Special Issue “Raman Spectroscopy and Machine Learning in Human Disease”
Funding
Conflicts of Interest
References
- Tuchin, V.V.; Popp, J.; Zakharov, V.P. Multimodal Optical Diagnostics of Cancer, 1st ed.; Springer Nature: Cham, Switzerland, 2020; 597p. [Google Scholar] [CrossRef]
- Yashin, K.S.; Shcheslavskiy, V.I.; Medyanik, I.A.; Kravets, L.Y.; Shirmanova, M.V. Towards Optical Biopsy in Glioma Surgery. Int. J. Mol. Sci. 2025, 26, 4554. [Google Scholar] [CrossRef] [PubMed]
- Potapova, E.V.; Dremin, V.V.; Shupletsov, V.V.; Kandurova, K.Y.; Dunaev, A.V. Optical percutaneous needle biopsy in oncology. Light Adv. Manuf. 2025, 6, 72. [Google Scholar] [CrossRef]
- Khristoforova, Y.; Bratchenko, L.; Bratchenko, I. Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review. Int. J. Mol. Sci. 2023, 24, 15605. [Google Scholar] [CrossRef] [PubMed]
- Bratchenko, L.A.; Khristoforova, Y.A.; Pimenova, I.A.; Tupikova, E.N.; Skuratova, M.A.; Dvoynikov-Sechnoy, G.A.; Wang, S.; Lebedev, P.A.; Bratchenko, I.A. SERS-based technique for accessible and rapid diagnosis of multiple myeloma in blood serum analysis. Light Adv. Manuf. 2025, 6, 35. [Google Scholar] [CrossRef]
- Pang, W.; Yuan, C.; Zhong, T.; Huang, X.; Pan, Y.; Qu, J.; Nie, L.; Zhou, Y.; Lai, P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024, 27, 111216. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Estevez, M.C.; Cardenosa-Rubio, M.; Astua, A.; Lechuga, L.M. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020, 5, 2663–2678. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Rho, W.Y.; Park, S.M.; Jun, B.H. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J. Hematol. Oncol. 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- van Marwick, B.; Lauer, F.; Wühler, F.; Rittel, M.; Wängler, C.; Wängler, B.; Hopf, C.; Rädle, M. Novel Multimodal Imaging System for High-Resolution and High-Contrast Tissue Segmentation Based on Chemical Properties. Sensors 2025, 25, 6342. [Google Scholar] [CrossRef] [PubMed]
- Bazin, T.; Krebs, A.; Jobart-Malfait, A.; Camilo, V.; Michel, V.; Benezeth, Y.; Marzani, F.; Touati, E.; Lamarque, D. Multimodal imaging as optical biopsy system for gastritis diagnosis in humans, and input of the mouse model. EBioMedicine 2021, 69, 103462. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, G.; Li, Z.; Shao, X.; Ji, R.; Ma, T.; Zhang, Y.; Su, J.; Qi, Q.; Guo, J.; et al. Deep learning-aided optical biopsy achieves whole-chain diagnosis of Correa cascade of gastric cancer: A prospective study. BMC Med. 2025, 23, 527. [Google Scholar] [CrossRef] [PubMed]
- Kujdowicz, M.; Januś, D.; Taczanowska-Niemczuk, A.; Lankosz, M.W.; Adamek, D. Raman Spectroscopy as a Potential Adjunct of Thyroid Nodule Evaluation: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 15131. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.; Andreana, M.; Walton, R.D.; Marchant, J.; Pallares-Lupon, N.; Kulkarni, K.; Drexler, W.; Unterhuber, A. Spectral Region Optimization and Machine Learning-Based Nonlinear Spectral Analysis for Raman Detection of Cardiac Fibrosis Following Myocardial Infarction. Int. J. Mol. Sci. 2025, 26, 7240. [Google Scholar] [CrossRef] [PubMed]
