumida, T.S.; Cheru, N.T.; Hafler, D.A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat. Rev. Immunol. 2024, 24, 503–517. [Google Scholar] [CrossRef]
- Lee, G.R. The Balance of Th17 versus Treg Cells in Autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef]
- Trinschek, B.; Luessi, F.; Haas, J.; Wildemann, B.; Zipp, F.; Wiendl, H.; Becker, C.; Jonuleit, H. Kinetics of IL-6 production defines T effector cell responsiveness to regulatory T cells in multiple sclerosis. PLoS ONE 2013, 8, e77634, Erratum in PLoS ONE 2013, 8. https://doi.org/10.1371/annotation/0e76c09e-75b2-493a-90fd-cda3187a0888. [Google Scholar] [CrossRef]
- Trinschek, B.; Luessi, F.; Gross, C.C.; Wiendl, H.; Jonuleit, H. Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells. Int. J. Mol. Sci. 2015, 16, 16330–16346. [Google Scholar] [CrossRef] [PubMed]
- Schloder, J.; Berges, C.; Luessi, F.; Jonuleit, H. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. Int. J. Mol. Sci. 2017, 18, 271. [Google Scholar] [CrossRef]
- Liston, A.; Dooley, J.; Yshii, L. Brain-resident regulatory T cells and their role in health and disease. Immunol. Lett. 2022, 248, 26–30. [Google Scholar] [CrossRef]
- Faridar, A.; Thome, A.D.; Zhao, W.; Thonhoff, J.R.; Beers, D.R.; Pascual, B.; Masdeu, J.C.; Appel, S.H. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion. Brain Commun. 2020, 2, fcaa112. [Google Scholar] [CrossRef]
- Bluestone, J.A.; Buckner, J.H.; Fitch, M.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 2015, 7, 315ra189. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2020, 21, 7015. [Google Scholar] [CrossRef]
- Alvarez-Salazar, E.K.; Cortes-Hernandez, A.; Arteaga-Cruz, S.; Soldevila, G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: Challenges and opportunities. J. Leukoc. Biol. 2024, 116, 947–965. [Google Scholar] [CrossRef] [PubMed]
- Eggenhuizen, P.J.; Cheong, R.M.Y.; Lo, C.; Chang, J.; Ng, B.H.; Ting, Y.T.; Monk, J.A.; Loh, K.L.; Broury, A.; Tay, E.S.V.; et al. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat. Commun. 2024, 15, 899. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, U.; Khan, Z.; Ualiyeva, D.; Amissah, O.B.; Noor, Z.; Khan, A.; Zaman, N.; Khan, M.; Khan, A.; Ali, B. Chimeric antigen receptor T cell structure, its manufacturing, and related toxicities; A comprehensive review. Adv. Cancer Biol. Metastasis 2022, 4, 100035. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.H.; Yoon, J.; Culp, W.E.; Lees, J.R.; Wucherpfennig, K.W.; Scott, D.W. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 2018, 92, 77–86. [Google Scholar] [CrossRef]
- Stephens, L.A.; Malpass, K.H.; Anderton, S.M. Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol. 2009, 39, 1108–1117. [Google Scholar] [CrossRef]
- Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; et al. Safety and Efficacy of Antigen-Specific Regulatory T-Cell Therapy for Patients with Refractory Crohn’s Disease. Gastroenterology 2012, 143, 1207–1217.e1202. [Google Scholar] [CrossRef]
- Bulliard, Y.; Freeborn, R.; Uyeda, M.J.; Humes, D.; Bjordahl, R.; de Vries, D.; Roncarolo, M.G. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front. Immunol. 2024, 15, 1509956. [Google Scholar] [CrossRef]
