Molecular Mechanisms of Depression: The Interplay Between Genes and Receptors
Abstract
1. Introduction
2. Materials and Methods
- integrative multi-omics strategies, uniting genomic, transcriptomic, and epigenomic layers to elucidate receptor-mediated mechanisms;
- advanced imaging: advanced in vivo neuroimaging, particularly PET modalities, refining quantification of receptor dynamics across human cohorts;
- single-cell resolution: high-resolution single-cell and spatial transcriptomics approaches to map receptor expression with cellular specificity;
- circuit interventions: sophisticated circuit-level manipulations in preclinical models to probe causal pathways;
- clinical phenotyping: advanced digital and clinical phenotyping paradigms that synergize behavioral and molecular datasets, refining the temporal and mechanistic resolution of depressive phenotypes.
3. Results
3.1. Serotonin Signaling
5-HTTLPR Gene–Environment Meta-Analysis: Update
3.2. Dopamine Pathways
3.3. Glutamatergic Plasticity
NMDA Receptor-Targeted Therapies: Basic to Clinical Continuum
3.4. GABAergic Inhibition
GABA-A Receptor Pharmacology: Beyond Neurosteroids
3.5. Neuropeptide Stress Axes
3.6. Hormonal and Metabolic Receptors
3.7. Immuno-Inflammatory Interfaces
Microbiome-Derived Inflammatory Ligands
3.8. Neurotrophic and Synaptic Genes
Neurotrophic and Synaptic Signaling
3.9. Epigenome and Gene–Environment Interplay
Epigenetic Signatures of Early-Life Stress
3.10. Translational and Therapeutic Horizons
3.11. Rapid-Acting Antidepressants and Glutamatergic Neurobiology
3.12. Opioidergic Modulation
3.13. Integrative Models and Network Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDD | Major Depressive Disorder |
| 5-HT | 5-Hydroxytryptamine (Serotonin) |
| BDNF | Brain-Derived Neurotrophic Factor |
| COMT | Catechol-O-Methyltransferase |
| CRHR1 | Corticotropin-Releasing Hormone Receptor 1 |
| DRD2/3 | Dopamine Receptor D2/D3 |
| ER α/β | Estrogen Receptor α/β |
| FKBP5 | FK506 Binding Protein 5 |
| GAD1 | Glutamic Acid Decarboxylase 1 (GAD67) |
| GRIA2 | Glutamate Ionotropic Receptor AMPA Type Subunit 2 |
| GRIN2B | Gene located on the short arm (called “p”) of the 12th chromosome at 12p13.1 |
| GRM5 | Metabotropic Glutamate Receptor 5 |
| IDO1 | Indoleamine 2,3-Dioxygenase 1 |
| IL 6 | Interleukin 6 |
| MDGA1 | MAM Domain-Containing Glycosylphosphatidylinositol Anchor 1 |
| Nlgn2 | Neuroligin 2 |
| NEGR1 | Neuronal Growth Regulator 1 |
| NPY1R | Neuropeptide Y Receptor 1 |
| NR3C1 | Nuclear Receptor Subfamily 3 Group C Member 1 |
| NTRK2 (TrkB) | Neurotrophic Receptor Tyrosine Kinase 2 |
| PPAR γ | Peroxisome Proliferator-Activated Receptor Gamma |
| PSD95/DLG4 | Postsynaptic Density Protein 95/Discs Large Homolog 4 |
| SLC6A4 | Solute Carrier Family 6 Member 4 (Serotonin Transporter) |
| SST | Somatostatin Interneuron |
| TAAR1 | Trace Amine Associated Receptor 1 |
| TLR4 | Toll-Like Receptor 4 |
| TR α/β | Thyroid Hormone Receptor α/β |
| VEGF | Vascular Endothelial Growth Factor |
| GLP 1 receptor | Glucagon-Like Peptide 1 Receptor |
