The Beauty Sleep to Keep a Healthy Liver
Abstract
1. Introduction
2. Sleep Physiology Basics
3. How Can We Study Sleep Disturbances?
4. How Can Sleep Disturbances Promote MASLD?
5. Interplay Between Sleep Disorders and Other Liver Diseases
5.1. Sleep Disorders as an Injury Mechanism Induced by Alcohol
5.2. Sleep Disturbances as an Extrahepatic Manifestation of Primary Biliary Cholangitis (PBC)
5.3. Can Hepatitis C Virus (HCV) Modulate Sleep?
5.4. Sleep Disturbances, Could It Be NeuroWilson?
6. Liver Cirrhosis: How a Deranged Architecture in the Liver Can Impact Sleep Architecture
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Grandner, M.A. Sleep, health, and society. Sleep Med. Clin. 2020, 15, 319–340. [Google Scholar] [CrossRef]
- Rechtschaffen, A.; Gilliland, M.A.; Bergmann, B.M.; Winter, J.B. Physiological correlates of prolonged sleep deprivation in rats. Science 1983, 221, 182–184. [Google Scholar] [CrossRef]
- Grandner, M.A. Sleep, health, and society. Sleep Med. Clin. 2022, 17, 117–139. [Google Scholar] [CrossRef]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Mindell, J.A.; Bartle, A.; Wahab, N.A.; Ahn, Y.; Ramamurthy, M.B.; Huong, H.T.; Kohyama, J.; Ruangdaraganon, N.; Sekartini, R.; Teng, A.; et al. Sleep education in medical school curriculum: A glimpse across countries. Sleep Med. 2011, 12, 928–931. [Google Scholar] [CrossRef]
- Adjaye-Gbewonyo, D. Quickstats: Percentage of adults aged ≥18 years who sleep <7 hours on average in a 24-hour period, by sex and age group—National health interview survey, united states, 2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 393. [Google Scholar]
- Morin, C.M.; Jarrin, D.C. Epidemiology of insomnia: Prevalence, course, risk factors, and public health burden. Sleep Med. Clin. 2022, 17, 173–191. [Google Scholar] [CrossRef]
- Rosen, R.C.; Zozula, R.; Jahn, E.G.; Carson, J.L. Low rates of recognition of sleep disorders in primary care: Comparison of a community-based versus clinical academic setting. Sleep Med. 2001, 2, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, S.; Bogdanovic, A.; Hildebrandt, T.; Flint, E.; Geng, A.; Pecenko, S.; Lussier, P.; Strumberger, M.A.; Meyer, M.; Weber, J.; et al. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Front. Netw. Physiol. 2024, 4, 1458665. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhou, S.; Liu, J.; Chen, N.; Li, J.; Han, Z.; Liu, R.; Xuan, C.; Wang, W.; Guo, L.; et al. Associations between sleep disorders and clinical outcomes of patients with primary biliary cholangitis. Adv. Med. Sci. 2024, 69, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Sockalingam, S.; Abbey, S.E.; Alosaimi, F.; Novak, M. A review of sleep disturbance in hepatitis C. J. Clin. Gastroenterol. 2010, 44, 38–45. [Google Scholar] [CrossRef]
- Rogal, S.S.; Hansen, L.; Patel, A.; Ufere, N.N.; Verma, M.; Woodrell, C.D.; Kanwal, F. AASLD practice guidance: Palliative care and symptom-based management in decompensated cirrhosis. Hepatology 2022, 76, 819–853. [Google Scholar] [CrossRef]
- Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437, 1257–1263. [Google Scholar] [CrossRef]
- Borbely, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar]
- Borbely, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef]
- Baranwal, N.; Yu, P.K.; Siegel, N.S. Sleep physiology, pathophysiology, and sleep hygiene. Prog. Cardiovasc. Dis. 2023, 77, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; De Pitta, C.; De Rui, M.; Corrias, M.; Turco, M.; Merkel, C.; Amodio, P.; Costa, R.; Skene, D.J.; Gatta, A. Sleep-wake abnormalities in patients with cirrhosis. Hepatology 2014, 59, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Borbely, A. The two-process model of sleep regulation: Beginnings and outlook. J. Sleep Res. 2022, 31, e13598. [Google Scholar] [CrossRef] [PubMed]
- Verdelho Machado, M. Circadian deregulation: Back facing the sun toward metabolic dysfunction-associated steatotic liver disease (MASLD) development. Nutrients 2024, 16, 4294. [Google Scholar] [CrossRef]
- Schwartz, W.J.; Klerman, E.B. Circadian neurobiology and the physiologic regulation of sleep and wakefulness. Neurol. Clin. 2019, 37, 475–486. [Google Scholar] [CrossRef]
- Werth, E.; Dijk, D.J.; Achermann, P.; Borbely, A.A. Dynamics of the sleep EEG after an early evening nap: Experimental data and simulations. Am. J. Physiol. 1996, 271, R501–R510. [Google Scholar] [CrossRef] [PubMed]
- Alanko, L.; Heiskanen, S.; Stenberg, D.; Porkka-Heiskanen, T. Adenosine kinase and 5′-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat. Neurochem. Int. 2003, 42, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Landolt, H.P. Sleep homeostasis: A role for adenosine in humans? Biochem. Pharmacol. 2008, 75, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhu, W.; Li, N.; Zhang, B.; Dai, W.; Li, S.; Xu, H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med. 2024, 115, 210–217. [Google Scholar] [CrossRef]
- Strecker, R.E.; Morairty, S.; Thakkar, M.M.; Porkka-Heiskanen, T.; Basheer, R.; Dauphin, L.J.; Rainnie, D.G.; Portas, C.M.; Greene, R.W.; McCarley, R.W. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav. Brain Res. 2000, 115, 183–204. [Google Scholar] [CrossRef]
- Rai, S.; Kumar, S.; Alam, M.A.; Szymusiak, R.; McGinty, D.; Alam, M.N. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010, 167, 40–48. [Google Scholar] [CrossRef]
- Oishi, Y.; Huang, Z.L.; Fredholm, B.B.; Urade, Y.; Hayaishi, O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via a1 receptors and promotes non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 2008, 105, 19992–19997. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, S.; Hsieh, K.C.; McGinty, D.; Alam, M.N.; Szymusiak, R. Adenosine A2A receptors regulate the activity of sleep regulatory gabaergic neurons in the preoptic hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R31–R41. [Google Scholar] [CrossRef]
- Zhou, X.; Oishi, Y.; Cherasse, Y.; Korkutata, M.; Fujii, S.; Lee, C.Y.; Lazarus, M. Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice. Neurochem. Int. 2019, 124, 256–263. [Google Scholar] [CrossRef]
- Lazarus, M.; Oishi, Y.; Bjorness, T.E.; Greene, R.W. Gating and the need for sleep: Dissociable effects of adenosine A1 and A2A receptors. Front. Neurosci. 2019, 13, 740. [Google Scholar] [CrossRef]
- Thakkar, M.M.; Sharma, R.; Sahota, P. Alcohol disrupts sleep homeostasis. Alcohol 2015, 48, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Lakhiani, R.; Shanavas, S.; Melnattur, K. Comparative biology of sleep in diverse animals. J. Exp. Biol. 2023, 226. [Google Scholar] [CrossRef]
- Fagiani, F.; Di Marino, D.; Romagnoli, A.; Travelli, C.; Voltan, D.; Di Cesare Mannelli, L.; Racchi, M.; Govoni, S.; Lanni, C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct. Target. Ther. 2022, 7, 41. [Google Scholar] [CrossRef]
- Wever, R.A. Internal interactions within the human circadian system: The masking effect. Experientia 1985, 41, 332–342. [Google Scholar] [CrossRef]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15 (Suppl. 2), R271–R277. [Google Scholar] [CrossRef]
- Gekakis, N.; Staknis, D.; Nguyen, H.B.; Davis, F.C.; Wilsbacher, L.D.; King, D.P.; Takahashi, J.S.; Weitz, C.J. Role of the clock protein in the mammalian circadian mechanism. Science 1998, 280, 1564–1569. [Google Scholar] [CrossRef]
- Koike, N.; Yoo, S.H.; Huang, H.C.; Kumar, V.; Lee, C.; Kim, T.K.; Takahashi, J.S. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Yoshitane, H.; Ozaki, H.; Terajima, H.; Du, N.H.; Suzuki, Y.; Fujimori, T.; Kosaka, N.; Shimba, S.; Sugano, S.; Takagi, T.; et al. Clock-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical e-boxes. Mol. Cell Biol. 2014, 34, 1776–1787. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Zheng, B.; Albrecht, U.; Kaasik, K.; Sage, M.; Lu, W.; Vaishnav, S.; Li, Q.; Sun, Z.S.; Eichele, G.; Bradley, A.; et al. Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell 2001, 105, 683–694. [Google Scholar] [CrossRef]
- Kume, K.; Zylka, M.J.; Sriram, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. Mcry1 and mcry2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999, 98, 193–205. [Google Scholar] [CrossRef]
- Guillaumond, F.; Dardente, H.; Giguere, V.; Cermakian, N. Differential control of bmal1 circadian transcription by rev-erb and ror nuclear receptors. J. Biol. Rhythms 2005, 20, 391–403. [Google Scholar] [CrossRef]