- Abbott, V.; Housden, B.E.; Houldsworth, A. Could immunotherapy and regulatory T cells be used therapeutically to slow the progression of Alzheimer’s disease? Brain Commun. 2025, 7, fcaf092. [Google Scholar] [CrossRef]
- Duffy, S.S.; Keating, B.A.; Moalem-Taylor, G. Adoptive Transfer of Regulatory T Cells as a Promising Immunotherapy for the Treatment of Multiple Sclerosis. Front. Neurosci. 2019, 13, 1107. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.E.; Mosley, R.L.; Gendelman, H.E. The potential for treg-enhancing therapies in nervous system pathologies. Clin. Exp. Immunol. 2023, 211, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Hendrawan, K.; Visweswaran, M.; Ma, D.D.F.; Moore, J.J. Tolerance regeneration by T regulatory cells in autologous haematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2020, 55, 857–866. [Google Scholar] [CrossRef]
- Chwojnicki, K.; Iwaszkiewicz-Grzes, D.; Jankowska, A.; Zielinski, M.; Lowiec, P.; Gliwinski, M.; Grzywinska, M.; Kowalczyk, K.; Konarzewska, A.; Glasner, P.; et al. Administration of CD4+CD25highCD127−FoxP3+ Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study. Biodrugs 2021, 35, 47–60. [Google Scholar] [CrossRef]
- Schloder, J.; Shahneh, F.; Schneider, F.J.; Wieschendorf, B. Boosting regulatory T cell function for the treatment of autoimmune diseases—That’s only half the battle! Front. Immunol. 2022, 13, 973813. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Ng, B.H.; Lo, C.; Chang, J.; Snelgrove, S.L.; Cheong, R.M.Y.; Shen, C.; Lim, S.; Zhong, Y.; Gan, P.Y.; et al. Engineered antigen-specific T regulatory cells suppress autoreactivity to the anti-glomerular basement membrane disease antigen. Kidney Int. 2025, 107, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Uenishi, G.I.; Repic, M.; Yam, J.Y.; Landuyt, A.; Saikumar-Lakshmi, P.; Guo, T.; Zarin, P.; Sassone-Corsi, M.; Chicoine, A.; Kellogg, H.; et al. GNTI-122: An autologous antigen-specific engineered Treg cell therapy for type 1 diabetes. JCI Insight 2024, 9, e171844. [Google Scholar] [CrossRef] [PubMed]
- Malviya, M.; Saoudi, A.; Bauer, J.; Fillatreau, S.; Liblau, R. Treatment of experimental autoimmune encephalomyelitis with engineered bi-specific Foxp3+ regulatory CD4+ T cells. J. Autoimmun. 2020, 108, 102401. [Google Scholar] [CrossRef] [PubMed]
- Hull, C.M.; Nickolay, L.E.; Estorninho, M.; Richardson, M.W.; Riley, J.L.; Peakman, M.; Maher, J.; Tree, T.I. Generation of human islet-specific regulatory T cells by TCR gene transfer. J. Autoimmun. 2017, 79, 63–73. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.H.; Su, Y.; Rieder, S.A.; Rossi, R.J.; Ettinger, R.A.; Pratt, K.P.; Shevach, E.M.; Scott, D.W. Engineered antigen-specific human regulatory T cells: Immunosuppression of FVIII-specific T- and B-cell responses. Blood 2015, 125, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, N.; Dettmer, U. Temperature is a key determinant of alpha- and beta-synuclein membrane interactions in neurons. J. Biol. Chem. 2021, 296, 100271. [Google Scholar] [CrossRef]
- Zhong, W.; Yang, Q.; Wang, F.; Lin, X.; Chen, Z.; Xue, J.; Zhao, W.; Liu, X.; Rao, B.; Zhang, J. Cell-specific localization of beta-synuclein in the mouse retina. Brain Struct. Funct. 2024, 229, 1279–1298. [Google Scholar] [CrossRef]