| MT1/MT2 | Melatonin Receptors 1 and 2 |
| 5 HTTLPR | 5-Hydroxytryptamine Transporter-Linked Polymorphic Region |
| VNTR | Variable Number Tandem Repeat |
| DRS 2 | Dementia Rating Scale 2 |
| ANKK1 | Ankyrin Repeat and Kinase Domain Containing 1 |
| GluN2B | Glutamate receptor, ionotropic, NMDA 2B |
| GRIN2A | Glutamate Ionotropic NMDA Receptor Subunit 2A |
| LTD | Long-Term Depression |
| NMDAR | N-Methyl-D-Aspartate Receptor |
| mTOR | Mechanistic Target of Rapamycin |
| PET | Positron Emission Tomography |
| IP3 | Inositol Triphosphate |
| Ca2+ | Calcium ion |
| AMPAR | α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid Receptor |
| PAM | Positive Allosteric Modulator |
| POC | Proof of Concept |
| IV/SC | Intravenous/Subcutaneous |
| TRD | Treatment-Resistant Depression |
| sgACC | Subgenual Anterior Cingulate Cortex |
| LHb | Lateral Habenula |
| GABA_A | Gamma-Aminobutyric Acid type A receptor |
| PI3K | Phosphoinositide 3-Kinase |
| AKT | Protein Kinase B |
| 5-HT2C | Serotonin receptor 2C |
| BBB | Blood–Brain Barrier |
| IR | Insulin Resistance |
| T3 | Triiodothyronine |
| CRP | C-Reactive Protein |
| LPS | Lipopolysaccharide |
| I-FABP | Intestinal Fatty Acid Binding Protein |
| P2RX7/P2X7 | P2X7 Purinergic Receptor |
| NLRP3 | NLR Family Pyrin Domain Containing 3 |
| IL 1β | Interleukin 1 beta |
| FFAR2 (GPR43) | Free Fatty Acid Receptor 2/G Protein-Coupled Receptor 43 |
| SCFA | Short-Chain Fatty Acid |
| HAM-D | Hamilton Depression Rating Scale |
| SHANK3 | SH3 and Multiple Ankyrin Repeat Domains 3 |
| snRNA-seq | Single-Nucleus RNA Sequencing |
| TWAS | Transcriptome-Wide Association Study |
| mTORC1 | Mechanistic Target of Rapamycin Complex 1 |
| PFC | Prefrontal Cortex |
| ECT | Electroconvulsive Therapy |
| rTMS | Repetitive Transcranial Magnetic Stimulation |
| PRS | Polygenic Risk Score |
| PM2.5/PM10 | Particulate Matter ≤2.5 µm/≤10 µm |
| NO2/NOx | Nitrogen Dioxide/Nitrogen Oxides |
| HR | Hazard Ratio |
| CI | Confidence Interval |
| RERI | Relative Excess Risk due to Interaction |
| KOR | Kappa-Opioid Receptor |
| RCT | Randomized Controlled Trial |
| MADRS | Montgomery–Åsberg Depression Rating Scale |
| GWAS | Genome-Wide Association Study |
| MOR | Mu-Opioid Receptor |
| DOR | Delta-Opioid Receptor |
| NAMs | Negative Allosteric Modulators |
| BP | Binding Potential |
| G × E | Gene-by-Environment interaction |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef]
- O’Rourke, M.C.; Jamil, R.T.; Siddiqui, W. Suicide Screening and Prevention. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Voinov, B.; Richie, W.D.; Bailey, R.K. Depression and Chronic Diseases: It Is Time for a Synergistic Mental Health and Primary Care Approach. Prim. Care Companion CNS Disord. 2013, 15, PCC.12r01468. [Google Scholar] [CrossRef]
- Krittanawong, C.; Maitra, N.S.; Qadeer, Y.K.; Wang, Z.; Fogg, S.; Storch, E.A.; Celano, C.M.; Huffman, J.C.; Jha, M.; Charney, D.S.; et al. Association of Depression and Cardiovascular Disease. Am. J. Med. 2023, 136, 881–895. [Google Scholar] [CrossRef]