- Yoshitane, H.; Asano, Y.; Sagami, A.; Sakai, S.; Suzuki, Y.; Okamura, H.; Iwasaki, W.; Ozaki, H.; Fukada, Y. Functional d-box sequences reset the circadian clock and drive mrna rhythms. Commun. Biol. 2019, 2, 300. [Google Scholar] [CrossRef]
- Honma, S.; Kawamoto, T.; Takagi, Y.; Fujimoto, K.; Sato, F.; Noshiro, M.; Kato, Y.; Honma, K. Dec1 and dec2 are regulators of the mammalian molecular clock. Nature 2002, 419, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Scammell, T.E.; Gooley, J.J.; Gaus, S.E.; Saper, C.B.; Lu, J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 2003, 23, 10691–10702. [Google Scholar] [CrossRef] [PubMed]
- Ehlen, J.C.; Brager, A.J.; Baggs, J.; Pinckney, L.; Gray, C.L.; DeBruyne, J.P.; Esser, K.A.; Takahashi, J.S.; Paul, K.N. Bmal1 function in skeletal muscle regulates sleep. Elife 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- ElGrawani, W.; Sun, G.; Kliem, F.P.; Sennhauser, S.; Pierre-Ferrer, S.; Rosi-Andersen, A.; Boccalaro, I.; Bethge, P.; Heo, W.D.; Helmchen, F.; et al. Bdnf-trkb signaling orchestrates the buildup process of local sleep. Cell Rep. 2024, 43, 114500. [Google Scholar] [CrossRef]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Lanctot, K.L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur. J. Neurosci. 2017, 46, 1635–1646. [Google Scholar] [CrossRef]
- Tan, X.; van Egmond, L.T.; Cedernaes, J.; Benedict, C. The role of exercise-induced peripheral factors in sleep regulation. Mol. Metab. 2020, 42, 101096. [Google Scholar] [CrossRef]
- Yang, P.Y.; Ho, K.H.; Chen, H.C.; Chien, M.Y. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: A systematic review. J. Physiother. 2012, 58, 157–163. [Google Scholar] [CrossRef]
- Hansen, M.K.; Kapas, L.; Fang, J.; Krueger, J.M. Cafeteria diet-induced sleep is blocked by subdiaphragmatic vagotomy in rats. Am. J. Physiol. 1998, 274, R168–R174. [Google Scholar] [CrossRef]
- Danguir, J. Cafeteria diet promotes sleep in rats. Appetite 1987, 8, 49–53. [Google Scholar] [CrossRef]
- Jacobs, B.L.; McGinty, D.J. Effects of food deprivation on sleep and wakefulness in the rat. Exp. Neurol. 1971, 30, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.F.; Fonseca, R.C.; Rodrigues-Ribeiro, L.; Guimaraes, J.S.F.; Vaz, B.F.; Tofani, G.S.S.; Batista, A.C.S.; Diniz, A.B.; Fernandes, P.; Nunes, N.A.M.; et al. Vagus nerve mediated liver-brain-axis is a major regulator of the metabolic landscape in the liver. Int. J. Mol. Sci. 2025, 26, 2166. [Google Scholar] [CrossRef] [PubMed]
- Woodie, L.N.; Melink, L.C.; Midha, M.; de Araujo, A.M.; Geisler, C.E.; Alberto, A.J.; Krusen, B.M.; Zundell, D.M.; de Lartigue, G.; Hayes, M.R.; et al. Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake. Science 2024, 386, 673–677. [Google Scholar] [CrossRef]
- Jenkins, J.B.; Omori, T.; Guan, Z.; Vgontzas, A.N.; Bixler, E.O.; Fang, J. Sleep is increased in mice with obesity induced by high-fat food. Physiol. Behav. 2006, 87, 255–262. [Google Scholar] [CrossRef]
- Luppi, M.; Cerri, M.; Martelli, D.; Tupone, D.; Del Vecchio, F.; Di Cristoforo, A.; Perez, E.; Zamboni, G.; Amici, R. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Behav. Brain Res. 2014, 258, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, M.; Oh, C.M.; Kim, T. High-fat diet-induced dopaminergic dysregulation induces rem sleep fragmentation and adhd-like behaviors. Psychiatry Res. 2023, 327, 115412. [Google Scholar] [CrossRef]
- McHill, A.W.; Sano, A.; Barger, L.K.; Phillips, A.J.K.; Czeisler, C.A.; Klerman, E.B. Adaptation of sleep to daylight saving time is slower in people consuming a high-fat diet. iScience 2024, 27, 110677. [Google Scholar] [CrossRef]
- Kennaway, D.J. Melatonin research in mice: A review. Chronobiol. Int. 2019, 36, 1167–1183. [Google Scholar] [CrossRef]
- Lee, S.S.; Liu, Q.; Cheng, A.H.R.; Kim, D.W.; Boudreau, D.M.; Mehta, A.; Keles, M.F.; Fejfer, R.; Palmer, I.; Park, K.H.; et al. Sleep need-dependent plasticity of a thalamic circuit promotes homeostatic recovery sleep. Science 2025, 388, eadm8203. [Google Scholar] [CrossRef]
- Colrain, I.M.; Nicholas, C.L.; Baker, F.C. Alcohol and the sleeping brain. Handb. Clin. Neurol. 2014, 125, 415–431. [Google Scholar]
- Krystal, A.D.; Edinger, J.D. Measuring sleep quality. Sleep Med. 2008, 9 (Suppl. 1), S10–S17. [Google Scholar] [CrossRef]
- Bersagliere, A.; Raduazzo, I.D.; Nardi, M.; Schiff, S.; Gatta, A.; Amodio, P.; Achermann, P.; Montagnese, S. Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis. Hepatology 2012, 55, 869–878. [Google Scholar] [CrossRef]
- Shouval, D. The impact of chronic hepatitis c infection on the circadian clock and sleep. J. Hepatol. 2014, 60, 685–686. [Google Scholar] [CrossRef]
- Carney, C.E.; Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Krystal, A.D.; Lichstein, K.L.; Morin, C.M. The consensus sleep diary: Standardizing prospective sleep self-monitoring. Sleep 2012, 35, 287–302. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Formentin, C.; Garrido, M.; Montagnese, S. Assessment and management of sleep disturbance in cirrhosis. Curr. Hepatol. Rep. 2018, 17, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; Middleton, B.; Skene, D.J.; Morgan, M.Y. Sleep-wake patterns in patients with cirrhosis: All you need to know on a single sheet. A simple sleep questionnaire for clinical use. J. Hepatol. 2009, 51, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. A new method for measuring daytime sleepiness: The epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable sleep technology in clinical and research settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Younossi, Y.; Golabi, P.; Mishra, A.; Rafiq, N.; Henry, L. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 2020, 69, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M.; Vipani, A.; Bresee, C.; Todo, T.; Kim, I.K.; Alkhouri, N.; Setiawan, V.W.; Tran, T.; Ayoub, W.S.; Lu, S.C.; et al. Nash leading cause of liver transplant in women: Updated analysis of indications for liver transplant and ethnic and gender variances. Am. J. Gastroenterol. 2018, 113, 1649–1659. [Google Scholar] [CrossRef]
- Simon, T.G.; Roelstraete, B.; Khalili, H.; Hagstrom, H.; Ludvigsson, J.F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: Results from a nationwide cohort. Gut 2021, 70, 1375–1382. [Google Scholar] [CrossRef]
- Trepo, E.; Valenti, L. Update on nafld genetics: From new variants to the clinic. J. Hepatol. 2020, 72, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.V. MASLD treatment-a shift in the paradigm is imminent. Front. Med. 2023, 10, 1316284. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Q.; Zhao, W.; Ye, B.; Li, S.; Zhang, Z.; Ju, J.; He, J.; Xia, M.; Xiong, T.; et al. Associations of traditional healthy lifestyle and sleep quality with metabolic dysfunction-associated fatty liver disease: Two population-based studies. Nutr. Diabetes 2024, 14, 79. [Google Scholar] [CrossRef]
- Bernsmeier, C.; Weisskopf, D.M.; Pflueger, M.O.; Mosimann, J.; Campana, B.; Terracciano, L.; Beglinger, C.; Heim, M.H.; Cajochen, C. Sleep disruption and daytime sleepiness correlating with disease severity and insulin resistance in non-alcoholic fatty liver disease: A comparison with healthy controls. PLoS ONE 2015, 10, e0143293. [Google Scholar] [CrossRef]
- Marin-Alejandre, B.A.; Abete, I.; Cantero, I.; Riezu-Boj, J.I.; Milagro, F.I.; Monreal, J.I.; Elorz, M.; Herrero, J.I.; Benito-Boillos, A.; Quiroga, J.; et al. Association between sleep disturbances and liver status in obese subjects with nonalcoholic fatty liver disease: A comparison with healthy controls. Nutrients 2019, 11, 322. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, B.; Huang, J.; Nian, M.; Zhao, J.; Chen, G. Impact of sleep fragmentation and arousal on nonalcoholic fatty liver disease in patients with obstructive sleep apnea: A cross-sectional study. Nat. Sci. Sleep 2024, 16, 2143–2150. [Google Scholar] [CrossRef]