- Lopez, E.; Etxebarria-Elezgarai, J.; García-Sebastián, M.; Altuna, M.; Ecay-Torres, M.; Estanga, A.; Tainta, M.; López, C.; Martínez-Lage, P.; Amigo, J.M.; et al. Unlocking Preclinical Alzheimer’s: A Multi-Year Label-Free In Vitro Raman Spectroscopy Study Empowered by Chemometrics. Int. J. Mol. Sci. 2024, 25, 4737. [Google Scholar] [CrossRef] [PubMed]
- Buhas, B.A.; Toma, V.; Beauval, J.-B.; Andras, I.; Couți, R.; Muntean, L.A.-M.; Coman, R.-T.; Maghiar, T.A.; Știufiuc, R.-I.; Lucaciu, C.M.; et al. Label-Free SERS of Urine Components: A Powerful Tool for Discriminating Renal Cell Carcinoma through Multivariate Analysis and Machine Learning Techniques. Int. J. Mol. Sci. 2024, 25, 3891. [Google Scholar] [CrossRef] [PubMed]
- Kouri, M.A.; Karnachoriti, M.; Spyratou, E.; Orfanoudakis, S.; Kalatzis, D.; Kontos, A.G.; Seimenis, I.; Efstathopoulos, E.P.; Tsaroucha, A.; Lambropoulou, M. Shedding Light on Colorectal Cancer: An In Vivo Raman Spectroscopy Approach Combined with Deep Learning Analysis. Int. J. Mol. Sci. 2023, 24, 16582. [Google Scholar] [CrossRef] [PubMed]
- Zolotas, M.; Schleusener, J.; Lademann, J.; Meinke, M.C.; Kokolakis, G.; Darvin, M.E. Atopic Dermatitis: Molecular Alterations between Lesional and Non-Lesional Skin Determined Noninvasively by In Vivo Confocal Raman Microspectroscopy. Int. J. Mol. Sci. 2023, 24, 14636. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, V.M.; Cheimonidi, C.; Panagopoulou, M.; Karaglani, M.; Apalaki, P.; Katsara, K.; Kenanakis, G.; Theodosiou, T.; Constantinidis, T.C.; Stratigi, K.; et al. Label-Free Human Disease Characterization through Circulating Cell-Free DNA Analysis Using Raman Spectroscopy. Int. J. Mol. Sci. 2023, 24, 12384. [Google Scholar] [CrossRef] [PubMed]
- Bratchenko, I.A.; Bratchenko, L.A. Comment on “Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning”. Light Sci. Appl. 2025, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Bratchenko, L.; Khristoforova, Y.; Loginova, Y.; Moryatov, A.; Zakharov, V.; Kaganov, O.; Bratchenko, I. Raman in Vivo Analysis of Melanoma Invasion Level. J. Biomed. Photonics Eng. 2025, 11, 030303. [Google Scholar] [CrossRef]
- Bratchenko, L.; Bratchenko, I. Avoiding Overestimation and the ‘Black Box’ Problem in Biofluids Multivariate Analysis by Raman Spectroscopy: Interpretation and Transparency with the SP-LIME Algorithm. J. Raman Spectrosc. 2025, 56, 353–364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratchenko, I. Special Issue “Raman Spectroscopy and Machine Learning in Human Disease”. Int. J. Mol. Sci. 2025, 26, 11529. https://doi.org/10.3390/ijms262311529
Bratchenko I. Special Issue “Raman Spectroscopy and Machine Learning in Human Disease”. International Journal of Molecular Sciences. 2025; 26(23):11529. https://doi.org/10.3390/ijms262311529
Chicago/Turabian StyleBratchenko, Ivan. 2025. "Special Issue “Raman Spectroscopy and Machine Learning in Human Disease”" International Journal of Molecular Sciences 26, no. 23: 11529. https://doi.org/10.3390/ijms262311529
APA StyleBratchenko, I. (2025). Special Issue “Raman Spectroscopy and Machine Learning in Human Disease”. International Journal of Molecular Sciences, 26(23), 11529. https://doi.org/10.3390/ijms262311529