- Ninkina, N.; Millership, S.J.; Peters, O.M.; Connor-Robson, N.; Chaprov, K.; Kopylov, A.T.; Montoya, A.; Kramer, H.; Withers, D.J.; Buchman, V.L. beta-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from MPTP-induced death in the absence of other synucleins. J. Biol. Chem. 2021, 297, 101375. [Google Scholar] [CrossRef]
- Barba, L.; Paolini Paoletti, F.; Bellomo, G.; Gaetani, L.; Halbgebauer, S.; Oeckl, P.; Otto, M.; Parnetti, L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov. Disord. 2022, 37, 669–683. [Google Scholar] [CrossRef]
- Li, J.; Henning Jensen, P.; Dahlstrom, A. Differential localization of alpha-, beta- and gamma-synucleins in the rat CNS. Neuroscience 2002, 113, 463–478. [Google Scholar] [CrossRef]
- Kim, T.E.; Newman, A.J.; Imberdis, T.; Brontesi, L.; Tripathi, A.; Ramalingam, N.; Fanning, S.; Selkoe, D.; Dettmer, U. Excess membrane binding of monomeric alpha-, beta- and gamma-synuclein is invariably associated with inclusion formation and toxicity. Hum. Mol. Genet. 2021, 30, 2332–2346. [Google Scholar] [CrossRef]
- Carnazza, K.E.; Komer, L.E.; Xie, Y.X.; Pineda, A.; Briano, J.A.; Gao, V.; Na, Y.; Ramlall, T.; Buchman, V.L.; Eliezer, D.; et al. Synaptic vesicle binding of alpha-synuclein is modulated by beta- and gamma-synucleins. Cell Rep. 2022, 39, 110675. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, C.; Karreman, C.; Schildknecht, S.; Leist, M.; Hauser, K. Synuclein Family Members Prevent Membrane Damage by Counteracting alpha-Synuclein Aggregation. Biomolecules 2021, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.; Leite, K.; Guerin, S.; Mahajani, S.U.; Chakrabarti, K.S.; Voll, D.; Becker, S.; Griesinger, C.; Bahr, M.; Kugler, S. Dopamine promotes the neurodegenerative potential of beta-synuclein. J. Neurochem. 2021, 156, 674–691. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, J.; Carver, J.A. beta-Synuclein: An Enigmatic Protein with Diverse Functionality. Biomolecules 2022, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Sugama, S.; Sekiyama, K.; Sekigawa, A.; Tsukui, T.; Nakai, M.; Waragai, M.; Takenouchi, T.; Takamatsu, Y.; Wei, J.; et al. A beta-synuclein mutation linked to dementia produces neurodegeneration when expressed in mouse brain. Nat. Commun. 2010, 1, 110. [Google Scholar] [CrossRef]
- Galvin, J.E.; Uryu, K.; Lee, V.M.; Trojanowski, J.Q. Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc. Natl. Acad. Sci. USA 1999, 96, 13450–13455. [Google Scholar] [CrossRef]
- Galvin, J.E.; Giasson, B.; Hurtig, H.I.; Lee, V.M.; Trojanowski, J.Q. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am. J. Pathol. 2000, 157, 361–368. [Google Scholar] [CrossRef]
- Mor, F.; Quintana, F.; Mimran, A.; Cohen, I.R. Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. J. Immunol. 2003, 170, 628–634. [Google Scholar] [CrossRef]
- Xu, B.; Xiao, K.; Jia, X.; Cao, R.; Liang, D.; A, R.; Zhang, W.; Li, C.; Gao, L.; Chen, C.; et al. beta-synuclein in cerebrospinal fluid as a potential biomarker for distinguishing human prion diseases from Alzheimer’s and Parkinson’s disease. Alzheimers Res. Ther. 2025, 17, 39. [Google Scholar] [CrossRef]