- Jin, S.; Jiang, S.; Hu, A. Association between obstructive sleep apnea and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Sleep Breath. 2018, 22, 841–851. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Minville, C.; Tordjman, J.; Levy, P.; Bouillot, J.L.; Basdevant, A.; Bedossa, P.; Clement, K.; Pepin, J.L. Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. J. Hepatol. 2012, 56, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Kani, A.S.; Ozercan, A.; Kani, H.T.; Eren, F.; Sayar, K.; Yilmaz, Y. Chronotype preference, sleep quality, and night-eating behaviors in patients with metabolic dysfunction-associated steatotic liver disease: Assessing the relationship with disease severity and fibrosis. Hepatol. Forum 2023, 4, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wijarnpreecha, K.; Thongprayoon, C.; Panjawatanan, P.; Ungprasert, P. Insomnia and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. J. Postgrad. Med. 2017, 63, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Yun, K.E.; Jung, H.S.; Chang, Y.; Choi, E.S.; Kwon, M.J.; Lee, E.H.; Woo, E.J.; Kim, N.H.; Shin, H.; et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J. Hepatol. 2013, 59, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Mir, H.M.; Stepanova, M.; Afendy, H.; Cable, R.; Younossi, Z.M. Association of sleep disorders with nonalcoholic fatty liver disease (nafld): A population-based study. J. Clin. Exp. Hepatol. 2013, 3, 181–185. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Z.; Zhang, X.; Yuan, H.; Zhao, X.; Zhao, R.; Shi, T.; Wu, S.; Xu, Y.; Suo, C.; et al. Investigating the association between seven sleep traits and nonalcoholic fatty liver disease: Observational and mendelian randomization study. Front. Genet. 2022, 13, 792558. [Google Scholar] [CrossRef]
- Wang, H.; Gu, Y.; Zheng, L.; Liu, L.; Meng, G.; Wu, H.; Xia, Y.; Bao, X.; Shi, H.; Sun, S.; et al. Association between bedtime and the prevalence of newly diagnosed non-alcoholic fatty liver disease in adults. Liver Int. 2018, 38, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, X.; Cai, Y.; Dong, H.; Zhang, Y. Multidimensional sleep impairment predicts steatotic liver disease spectrum risk. Sci. Rep. 2025, 15, 10405. [Google Scholar] [CrossRef]
- Takahashi, A.; Anzai, Y.; Kuroda, M.; Kokubun, M.; Kondo, Y.; Ogata, T.; Fujita, M.; Hayashi, M.; Imaizumi, H.; Abe, K.; et al. Effects of sleep quality on non-alcoholic fatty liver disease: A cross-sectional survey. BMJ Open 2020, 10, e039947. [Google Scholar] [CrossRef]
- Wu, Q.; Song, F.; Huang, H.; Wang, S.; Zhang, N.; Li, Z.; Liu, Y.; Chen, J.; Ma, J. Sleep duration, midpoint, variability, irregularity and metabolic dysfunction-associated steatotic liver disease. Behav. Sleep Med. 2025, 23, 400–413. [Google Scholar] [CrossRef]
- Um, Y.J.; Chang, Y.; Jung, H.S.; Cho, I.Y.; Shin, J.H.; Shin, H.; Wild, S.H.; Byrne, C.D.; Ryu, S. Sleep duration, sleep quality, and the development of nonalcoholic fatty liver disease: A cohort study. Clin. Transl. Gastroenterol. 2021, 12, e00417. [Google Scholar] [CrossRef]
- Zarean, E.; Looha, M.A.; Amini, P.; Ahmadi, A.; Dugue, P.A. Sleep characteristics of middle-aged adults with non-alcoholic fatty liver disease: Findings from the shahrekord persian cohort study. BMC Public Health 2023, 23, 312. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, S. Sleep factors were associated with a higher risk of mafld and significant fibrosis. Sleep Breath. 2024, 28, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ji, J.; Zuo, L.; Hu, Y.; Wang, K.; Xu, T.; Wang, Q.; Cheng, F. Causal relationship between nonalcoholic fatty liver disease and different sleep traits: A bidirectional mendelian randomized study. Front. Endocrinol. 2023, 14, 1159258. [Google Scholar] [CrossRef]
- Wei, Y.T.; Lee, P.Y.; Lin, C.Y.; Chen, H.J.; Lin, C.C.; Wu, J.S.; Chang, Y.F.; Wu, C.L.; Guo, H.R. Non-alcoholic fatty liver disease among patients with sleep disorders: A nationwide study of Taiwan. BMC Gastroenterol. 2020, 20, 32. [Google Scholar] [CrossRef]
- Qin, S.; Cheng, X.; Zhang, S.; Shen, Q.; Zhong, R.; Chen, X.; Yi, Z. Sleep patterns, genetic susceptibility, and risk of cirrhosis among individuals with nonalcoholic fatty liver disease. Hepatol. Int. 2024, 18, 1158–1167. [Google Scholar] [CrossRef]
- Hsieh, S.D.; Muto, T.; Murase, T.; Tsuji, H.; Arase, Y. Association of short sleep duration with obesity, diabetes, fatty liver and behavioral factors in japanese men. Intern. Med. 2011, 50, 2499–2502. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Kumagi, T.; Furukawa, S.; Hirooka, M.; Kawasaki, K.; Koizumi, M.; Todo, Y.; Yamamoto, S.; Tokumoto, Y.; Ikeda, Y.; et al. Short sleep duration reduces the risk of nonalcoholic fatty liver disease onset in men: A community-based longitudinal cohort study. J. Gastroenterol. 2015, 50, 583–589. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, R.; Lou, J.; Pan, A.; Tang, Y.; Chang, J.; Ke, J.; Li, J.; Yuan, J.; Wang, Y.; et al. Nighttime sleep duration and risk of nonalcoholic fatty liver disease: The dongfeng-tongji prospective study. Ann. Med. 2016, 48, 468–476. [Google Scholar] [CrossRef]
- Peng, K.; Lin, L.; Wang, Z.; Ding, L.; Huang, Y.; Wang, P.; Xu, Y.; Lu, J.; Xu, M.; Bi, Y.; et al. Short sleep duration and longer daytime napping are associated with non-alcoholic fatty liver disease in Chinese adults. J. Diabetes 2017, 9, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Short sleep duration is a risk of incident nonalcoholic fatty liver disease: A population-based longitudinal study. J. Gastrointestin. Liver Dis. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Imaizumi, H.; Takahashi, A.; Takahata, Y.; Anzai, Y.; Kogure, A.; Sakuma, C.; Abe, N.; Sugaya, T.; Fujita, M.; Hayashi, M.; et al. Association between sleep duration and a new onset of nonalcoholic fatty liver disease. Intern. Med. 2024, 63, 3277–3282. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Deng, H.; Zhang, M.; Hu, H.; Ouyang, H.; Ma, L.; Liu, R.; Sun, J.; Hu, G.; et al. Association of daily sleep duration with risk of metabolic dysfunction-associated steatotic liver disease and adverse liver outcomes. Diabetes Metab. 2025, 51, 101628. [Google Scholar] [CrossRef]
- Chou, Y.T.; Cheng, H.J.; Wu, J.S.; Yang, Y.C.; Chou, C.Y.; Chang, C.J.; Lu, F.H. The association of sleep duration and sleep quality with non-alcoholic fatty liver disease in a Taiwanese population. Obes. Res. Clin. Pract. 2018, 12, 500–505. [Google Scholar] [CrossRef]
- Ohkuma, T.; Fujii, H.; Iwase, M.; Ogata-Kaizu, S.; Ide, H.; Kikuchi, Y.; Idewaki, Y.; Jodai, T.; Hirakawa, Y.; Nakamura, U.; et al. U-shaped association of sleep duration with metabolic syndrome and insulin resistance in patients with type 2 diabetes: The fukuoka diabetes registry. Metabolism 2014, 63, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2015, 38, 529–537. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, M.; Hu, D. Dose-response association between sleep duration and obesity risk: A systematic review and meta-analysis of prospective cohort studies. Sleep Breath. 2019, 23, 1035–1045. [Google Scholar] [CrossRef]
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Kim, L.J.; Jun, J.C.; Polotsky, V.Y. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann. N. Y. Acad. Sci. 2023, 1519, 94–117. [Google Scholar] [CrossRef]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P., Jr. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef]
- Zhu, B.; Shi, C.; Park, C.G.; Zhao, X.; Reutrakul, S. Effects of sleep restriction on metabolism-related parameters in healthy adults: A comprehensive review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2019, 45, 18–30. [Google Scholar] [CrossRef]
- Broussard, J.L.; Kilkus, J.M.; Delebecque, F.; Abraham, V.; Day, A.; Whitmore, H.R.; Tasali, E. Elevated ghrelin predicts food intake during experimental sleep restriction. Obesity 2016, 24, 132–138. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Leproult, R.; Scherberg, N.; Van Cauter, E. Twenty-four-hour profiles of acylated and total ghrelin: Relationship with glucose levels and impact of time of day and sleep. J. Clin. Endocrinol. Metab. 2011, 96, 486–493. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; L’Hermite-Baleriaux, M.; Copinschi, G.; Penev, P.D.; Van Cauter, E. Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89, 5762–5771. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.M.; Hallschmid, M.; Jauch-Chara, K.; Born, J.; Schultes, B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 2008, 17, 331–334. [Google Scholar] [CrossRef]
- Rihm, J.S.; Menz, M.M.; Schultz, H.; Bruder, L.; Schilbach, L.; Schmid, S.M.; Peters, J. Sleep deprivation selectively upregulates an amygdala-hypothalamic circuit involved in food reward. J. Neurosci. 2019, 39, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Greer, S.M.; Goldstein, A.N.; Walker, M.P. The impact of sleep deprivation on food desire in the human brain. Nat. Commun. 2013, 4, 2259. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Brooks, S.J.; O’Daly, O.G.; Almen, M.S.; Morell, A.; Aberg, K.; Gingnell, M.; Schultes, B.; Hallschmid, M.; Broman, J.E.; et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fmri study. J. Clin. Endocrinol. Metab. 2012, 97, E443–E447. [Google Scholar] [CrossRef]
- Koban, M.; Swinson, K.L. Chronic rem-sleep deprivation of rats elevates metabolic rate and increases ucp1 gene expression in brown adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E68–E74. [Google Scholar] [CrossRef]
- Cedernaes, J.; Schonke, M.; Westholm, J.O.; Mi, J.; Chibalin, A.; Voisin, S.; Osler, M.; Vogel, H.; Hornaeus, K.; Dickson, S.L.; et al. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci. Adv. 2018, 4, eaar8590. [Google Scholar] [CrossRef]
- Targher, G.; Bertolini, L.; Rodella, S.; Zoppini, G.; Zenari, L.; Falezza, G. Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin. Endocrinol. 2006, 64, 337–341. [Google Scholar] [CrossRef]
- Chaput, J.P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef]
- Minkel, J.; Moreta, M.; Muto, J.; Htaik, O.; Jones, C.; Basner, M.; Dinges, D. Sleep deprivation potentiates hpa axis stress reactivity in healthy adults. Health Psychol. 2014, 33, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Sung, G.H.; Lee, S.; Han, K.J. Weekend catch-up sleep is associated with the alleviation of non-alcoholic fatty liver disease. Ann. Hepatol. 2022, 27, 100690. [Google Scholar] [CrossRef]
- Im, H.J.; Baek, S.H.; Chu, M.K.; Yang, K.I.; Kim, W.J.; Park, S.H.; Thomas, R.J.; Yun, C.H. Association between weekend catch-up sleep and lower body mass: Population-based study. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, Y.; Kim, W.J.; Chu, M.K.; Yun, C.H.; Yang, K.I. Association between weekend catch-up sleep duration and hypertension in Korean adults. Sleep Med. 2013, 14, 549–554. [Google Scholar] [CrossRef]
- Lee, K. Evaluation of weekend catch-up sleep and weekday sleep duration in relation to metabolic syndrome in Korean adults. Sleep Breath. 2023, 27, 2199–2207. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wang, X.; Guo, L.; Pan, Q. Excessive daytime napping increases the risk of non-alcoholic fatty liver disease: A meta-analysis and a mendelian randomization study. Nat. Sci. Sleep 2024, 16, 1067–1074. [Google Scholar] [CrossRef]
- Yang, J.; Luo, S.; Li, R.; Ju, J.; Zhang, Z.; Shen, J.; Sun, M.; Fan, J.; Xia, M.; Zhu, W.; et al. Sleep factors in relation to metabolic dysfunction-associated fatty liver disease in middle-aged and elderly Chinese. J. Clin. Endocrinol. Metab. 2022, 107, 2874–2882. [Google Scholar] [CrossRef]
- Yamada, T.; Hara, K.; Shojima, N.; Yamauchi, T.; Kadowaki, T. Daytime napping and the risk of cardiovascular disease and all-cause mortality: A prospective study and dose-response meta-analysis. Sleep 2015, 38, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Huang, M.; Huang, J.; Yao, Z.; Lin, Z. Association of napping and all-cause mortality and incident cardiovascular diseases: A dose-response meta analysis of cohort studies. Sleep Med. 2020, 74, 165–172. [Google Scholar] [CrossRef]
- Wang, M.; Xiang, X.; Zhao, Z.; Liu, Y.; Cao, Y.; Guo, W.; Hou, L.; Jiang, Q. Association between self-reported napping and risk of cardiovascular disease and all-cause mortality: A meta-analysis of cohort studies. PLoS ONE 2024, 19, e0311266. [Google Scholar] [CrossRef]
- Cai, Z.; Yang, Y.; Zhang, J.; Liu, Y. The relationship between daytime napping and obesity: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 12124. [Google Scholar] [CrossRef]
- Guo, V.Y.; Cao, B.; Wong, C.K.H.; Yu, E.Y.T. The association between daytime napping and risk of diabetes: A systematic review and meta-analysis of observational studies. Sleep Med. 2017, 37, 105–112. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Wang, S.; Lin, L.; Peng, K.; Du, R.; Qi, H.; Zhang, J.; Wang, T.; Zhao, Z.; et al. Association of bedtime with the risk of non-alcoholic fatty liver disease among middle-aged and elderly Chinese adults with pre-diabetes and diabetes. Diabetes Metab. Res. Rev. 2020, 36, e3322. [Google Scholar] [CrossRef]
- Xing, X.; Ding, M.; Li, C.; Zhang, M.; Xu, X.; Zhang, L.; Guo, F.; Chen, S.; Niu, Y.; Liu, F.; et al. Combined effects of sleep timing and nighttime sleep duration on non-alcoholic fatty liver disease. Prev. Med. 2024, 187, 108116. [Google Scholar] [CrossRef]
- Zong, G.; Mao, W.; Wen, M.; Cheng, X.; Liu, G. Association of sleep patterns and disorders with metabolic dysfunction-associated steatotic liver disease and liver fibrosis in contemporary american adults. Ann. Hepatol. 2024, 30, 101583. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Ou, W.; Huang, J.; Singh, M.; Wang, M.; Zhu, Y.; Kumar, R.; Lin, S. Circadian misalignment rather than sleep duration is associated with mafld: A population-based propensity score-matched study. Nat. Sci. Sleep 2021, 13, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Merikanto, I.; Lahti, T.; Puolijoki, H.; Vanhala, M.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Salomaa, V.; Kronholm, E.; Partonen, T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol. Int. 2013, 30, 470–477. [Google Scholar] [CrossRef]
- Yu, J.H.; Yun, C.H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef]
- Fabbian, F.; Zucchi, B.; De Giorgi, A.; Tiseo, R.; Boari, B.; Salmi, R.; Cappadona, R.; Gianesini, G.; Bassi, E.; Signani, F.; et al. Chronotype, gender and general health. Chronobiol. Int. 2016, 33, 863–882. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and bmi. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Meng, H.; Li, Y.; Han, T.; Wang, C. Obstructive sleep apnea and liver injury in severely obese patients with nonalcoholic fatty liver disease. Sleep Breath. 2020, 24, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kar, S.K. Rem sleep deprivation of rats induces acute phase response in liver. Biochem. Biophys. Res. Commun. 2011, 410, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R.; et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005, 308, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhang, Y.; Zhang, F.; Xia, Y.; Liu, J.; Huang, R.; Wang, Y.; Hu, Y.; Wu, J.; Dai, C.; et al. Clock/bmal1 regulates circadian change of mouse hepatic insulin sensitivity by sirt1. Hepatology 2014, 59, 2196–2206. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Yang, J.; Wang, Y.; Deng, L.; Xieyire, H.; Gulijiehere, T.; Munire, M.; Liu, F.; Li, X.; et al. Joint association of sleep quality and physical activity with metabolic dysfunction-associated fatty liver disease: A population-based cross-sectional study in western China. Nutr. Diabetes 2024, 14, 54. [Google Scholar] [CrossRef]
- Jia, G.; Jia, M.; Li, C. The moderating effect of dietary fiber intake on the association between sleep pattern and liver fibrosis in metabolic dysfunction-associated steatotic liver disease: A study from nhanes. BMC Gastroenterol. 2024, 24, 457. [Google Scholar] [CrossRef]
- Musso, G.; Cassader, M.; Olivetti, C.; Rosina, F.; Carbone, G.; Gambino, R. Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes. Rev. 2013, 14, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Gileles-Hillel, A.; Cortese, R.; Li, Y.; Almendros, I.; Qiao, Z.; Khalyfa, A.A.; Andrade, J.; Khalyfa, A. Visceral white adipose tissue after chronic intermittent and sustained hypoxia in mice. Am. J. Respir. Cell Mol. Biol. 2017, 56, 477–487. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: A meta-analysis. Obes. Surg. 2013, 23, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.D.; Chen, M.X.; Chen, G.P.; Lin, X.J.; Huang, J.F.; Zeng, A.M.; Huang, Y.P.; Lin, Q.C. Association between obstructive sleep apnea and non-alcoholic fatty liver disease in pediatric patients: A meta-analysis. Pediatr. Obes. 2021, 16, e12718. [Google Scholar] [CrossRef]
- Hany, M.; Abouelnasr, A.A.; Abdelkhalek, M.H.; Ibrahim, M.; Aboelsoud, M.R.; Hozien, A.I.; Torensma, B. Effects of obstructive sleep apnea on non-alcoholic fatty liver disease in patients with obesity: A systematic review. Int. J. Obes. 2023, 47, 1200–1213. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; He, S.; Bao, Y.; Sun, H.; Meng, L.; Liang, J.; Sun, C.; Chen, S.; Cao, L.; et al. Self-reported snoring is associated with nonalcoholic fatty liver disease. Sci. Rep. 2020, 10, 9267. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Lv, F.; Zhang, P.; Liu, J.; Mao, J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front. Endocrinol. 2023, 14, 1254459. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease: A scientific statement from the american heart association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, Y.; Wu, X.; Fang, Z.; Liu, C. Association between obstructive sleep apnea and non-alcoholic fatty liver disease: Epidemiological cross-sectional study and mendelian randomization analysis. Nat. Sci. Sleep 2025, 17, 1361–1376. [Google Scholar] [CrossRef]