- Barba, L.; Abu Rumeileh, S.; Bellomo, G.; Paolini Paoletti, F.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Massa, F.; Gaetani, L.; Parnetti, L.; et al. Cerebrospinal fluid beta-synuclein as a synaptic biomarker for preclinical Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2023, 94, 83–86. [Google Scholar] [CrossRef]
- Oeckl, P.; Wagemann, O.; Halbgebauer, S.; Anderl-Straub, S.; Nuebling, G.; Prix, C.; Loosli, S.V.; Wlasich, E.; Danek, A.; Steinacker, P.; et al. Serum Beta-Synuclein Is Higher in Down Syndrome and Precedes Rise of pTau181. Ann. Neurol. 2022, 92, 6–10. [Google Scholar] [CrossRef]
- Barba, L.; Vollmuth, C.; Abu-Rumeileh, S.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Kollikowski, A.M.; Schultz, C.; Wolf, J.; Pham, M.; et al. Serum beta-synuclein, neurofilament light chain and glial fibrillary acidic protein as prognostic biomarkers in moderate-to-severe acute ischemic stroke. Sci. Rep. 2023, 13, 20941. [Google Scholar] [CrossRef]
- Halbgebauer, R.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Weihe, E.; Schafer, M.K.; Roselli, F.; Gebhard, F.; Huber-Lang, M.; Otto, M. Neurochemical Monitoring of Traumatic Brain Injury by the Combined Analysis of Plasma Beta-Synuclein, NfL, and GFAP in Polytraumatized Patients. Int. J. Mol. Sci. 2022, 23, 9639. [Google Scholar] [CrossRef]
- Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Yilmazer-Hanke, D.; Anderl-Straub, S.; von Arnim, C.; Froelich, L.; Gomes, L.A.; Hausner, L.; Huss, A.; et al. Beta-synuclein in cerebrospinal fluid as an early diagnostic marker of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2021, 92, 349–356. [Google Scholar] [CrossRef]
- Barba, L.; Gaetani, L.; Sperandei, S.; Di Sabatino, E.; Abu-Rumeileh, S.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Parnetti, L.; Di, F.M.; et al. CSF synaptic biomarkers and cognitive impairment in multiple sclerosis. J. Neurol. 2024, 272, 85. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Mohammed, F.; Meier, U.C. HLA DR2b-binding peptides from human endogenous retrovirus envelope, Epstein-Barr virus and brain proteins in the context of molecular mimicry in multiple sclerosis. Immunol. Lett. 2020, 217, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Kela-Madar, N.; de Rosbo, N.K.; Ronen, A.; Mor, F.; Ben-Nun, A. Autoimmune spread to myelin is associated with experimental autoimmune encephalomyelitis induced by a neuronal protein, beta-synuclein. J. Neuroimmunol. 2009, 208, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Lodygin, D.; Hermann, M.; Schweingruber, N.; Flugel-Koch, C.; Watanabe, T.; Schlosser, C.; Merlini, A.; Korner, H.; Chang, H.F.; Fischer, H.J.; et al. beta-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 2019, 566, 503–508, Erratum in Nature 2019, 567, E15. [Google Scholar] [CrossRef]

| Drug Class | Drug Name/Subclass | Clinical Trial ID | Phase | Study Completion Year | Publication References |
|---|---|---|---|---|---|
| Immunosuppressant monoclonal antibody | Ocrelizumab | NCT03606460 | 3 | 2019 * | [69] |
| NCT02688985 | 3 | 2023 * | [70] | ||
| NCT03691077 | 3 | 2024 ? | |||
| NCT05974839 | 3 | 2024 * | |||
| NCT05232825 | 3 | 2025 * | [71] | ||
| NCT03523858 | 3 | 2026 | |||
| NCT04548999 | 3 | 2027 | |||
| NCT04035005 | 3 | 2028 | |||