- Gaucher, J.; Vial, G.; Montellier, E.; Guellerin, M.; Bouyon, S.; Lemarie, E.; Pelloux, V.; Bertrand, A.; Pernet-Gallay, K.; Lamarche, F.; et al. Intermittent hypoxia rewires the liver transcriptome and fires up fatty acids usage for mitochondrial respiration. Front. Med. 2022, 9, 829979. [Google Scholar] [CrossRef]
- Ciftci, T.U.; Kokturk, O.; Bukan, N.; Bilgihan, A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine 2004, 28, 87–91. [Google Scholar] [CrossRef]
- Steiropoulos, P.; Papanas, N.; Nena, E.; Antoniadou, M.; Serasli, E.; Papoti, S.; Hatzizisi, O.; Kyriazis, G.; Tzouvelekis, A.; Maltezos, E.; et al. Inflammatory markers in middle-aged obese subjects: Does obstructive sleep apnea syndrome play a role? Mediat. Inflamm. 2010, 2010, 675320. [Google Scholar] [CrossRef] [PubMed]
- Savransky, V.; Nanayakkara, A.; Vivero, A.; Li, J.; Bevans, S.; Smith, P.L.; Torbenson, M.S.; Polotsky, V.Y. Chronic intermittent hypoxia predisposes to liver injury. Hepatology 2007, 45, 1007–1013. [Google Scholar] [CrossRef]
- Chen, L.D.; Huang, Z.W.; Huang, Y.Z.; Huang, J.F.; Zhang, Z.P.; Lin, X.J. Untargeted metabolomic profiling of liver in a chronic intermittent hypoxia mouse model. Front. Physiol. 2021, 12, 701035. [Google Scholar] [CrossRef] [PubMed]
- Qu, A.; Taylor, M.; Xue, X.; Matsubara, T.; Metzger, D.; Chambon, P.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 2011, 54, 472–483. [Google Scholar] [CrossRef]
- Csak, T.; Bala, S.; Lippai, D.; Satishchandran, A.; Catalano, D.; Kodys, K.; Szabo, G. Microrna-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int. 2015, 35, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Mesarwi, O.A.; Moya, E.A.; Zhen, X.; Gautane, M.; Zhao, H.; Wegbrans Giro, P.; Alshebli, M.; McCarley, K.E.; Breen, E.C.; Malhotra, A. Hepatocyte hif-1 and intermittent hypoxia independently impact liver fibrosis in murine nonalcoholic fatty liver disease. Am. J. Respir. Cell. Mol. Biol. 2021, 65, 390–402. [Google Scholar] [CrossRef]
- Kudo, J.; Hirono, H.; Ohkoshi, S. Low-frequency, mild-gradient chronic intermittent hypoxia still induces liver fibrogenesis in mice on a high-fat diet. Biochem. Biophys. Res. Commun. 2025, 761, 151744. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Shahar, E.; Redline, S.; Gottlieb, D.J.; Givelber, R.; Resnick, H.E.; Sleep Heart Health Study, I. Sleep-disordered breathing, glucose intolerance, and insulin resistance: The sleep heart health study. Am. J. Epidemiol. 2004, 160, 521–530. [Google Scholar] [CrossRef]
- Ciriello, J.; Moreau, J.M.; Caverson, M.M.; Moranis, R. Leptin: A potential link between obstructive sleep apnea and obesity. Front. Physiol. 2021, 12, 767318. [Google Scholar] [CrossRef]
- Sica, A.L.; Greenberg, H.E.; Ruggiero, D.A.; Scharf, S.M. Chronic-intermittent hypoxia: A model of sympathetic activation in the rat. Respir. Physiol. 2000, 121, 173–184. [Google Scholar] [CrossRef]
- Minami, T.; Tachikawa, R.; Matsumoto, T.; Murase, K.; Tanizawa, K.; Inouchi, M.; Handa, T.; Oga, T.; Hirai, T.; Chin, K. Adrenal gland size in obstructive sleep apnea: Morphological assessment of hypothalamic pituitary adrenal axis activity. PLoS ONE 2019, 14, e0222592. [Google Scholar] [CrossRef]
- Regazzetti, C.; Dumas, K.; Lacas-Gervais, S.; Pastor, F.; Peraldi, P.; Bonnafous, S.; Dugail, I.; Le Lay, S.; Valet, P.; Le Marchand-Brustel, Y.; et al. Hypoxia inhibits cavin-1 and cavin-2 expression and down-regulates caveolae in adipocytes. Endocrinology 2015, 156, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.M.; Thomas, A.; Crinion, S.J.; Kent, B.D.; Tambuwala, M.M.; Fabre, A.; Pepin, J.L.; Roche, H.M.; Arnaud, C.; Ryan, S. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur. Respir. J 2017, 49. [Google Scholar] [CrossRef]
- Varela-Guruceaga, M.; Belaidi, E.; Lebeau, L.; Aka, E.; Andriantsitohaina, R.; Giorgetti-Peraldi, S.; Arnaud, C.; Le Lay, S. Intermittent hypoxia mediates caveolae disassembly that parallels insulin resistance development. Front. Physiol. 2020, 11, 565486. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Aldana, C.; Usmani, S.; Adin, C.; Kotha, S.; Khan, M.; Eubank, T.; Scherer, P.E.; Parinandi, N.; Magalang, U.J. Intermittent hypoxia exacerbates pancreatic beta-cell dysfunction in a mouse model of diabetes mellitus. Sleep 2013, 36, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Poroyko, V.A.; Carreras, A.; Khalyfa, A.; Khalyfa, A.A.; Leone, V.; Peris, E.; Almendros, I.; Gileles-Hillel, A.; Qiao, Z.; Hubert, N.; et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci. Rep. 2016, 6, 35405. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.Y.; Liu, Q.Q.; Su, H.Z.; Zhang, H.P.; Fan, J.M.; Yang, J.H.; Hu, A.K.; Liu, Y.Q.; Chou, D.; Zeng, Y.M. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: Disease-related dysbiosis and metabolic comorbidities. Clin. Sci. 2019, 133, 905–917. [Google Scholar] [CrossRef]
- Valentini, F.; Evangelisti, M.; Arpinelli, M.; Di Nardo, G.; Borro, M.; Simmaco, M.; Villa, M.P. Gut microbiota composition in children with obstructive sleep apnoea syndrome: A pilot study. Sleep Med. 2020, 76, 140–147. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y.; Cai, X.; Chen, Y.; Shen, Z.; Lyv, Q. Gut microbiota dysbiosis in 4- to 6-year-old children with obstructive sleep apnea-hypopnea syndrome. Pediatr. Pulmonol. 2022, 57, 2012–2022. [Google Scholar] [CrossRef]
- Nobili, V.; Alisi, A.; Cutrera, R.; Carpino, G.; De Stefanis, C.; D’Oria, V.; De Vito, R.; Cucchiara, S.; Gaudio, E.; Musso, G. Altered gut-liver axis and hepatic adiponectin expression in osas: Novel mediators of liver injury in paediatric non-alcoholic fatty liver. Thorax 2015, 70, 769–781. [Google Scholar] [CrossRef]
- Barcelo, A.; Esquinas, C.; Robles, J.; Pierola, J.; De la Pena, M.; Aguilar, I.; Morell-Garcia, D.; Alonso, A.; Toledo, N.; Sanchez-de la Torre, M.; et al. Gut epithelial barrier markers in patients with obstructive sleep apnea. Sleep Med. 2016, 26, 12–15. [Google Scholar] [CrossRef]
- Khalyfa, A.; Ericsson, A.; Qiao, Z.; Almendros, I.; Farre, R.; Gozal, D. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: Effects of physical activity. EBioMedicine 2021, 64, 103208. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Cruz, R.; Jorquera, J. Continuous positive airway pressure in patients with obstructive sleep apnea and non-alcoholic steatohepatitis: A systematic review and meta-analysis. J. Clin. Sleep Med. 2018, 14, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Shpirer, I.; Copel, L.; Broide, E.; Elizur, A. Continuous positive airway pressure improves sleep apnea associated fatty liver. Lung 2010, 188, 301–307. [Google Scholar] [CrossRef]
- Rosenwasser, A.M. Chronobiology of ethanol: Animal models. Alcohol 2015, 49, 311–319. [Google Scholar] [CrossRef]
- Dwyer, S.M.; Rosenwasser, A.M. Neonatal clomipramine treatment, alcohol intake and circadian rhythms in rats. Psychopharmacology 1998, 138, 176–183. [Google Scholar] [CrossRef]
- Mistlberger, R.R.; Nadeau, J. Ethanol and circadian rhythms in the syrian hamster: Effects on entrained phase, reentrainment rate, and period. Pharmacol. Biochem. Behav. 1992, 43, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Rosenwasser, A.M.; Logan, R.W.; Fecteau, M.E. Chronic ethanol intake alters circadian period-responses to brief light pulses in rats. Chronobiol. Int. 2005, 22, 227–236. [Google Scholar] [CrossRef]
- Seggio, J.A.; Fixaris, M.C.; Reed, J.D.; Logan, R.W.; Rosenwasser, A.M. Chronic ethanol intake alters circadian phase shifting and free-running period in mice. J. Biol. Rhythm. 2009, 24, 304–312. [Google Scholar] [CrossRef]
- Seggio, J.A.; Logan, R.W.; Rosenwasser, A.M. Chronic ethanol intake modulates photic and non-photic circadian phase responses in the syrian hamster. Pharmacol. Biochem. Behav. 2007, 87, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Burgess, H.J.; Rizvydeen, M.; Kikyo, F.; Kebbeh, N.; Tan, M.; Roecklein, K.A.; Hasler, B.P.; King, A.C.; Cao, D. Sleep and circadian differences between light and heavy adult alcohol drinkers. Alcohol. Clin. Exp. Res. 2022, 46, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, C.; Weakley, J.; Burke, L.M.; Roach, G.D.; Sargent, C.; Maniar, N.; Huynh, M.; Miller, D.J.; Townshend, A.; Halson, S.L. The effect of alcohol on subsequent sleep in healthy adults: A systematic review and meta-analysis. Sleep Med. Rev. 2025, 80, 102030. [Google Scholar] [CrossRef] [PubMed]
- Colrain, I.M.; Turlington, S.; Baker, F.C. Impact of alcoholism on sleep architecture and EEG power spectra in men and women. Sleep 2009, 32, 1341–1352. [Google Scholar] [CrossRef]
- Irwin, M.; Gillin, J.C.; Dang, J.; Weissman, J.; Phillips, E.; Ehlers, C.L. Sleep deprivation as a probe of homeostatic sleep regulation in primary alcoholics. Biol. Psychiatry 2002, 51, 632–641. [Google Scholar] [CrossRef]
- Armitage, R.; Hoffmann, R.; Conroy, D.A.; Arnedt, J.T.; Brower, K.J. Effects of a 3-hour sleep delay on sleep homeostasis in alcohol dependent adults. Sleep 2012, 35, 273–278. [Google Scholar] [CrossRef]
- Drummond, S.P.; Gillin, J.C.; Smith, T.L.; DeModena, A. The sleep of abstinent pure primary alcoholic patients: Natural course and relationship to relapse. Alcohol. Clin. Exp. Res. 1998, 22, 1796–1802. [Google Scholar] [CrossRef]
- Landgraf, D.; McCarthy, M.J.; Welsh, D.K. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr. Psychiatry Rep. 2014, 16, 483. [Google Scholar] [CrossRef]
- Wittmann, M.; Paulus, M.; Roenneberg, T. Decreased psychological well-being in late ‘chronotypes’ is mediated by smoking and alcohol consumption. Subst. Use Misuse 2010, 45, 15–30. [Google Scholar] [CrossRef]
- Adan, A. Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction 1994, 89, 455–462. [Google Scholar] [CrossRef]
- Wong, M.M.; Brower, K.J.; Nigg, J.T.; Zucker, R.A. Childhood sleep problems, response inhibition, and alcohol and drug outcomes in adolescence and young adulthood. Alcohol. Clin. Exp. Res. 2010, 34, 1033–1044. [Google Scholar] [CrossRef]
- Comasco, E.; Nordquist, N.; Gokturk, C.; Aslund, C.; Hallman, J.; Oreland, L.; Nilsson, K.W. The clock gene per2 and sleep problems: Association with alcohol consumption among Swedish adolescents. Ups. J. Med. Sci. 2010, 115, 41–48. [Google Scholar] [CrossRef]
- Sjoholm, L.K.; Kovanen, L.; Saarikoski, S.T.; Schalling, M.; Lavebratt, C.; Partonen, T. Clock is suggested to associate with comorbid alcohol use and depressive disorders. J. Circadian Rhythm. 2010, 8, 1. [Google Scholar] [CrossRef]
- Kovanen, L.; Saarikoski, S.T.; Haukka, J.; Pirkola, S.; Aromaa, A.; Lonnqvist, J.; Partonen, T. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol. 2010, 45, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Bilbao, A.; Laucht, M.; Henriksson, R.; Yakovleva, T.; Ridinger, M.; Desrivieres, S.; Clarke, T.K.; Lourdusamy, A.; Smolka, M.N.; et al. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking. Am. J. Psychiatry 2011, 168, 1090–1098. [Google Scholar] [CrossRef]
- De Nobrega, A.K.; Noakes, E.J.; Storch, N.A.; Mellers, A.P.; Lyons, L.C. Sleep modulates alcohol toxicity in drosophila. Int. J. Mol. Sci. 2022, 23, 12091. [Google Scholar] [CrossRef]
- Garcia-Burgos, D.; Gonzalez, F.; Manrique, T.; Gallo, M. Patterns of ethanol intake in preadolescent, adolescent, and adult wistar rats under acquisition, maintenance, and relapse-like conditions. Alcohol. Clin. Exp. Res. 2009, 33, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Perreau-Lenz, S.; Zghoul, T.; de Fonseca, F.R.; Spanagel, R.; Bilbao, A. Circadian regulation of central ethanol sensitivity by the mper2 gene. Addict. Biol. 2009, 14, 253–259. [Google Scholar] [CrossRef]
- Hofstetter, J.R.; Grahame, N.J.; Mayeda, A.R. Circadian activity rhythms in high-alcohol-preferring and low-alcohol-preferring mice. Alcohol 2003, 30, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, J.L.; Do, D.T.; Grahame, N.J.; Roberts, A.J.; Gorman, M.R. Ethanol consumption in mice: Relationships with circadian period and entrainment. Alcohol 2011, 45, 147–159. [Google Scholar] [CrossRef]
- Flaisher-Grinberg, S.; Gampetro, D.R.; Kronfeld-Schor, N.; Einat, H. Inconsistent effects of photoperiod manipulations in tests for affective-like changes in mice: Implications for the selection of appropriate model animals. Behav. Pharmacol. 2011, 22, 23–30. [Google Scholar] [CrossRef]
- Gauvin, D.V.; Baird, T.J.; Vanecek, S.A.; Briscoe, R.J.; Vallett, M.; Holloway, F.A. Effects of time-of-day and photoperiod phase shifts on voluntary ethanol consumption in rats. Alcohol. Clin. Exp. Res. 1997, 21, 817–825. [Google Scholar] [CrossRef]
- Brager, A.J.; Prosser, R.A.; Glass, J.D. Circadian and acamprosate modu- lation of elevated ethanol drinking in mper2 clock gene mutant mice. Chronobiol. Int. 2011, 28, 664. [Google Scholar] [CrossRef] [PubMed]
- Ozburn, A.R.; Falcon, E.; Mukherjee, S.; Gillman, A.; Arey, R.; Spencer, S.; McClung, C.A. The role of clock in ethanol-related behaviors. Neuropsychopharmacology 2013, 38, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Cauch-Dudek, K.; Abbey, S.; Stewart, D.E.; Heathcote, E.J. Fatigue in primary biliary cirrhosis. Gut 1998, 43, 705–710. [Google Scholar] [CrossRef]
- Anderson, K.; Jones, D.E.J.; Wilton, K.; Newton, J.L. Restless leg syndrome is a treatable cause of sleep disturbance and fatigue in primary biliary cirrhosis. Liver Int. 2013, 33, 239–343. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.L.; Gibson, G.J.; Tomlinson, M.; Wilton, K.; Jones, D. Fatigue in primary biliary cirrhosis is associated with excessive daytime somnolence. Hepatology 2006, 44, 91–98. [Google Scholar] [CrossRef]
- Montagnese, S.; Nsemi, L.M.; Cazzagon, N.; Facchini, S.; Costa, L.; Bergasa, N.V.; Amodio, P.; Floreani, A. Sleep-wake profiles in patients with primary biliary cirrhosis. Liver Int. 2013, 33, 203–209. [Google Scholar] [CrossRef]
- von Maltzahn, R.; Mayo, M.J.; Smith, H.T.; Thompson, A.; Das, S.; de Souza, A.R.; Lisi, E.; Levy, C.; McLaughlin, M.M.; Jones, D. Relationship between pruritus and sleep in participants with primary biliary cholangitis in the phase 2b glimmer trial. J. Patient Rep. Outcomes 2024, 8, 60. [Google Scholar] [CrossRef]
- Kremer, A.E.; Mayo, M.J.; Hirschfield, G.; Levy, C.; Bowlus, C.L.; Jones, D.E.; Steinberg, A.; McWherter, C.A.; Choi, Y.J. Seladelpar improved measures of pruritus, sleep, and fatigue and decreased serum bile acids in patients with primary biliary cholangitis. Liver Int. 2022, 42, 112–123. [Google Scholar] [CrossRef]
- Turco, M.; Cazzagon, N.; Franceschet, I.; Formentin, C.; Frighetto, G.; Giordani, F.; Cellini, N.; Mazzotta, G.; Costa, R.; Middleton, B.; et al. Morning bright light treatment for sleep-wake disturbances in primary biliary cholangitis: A pilot study. Front. Physiol. 2018, 9, 1530. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.A.; Conrad, S.; Garrett, L.; Battistutta, D.; Cooksley, W.G.; Dunne, M.P.; Macdonald, G.A. Symptom prevalence and clustering of symptoms in people living with chronic hepatitis c infection. J. Pain Symptom Manage 2006, 31, 335–344. [Google Scholar] [CrossRef]
- Heeren, M.; Sojref, F.; Schuppner, R.; Worthmann, H.; Pflugrad, H.; Tryc, A.B.; Pasedag, T.; Weissenborn, K. Active at night, sleepy all day--sleep disturbances in patients with hepatitis c virus infection. J. Hepatol. 2014, 60, 732–740. [Google Scholar] [CrossRef]
- Forton, D.M.; Taylor-Robinson, S.D.; Thomas, H.C. Central nervous system changes in hepatitis c virus infection. Eur. J. Gastroenterol. Hepatol. 2006, 18, 333–338. [Google Scholar] [CrossRef]
- Yoh, K.; Nishikawa, H.; Enomoto, H.; Iwata, Y.; Kishino, K.; Shimono, Y.; Hasegawa, K.; Nakano, C.; Takata, R.; Nishimura, T.; et al. Comparison of sleep disorders in chronic hepatitis c patients treated with interferon-based therapy and direct acting antivirals using actigraphy. Hepatol. Res. 2016, 46, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Sari, H.; Hosseini, M.A.; Nikjoo, N.; Bagheri Baghdasht, M.S.; Alavian, S.M. Patient-reported outcomes of sleep, mood and quality of life after treatment of chronic hepatitis c infection using direct-acting antiviral agents. Clin. Microbiol. Infect. 2020, 26, 1093.e1095–1093.e1098. [Google Scholar] [CrossRef]