| Ocrelizumab and rituximab | NCT04688788 | 3 | 2029 | ||
| Masitinib | NCT05441488 | 3 | 2028 | [72] | |
| Frexalimab | NCT04879628 | 2 | 2027 | [73] | |
| NCT06141486 | 3 | 2028 | |||
| Obexelimab | NCT06564311 | 2 | 2026 | ||
| Foralumab | NCT06292923 | 2 | 2025 | ||
| Tolerogenic peptide vaccine | ATX-MS-1467 | NCT01973491 | 2 | 2016 * | |
| Bruton’s tyrosine kinase inhibitor [74] | Tolebrutinib | NCT04742400 | 2 | 2025 | |
| NCT04411641 | 3 | 2024 * | [75] | ||
| NCT04458051 | 3 | 2025 | |||
| NCT06372145 | 3 | 2029 | |||
| Fenebrutinib | NCT04544449 | 3 | 2027 | ||
| DNA synthesis inhibitor | Cladribine | NCT04695080 | 2/3 | 2027 | |
| NCT05961644 | 3 | 2027 | |||
| Vidofludimus calcium | NCT05054140 | 2 | 2025 | ||
| Multiple | Rituximab and glatiramer acetate | NCT03315923 | 2/3 | 2019 * | [76] |
| Neuroprotective | Ibudilast | NCT01982942 | 2 | 2017 * | [77,78,79,80] |
| Lipoic acid | NCT03161028 | 2 | 2024 * | [81] | |
| Intranasal insulin | NCT02988401 | 1/2 | 2021 * | [82] | |
| Simvastatin | NCT03896217 | 2 | 2023 * | ||
| NCT03387670 | 3 | 2024 * | [83] | ||
| SAR443820 | NCT05630547 | 2 | 2024 t | [84] | |
| Metformin and clemastine | NCT05131828 | 2 | 2025 | ||
| Bazedoxifene | NCT04002934 | 2 | 2025 * | [85] |
| Drug Class | Drug Name/Subclass | Clinical Trial ID | Phase | Study Completion Year | Publication References |
|---|---|---|---|---|---|
| Stem cell | Autologous hematopoietic stem cells | NCT06900192 | 1 | 2029 | |
| NCT04047628 | 3 | 2029 | |||
| Mesenchymal stem cells | NCT06360861 | 1 | 2024 * | [92] | |
| NCT06592703 | 1 | 2029 | |||
| Intrathecal amniotic fluid stem cells | NCT06841068 | 1/2 | 2026 | ||
| Autologous stromal cells | NCT06961383 | 2 | 2028 | ||
| Anti-CD19 chimeric antigen receptor (CAR)-T cell [94] | KYV-101 | NCT06451159 | 1 | 2027 | |
| NCT06138132 | 1 | 2027 | |||
| NCT06384976 | 2 | 2029 | |||
| YTB323 | NCT06675864 | 1/2 | 2030 | ||
| CC-97540 | NCT06220201 | 1 | 2027 | ||
| Anti-BCMA CAR-T cell [94] | CT103A | NCT04561557 | 1 | 2027 | [95] |
| Regulatory T cell | ABA-101 | NCT06566261 | 1 | 2027 | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmond, G.E.; John, N.A.; Ting, Y.T.; Ooi, J.D. The Potential of β-Synuclein-Specific Regulatory T Cell Therapy as a Treatment for Progressive Multiple Sclerosis. Int. J. Mol. Sci. 2025, 26, 11534. https://doi.org/10.3390/ijms262311534
Osmond GE, John NA, Ting YT, Ooi JD. The Potential of β-Synuclein-Specific Regulatory T Cell Therapy as a Treatment for Progressive Multiple Sclerosis. International Journal of Molecular Sciences. 2025; 26(23):11534. https://doi.org/10.3390/ijms262311534
Chicago/Turabian StyleOsmond, Grace E., Nevin A. John, Yi Tian Ting, and Joshua D. Ooi. 2025. "The Potential of β-Synuclein-Specific Regulatory T Cell Therapy as a Treatment for Progressive Multiple Sclerosis" International Journal of Molecular Sciences 26, no. 23: 11534. https://doi.org/10.3390/ijms262311534
APA StyleOsmond, G. E., John, N. A., Ting, Y. T., & Ooi, J. D. (2025). The Potential of β-Synuclein-Specific Regulatory T Cell Therapy as a Treatment for Progressive Multiple Sclerosis. International Journal of Molecular Sciences, 26(23), 11534. https://doi.org/10.3390/ijms262311534