- Mukherji, A.; Juhling, F.; Simanjuntak, Y.; Crouchet, E.; Del Zompo, F.; Teraoka, Y.; Haller, A.; Baltzinger, P.; Paritala, S.; Rasha, F.; et al. An atlas of the human liver diurnal transcriptome and its perturbation by hepatitis c virus infection. Nat. Commun. 2024, 15, 7486. [Google Scholar] [CrossRef]
- European Association for the Study of the, L. Easl-ern clinical practice guidelines on wilson’s disease. J. Hepatol. 2025. [Google Scholar]
- Xu, J.; Deng, Q.; Qin, Q.; Vgontzas, A.N.; Basta, M.; Xie, C.; Li, Y. Sleep disorders in wilson disease: A systematic review and meta-analysis. J. Clin. Sleep Med. 2020, 16, 219–230. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Xu, H.; Wu, Z.; You, Z. Sleep disorders in wilson’s disease: A questionnaire study. Neurol. Sci. 2023, 44, 209–214. [Google Scholar] [CrossRef]
- Cochen De Cock, V.; Woimant, F.; Poujois, A. Sleep disorders in wilson’s disease. Curr. Neurol. Neurosci. Rep. 2019, 19, 84. [Google Scholar] [CrossRef]
- Nevsimalova, S.; Buskova, J.; Bruha, R.; Kemlink, D.; Sonka, K.; Vitek, L.; Marecek, Z. Sleep disorders in wilson’s disease. Eur. J. Neurol. 2011, 18, 184–190. [Google Scholar] [CrossRef]
- Wang, Z.; You, Z. Assessment of sleep disturbance in patients with wilson’s disease. BMC Psychiatry 2024, 24, 205. [Google Scholar] [CrossRef]
- Cordoba, J.; Cabrera, J.; Lataif, L.; Penev, P.; Zee, P.; Blei, A.T. High prevalence of sleep disturbance in cirrhosis. Hepatology 1998, 27, 339–345. [Google Scholar] [CrossRef]
- Mostacci, B.; Ferlisi, M.; Baldi Antognini, A.; Sama, C.; Morelli, C.; Mondini, S.; Cirignotta, F. Sleep disturbance and daytime sleepiness in patients with cirrhosis: A case control study. Neurol. Sci. 2008, 29, 237–240. [Google Scholar] [CrossRef]
- Montagnese, S.; Middleton, B.; Skene, D.J.; Morgan, M.Y. Night-time sleep disturbance does not correlate with neuropsychiatric impairment in patients with cirrhosis. Liver Int. 2009, 29, 1372–1382. [Google Scholar] [CrossRef] [PubMed]
- Ghabril, M.; Jackson, M.; Gotur, R.; Weber, R.; Orman, E.; Vuppalanchi, R.; Chalasani, N. Most individuals with advanced cirrhosis have sleep disturbances, which are associated with poor quality of life. Clin. Gastroenterol. Hepatol. 2017, 15, 1271–1278.e1276. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kainth, S.; Kumar, S.; Bhardwaj, A.; KumarAggarwal, H.; Maiwall, R.; Jamwal, K.D.; Shasthry, S.M.; Jindal, A.; Choudhary, A.; et al. Prevalence of and factors associated with sleep-wake abnormalities in patients with cirrhosis. J. Clin. Exp. Hepatol 2021, 11, 453–465. [Google Scholar] [CrossRef]
- Plotogea, O.M.; Gheorghe, G.; Stan-Ilie, M.; Constantinescu, G.; Bacalbasa, N.; Bungau, S.; Diaconu, C.C. Assessment of sleep among patients with chronic liver disease: Association with quality of life. J. Pers. Med. 2021, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; Middleton, B.; Mani, A.R.; Skene, D.J.; Morgan, M.Y. Sleep and circadian abnormalities in patients with cirrhosis: Features of delayed sleep phase syndrome? Metab. Brain Dis. 2009, 24, 427–439. [Google Scholar] [CrossRef]
- Montagnese, S.; Middleton, B.; Mani, A.R.; Skene, D.J.; Morgan, M.Y. On the origin and the consequences of circadian abnormalities in patients with cirrhosis. Am. J. Gastroenterol. 2010, 105, 1773–1781. [Google Scholar] [CrossRef]
- Kim, M.; Liotta, E.M.; Maas, M.B.; Braun, R.I.; Garcia-Canga, B.; Ganger, D.R.; Ladner, D.P.; Reid, K.J.; Zee, P.C. Rest-activity rhythm disturbance in liver cirrhosis and association with cognitive impairment. Sleep 2021, 44. [Google Scholar] [CrossRef]
- Granados-Fuentes, D.; Cho, K.; Patti, G.J.; Costa, R.; Herzog, E.D.; Montagnese, S. Hyperammonaemia disrupts daily rhythms reversibly by elevating glutamate in the central circadian pacemaker. Liver Int. 2023, 43, 673–683. [Google Scholar] [CrossRef]
- Iguchi, H.; Kato, K.I.; Ibayashi, H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J. Clin. Endocrinol. Metab. 1982, 54, 1025–1027. [Google Scholar] [CrossRef] [PubMed]
- Piscaglia, F.; Hermida, R.C.; Siringo, S.; Legnani, C.; Ramadori, G.; Bolondi, L. Cirrhosis does not shift the circadian phase of plasma fibrinolysis. Am. J. Gastroenterol. 2002, 97, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Steindl, P.E.; Finn, B.; Bendok, B.; Rothke, S.; Zee, P.C.; Blei, A.T. Disruption of the diurnal rhythm of plasma melatonin in cirrhosis. Ann. Intern. Med. 1995, 123, 274–277. [Google Scholar] [CrossRef]
- Garfinkel, D.; Zisapel, N. Liver cirrhosis and circadian rhythm. Ann. Intern. Med. 1996, 125, 154. [Google Scholar] [CrossRef]
- Eckstein, A.K.; Reichenbach, A.; Jacobi, P.; Weber, P.; Gregor, M.; Zrenner, E. Hepatic retinopathia. Changes in retinal function. Vis. Res. 1997, 37, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, A.; Fuchs, U.; Kasper, M.; el-Hifnawi, E.; Eckstein, A.K. Hepatic retinopathy: Morphological features of retinal glial (muller) cells accompanying hepatic failure. Acta Neuropathol. 1995, 90, 273–281. [Google Scholar] [CrossRef]
- Steindl, P.E.; Ferenci, P.; Marktl, W. Impaired hepatic catabolism of melatonin in cirrhosis. Ann. Intern. Med. 1997, 127, 494. [Google Scholar] [CrossRef]
- Bruyneel, M.; Serste, T. Sleep disturbances in patients with liver cirrhosis: Prevalence, impact, and management challenges. Nat. Sci. Sleep 2018, 10, 369–375. [Google Scholar] [CrossRef]
- Martino, M.E.; Fernandez-Lorente, J.; Romero-Vives, M.; Barcena, R.; Gaztelu, J.M. Brain oscillatory activity during sleep shows unknown dysfunctions in early encephalopathy. J. Physiol. Biochem. 2014, 70, 821–835. [Google Scholar] [CrossRef] [PubMed]
- Boy, C.; Meyer, P.T.; Kircheis, G.; Holschbach, M.H.; Herzog, H.; Elmenhorst, D.; Kaiser, H.J.; Coenen, H.H.; Haussinger, D.; Zilles, K.; et al. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 589–597. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Weikel, J.C.; Wichniak, A.; Ising, M.; Brunner, H.; Friess, E.; Held, K.; Mathias, S.; Schmid, D.A.; Uhr, M.; Steiger, A. Ghrelin promotes slow-wave sleep in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E407–E415. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Saeian, K.; Schubert, C.M.; Franco, R.; Franco, J.; Heuman, D.M. Disruption of sleep architecture in minimal hepatic encephalopathy and ghrelin secretion. Aliment. Pharmacol. Ther. 2011, 34, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Krauchi, K.; Cajochen, C.; Werth, E.; Wirz-Justice, A. Functional link between distal vasodilation and sleep-onset latency? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R741–R748. [Google Scholar] [CrossRef]
- Garrido, M.; Saccardo, D.; De Rui, M.; Vettore, E.; Verardo, A.; Carraro, P.; Di Vitofrancesco, N.; Mani, A.R.; Angeli, P.; Bolognesi, M.; et al. Abnormalities in the 24-hour rhythm of skin temperature in cirrhosis: Sleep-wake and general clinical implications. Liver Int. 2017, 37, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, S.; Summerskill, W.H.; White, L.P.; Phear, E.A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 1954, 267, 454–457. [Google Scholar] [CrossRef]
- Buckholz, A.; Clarke, L.; Paik, P.; Jesudian, A.; Schwartz, R.; Krieger, A.; Rosenblatt, R.; Brown, R.S., Jr. Evaluating sleep in covert encephalopathy with wearable technology: Results from the watches study. Hepatol. Commun. 2023, 7, e0002. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, V.V.; Bragagnolo, M.A., Jr.; Lucchesi, L.M.; Cavignolli, D.; de Mello, M.T.; Kondo, M.; Tufik, S. Polysomnographic sleep aspects in liver cirrhosis: A case control study. World J. Gastroenterol. 2013, 19, 3433–3438. [Google Scholar] [CrossRef]
- Kurtz, D.; Zenglein, J.P.; Imler, M.; Girardel, M.; Grinspan, G.; Peter, B.; Rohmer, F. [night sleep in porto-caval encephalopathy]. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 167–178. [Google Scholar] [CrossRef]
- Samanta, J.; Dhiman, R.K.; Khatri, A.; Thumburu, K.K.; Grover, S.; Duseja, A.; Chawla, Y. Correlation between degree and quality of sleep disturbance and the level of neuropsychiatric impairment in patients with liver cirrhosis. Metab. Brain Dis. 2013, 28, 249–259. [Google Scholar] [CrossRef]
- De Rui, M.; Schiff, S.; Aprile, D.; Angeli, P.; Bombonato, G.; Bolognesi, M.; Sacerdoti, D.; Gatta, A.; Merkel, C.; Amodio, P.; et al. Excessive daytime sleepiness and hepatic encephalopathy: It is worth asking. Metab. Brain Dis. 2013, 28, 245–248. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, B.C.; Puri, V.; Sachdeva, S.; Srivastava, S. Sleep disturbances in patients of liver cirrhosis with minimal hepatic encephalopathy before and after lactulose therapy. Metab. Brain Dis. 2017, 32, 595–605. [Google Scholar] [CrossRef]
- Bruyneel, M.; Serste, T.; Libert, W.; van den Broecke, S.; Ameye, L.; Dachy, B.; Mulkay, J.P.; Moreno, C.; Gustot, T. Improvement of sleep architecture parameters in cirrhotic patients with recurrent hepatic encephalopathy with the use of rifaximin. Eur. J. Gastroenterol. Hepatol. 2017, 29, 302–308. [Google Scholar] [CrossRef]
- Kanwal, F.; Gralnek, I.M.; Hays, R.D.; Zeringue, A.; Durazo, F.; Han, S.B.; Saab, S.; Bolus, R.; Spiegel, B.M. Health-related quality of life predicts mortality in patients with advanced chronic liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zhao, L.; Petrick, J.L.; Liao, L.M.; Huang, T.; Hakim, A.; Yang, W.; Campbell, P.T.; Giovannucci, E.; McGlynn, K.A.; et al. Daytime napping, nighttime sleeping duration, and risk of hepatocellular carcinoma and liver disease-related mortality. JHEP Rep. 2023, 5, 100819. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Fan, L.; Shi, D.; Lai, X.; Wang, H.; Liu, W.; Yu, L.; Liang, R.; Zhang, Y.; Wan, S.; et al. Sleep and liver function biomarkers in relation to risk of incident liver cancer: A nationwide prospective cohort study. BMC Med. 2024, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Wang, H. Association between sleep traits and primary liver cancer: A mendelian randomization analysis. Eur. J. Clin. Invest. 2023, 53, e14002. [Google Scholar] [CrossRef]
- Huang, J.; Song, P.; Hang, K.; Chen, Z.; Zhu, Z.; Zhang, Y.; Xu, J.; Qin, J.; Wang, B.; Qu, W.; et al. Sleep deprivation disturbs immune surveillance and promotes the progression of hepatocellular carcinoma. Front. Immunol. 2021, 12, 727959. [Google Scholar] [CrossRef]
- Busebee, B.; Watt, K.D.; Dupuy-McCauley, K.; DuBrock, H. Sleep disturbances in chronic liver disease. Liver Transpl. 2024, 30, 1058–1071. [Google Scholar] [CrossRef]
- De Rui, M.; Gaiani, S.; Middleton, B.; Skene, D.J.; Schiff, S.; Gatta, A.; Merkel, C.; Amodio, P.; Montagnese, S. Bright times for patients with cirrhosis and delayed sleep habits: A case report on the beneficial effect of light therapy. Am. J. Gastroenterol. 2011, 106, 2048–2049. [Google Scholar] [CrossRef]
- De Rui, M.; Middleton, B.; Sticca, A.; Gatta, A.; Amodio, P.; Skene, D.J.; Montagnese, S. Sleep and circadian rhythms in hospitalized patients with decompensated cirrhosis: Effect of light therapy. Neurochem. Res. 2015, 40, 284–292. [Google Scholar] [CrossRef]
- Reimers, A.; Odin, P.; Ljung, H. Drug-induced cognitive impairment. Drug Saf. 2025, 48, 339–361. [Google Scholar] [CrossRef]
- Spahr, L.; Coeytaux, A.; Giostra, E.; Hadengue, A.; Annoni, J.M. Histamine h1 blocker hydroxyzine improves sleep in patients with cirrhosis and minimal hepatic encephalopathy: A randomized controlled pilot trial. Am. J. Gastroenterol. 2007, 102, 744–753. [Google Scholar] [CrossRef]
- Delco, F.; Tchambaz, L.; Schlienger, R.; Drewe, J.; Krahenbuhl, S. Dose adjustment in patients with liver disease. Drug Saf. 2005, 28, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Henderson, J.B.; Parikh, N.D.; Ioannou, G.N.; Lok, A.S. Incidence of and risk factors for hepatic encephalopathy in a population-based cohort of americans with cirrhosis. Hepatol. Commun. 2019, 3, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Yang, Y.Y.; Lin, M.W.; Hou, M.C.; Huang, C.S.; Lee, K.C.; Wang, Y.W.; Hsieh, Y.C.; Huang, Y.H.; Chu, C.J.; et al. Benzodiazepine-associated hepatic encephalopathy significantly increased healthcare utilization and medical costs of Chinese cirrhotic patients: 7-year experience. Dig. Dis. Sci. 2014, 59, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Risech-Neyman, Y.; Sengupta, N. Psychoactive medications increase the risk of falls and fall-related injuries in hospitalized patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2015, 13, 1670–1675. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Kainth, S.; Kumar, S.; Bhardwaj, A.; Agarwal, H.K.; Maiwall, R.; Jamwal, K.D.; Shasthry, S.M.; Jindal, A.; Choudhary, A.; et al. Effects of zolpidem on sleep parameters in patients with cirrhosis and sleep disturbances: A randomized, placebo-controlled trial. Clin. Mol. Hepatol. 2019, 25, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Zhao, Z.; Winder, G.S.; Parikh, N.D. Deprescribing zolpidem reduces falls and fractures in patients with cirrhosis. JHEP Rep. 2022, 4, 100478. [Google Scholar] [CrossRef]
- Ezaz, G.; Murphy, S.L.; Mellinger, J.; Tapper, E.B. Increased morbidity and mortality associated with falls among patients with cirrhosis. Am. J. Med. 2018, 131, 645–650.e642. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.P.; Niriella, M.A.; Ediriweera, D.S.; De Alwis, J.P.; Liyanage, I.K.; Ettickan, U.; Liyanapathirana, K.V.; Undugodage, C.; de Silva, H.A.; de Silva, H.J. Low-dose melatonin for sleep disturbances in early-stage cirrhosis: A randomized, placebo-controlled, cross-over trial. JGH Open 2020, 4, 749–756. [Google Scholar] [CrossRef]
- Cordoza, M.; Koons, B.; Perlis, M.L.; Anderson, B.J.; Diamond, J.M.; Riegel, B. Self-reported poor quality of sleep in solid organ transplant: A systematic review. Transpl. Rev. 2021, 35, 100650. [Google Scholar] [CrossRef]
- Burkhalter, H.; Denhaerynck, K.; Huynh-Do, U.; Binet, I.; Hadaya, K.; De Geest, S.; Psychosocial Interest Group, S.T.C.S. Change of sleep quality from pre- to 3 years post-solid organ transplantation: The swiss transplant cohort study. PLoS ONE 2017, 12, e0185036. [Google Scholar] [CrossRef]
- Bhat, M.; Wyse, J.M.; Moodie, E.; Ghali, P.; Hilzenrat, N.; Wong, P.; Deschenes, M. Prevalence and predictors of sleep disturbance among liver diseases in long-term transplant survivors. Can. J. Gastroenterol. Hepatol. 2015, 29, 440–444. [Google Scholar] [CrossRef]
- Gencdal, G.; Turker, G.; Yazici Gencdal, I.; Ekinci, B.; Acar, S.; Dinckan, A.; Akyildiz, M. Assessment of sleep pattern and quality before and after liver transplantation using different methods. Turk. J. Gastroenterol. 2020, 31, 581–587. [Google Scholar] [CrossRef] [PubMed]

| Liver Disease | Prevalence of Sleep Disorders | Summary of Sleep Disturbances |
|---|---|---|
| MASLD | 33% | U-shape association with sleep duration (nadir of MASLD risk 7–8 H). Steatosis, steatohepatitis, and fibrosis are associated with ↑ sleep latency, poor sleep quality, frequent arousals, and ↓ sleep efficiency. WCUS protects against, but naps promote, metabolic dysfunction and MASLD. Late-chronotype is associated with steatosis and fibrosis. Strong association between OSA and MASLD development and progression. |
| Alcohol | 35–90% | Alcohol exposure is associated with:
|
| Primary Biliary Cholangitis | 50% | ↑ sleep latency, poor sleep quality, and short sleep duration. Excessive daytime sleepiness and fatigue as cardinal symptoms. Treatment of pruritus also improves sleep quality. |
| Hepatitis C Virus Infection | 66% | Insomnia, poor sleep quality, ↑ nighttime awakenings, ↓ sleep efficiency, and excessive daytime sleepiness. Potential causes: comorbidities, direct HCV effect, and systemic inflammation. HCV eradication improves sleep disturbances. |
| Wilson’s Disease | 50% | Sleep disturbances may be the presentation of neuroWilson. Insomnia, ↑ sleep latency, poor sleep quality, ↑ nighttime awakenings, ↓ sleep efficiency, and excessive daytime sleepiness. Particularly high prevalence of RBD (11% overall and 50% if neuroWilson). |
| Cirrhosis | 40–85% | Sleep disturbances even in compensated liver disease. ↑ sleep latency, ↑ sleep fragmentation, ↓ sleep efficiency, less restorative sleep, shorter REM and ↓ low-frequency power, ↑ and longer daytime naps. Suspicion of hepatic encephalopathy when excessive daytime sleepiness is noted. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.V. The Beauty Sleep to Keep a Healthy Liver. Int. J. Mol. Sci. 2025, 26, 11322. https://doi.org/10.3390/ijms262311322
Machado MV. The Beauty Sleep to Keep a Healthy Liver. International Journal of Molecular Sciences. 2025; 26(23):11322. https://doi.org/10.3390/ijms262311322
Chicago/Turabian StyleMachado, Mariana Verdelho. 2025. "The Beauty Sleep to Keep a Healthy Liver" International Journal of Molecular Sciences 26, no. 23: 11322. https://doi.org/10.3390/ijms262311322
APA StyleMachado, M. V. (2025). The Beauty Sleep to Keep a Healthy Liver. International Journal of Molecular Sciences, 26(23), 11322. https://doi.org/10.3390/ijms262311322