- Bai, B.; Yin, H.; Guo, L.; Ma, H.; Wang, H.; Liu, F.; Liang, Y.; Liu, A.; Geng, Q. Comorbidity of Depression and Anxiety Leads to a Poor Prognosis Following Angina Pectoris Patients: A Prospective Study. BMC Psychiatry 2021, 21, 202. [Google Scholar] [CrossRef] [PubMed]
- Steffen, A.; Nübel, J.; Jacobi, F.; Bätzing, J.; Holstiege, J. Mental and Somatic Comorbidity of Depression: A Comprehensive Cross-Sectional Analysis of 202 Diagnosis Groups Using German Nationwide Ambulatory Claims Data. BMC Psychiatry 2020, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Gupta, S.; Li, V.W.; Suthoff, E.; Arnaud, A. Humanistic and Economic Burden Associated with Depression in the United States: A Cross-Sectional Survey Analysis. BMC Psychiatry 2022, 22, 542. [Google Scholar] [CrossRef]
- Lohoff, F.W. Overview of the Genetics of Major Depressive Disorder. Curr. Psychiatry Rep. 2010, 12, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Lee, Y.; Cao, B.; Zuckerman, H.; Kalantarova, A.; McIntyre, R.S. Stress, epigenetics and depression: A systematic review. Neurosci. Biobehav. Rev. 2019, 102, 139–152. [Google Scholar] [CrossRef]
- Karrouri, R.; Hammani, Z.; Benjelloun, R.; Otheman, Y. Major Depressive Disorder: Validated Treatments and Future Challenges. World J. Clin. Cases 2021, 9, 9350–9367. [Google Scholar] [CrossRef]
- Mosiołek, A.; Podlecka, M. Pharmacotherapy and Psychotherapy in Depression—Complementarity or Exclusion? Postep. Psychiatr. Neurol. 2024, 33, 257–266. [Google Scholar] [CrossRef]
- Trifu, S.; Sevcenco, A.; Stănescu, M.; Drăgoi, A.M.; Cristea, M.B. Efficacy of Electroconvulsive Therapy as a Potential First-Choice Treatment in Treatment-Resistant Depression (Review). Exp. Ther. Med. 2021, 22, 1281. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.J.; Buchanan, D.M.; Batail, J.-M.V.; Williams, N.R. Should rTMS Be Considered a First-Line Treatment for Major Depressive Episodes in Adults? Clin. Neurophysiol. 2024, 165, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Kamel, L.Y.; Xiong, W.; Gott, B.M.; Kumar, A.; Conway, C.R. Vagus nerve stimulation: An update on a novel treatment for treatment-resistant depression. J. Neurol. Sci. 2022, 434, 120171. [Google Scholar] [CrossRef] [PubMed]
- Monroe, S.M.; Harkness, K.L. Major Depression and Its Recurrences: Life Course Matters. Annu. Rev. Clin. Psychol. 2022, 18, 329–357. [Google Scholar] [CrossRef]
- Shaw, D.M.; Camps, F.E.; Eccleston, E.G. 5-Hydroxytryptamine in the Hind-Brain of Depressive Suicides. Br. J. Psychiatry 1967, 113, 1407–1411. [Google Scholar] [CrossRef]
- Lin, J.; Liu, W.; Guan, J.; Cui, J.; Shi, R.; Wang, L.; Chen, D.; Liu, Y. Latest Updates on the Serotonergic System in Depression and Anxiety. Front. Synaptic Neurosci. 2023, 15, 1124112. [Google Scholar] [CrossRef]
- Philippe, T.J.; Vahid-Ansari, F.; Donaldson, Z.R.; Le François, B.; Zahrai, A.; Turcotte-Cardin, V.; Daigle, M.; James, J.; Hen, R.; Merali, Z.; et al. Loss of MeCP2 in Adult 5-HT Neurons Induces 5-HT1A Autoreceptors, with Opposite Sex-Dependent Anxiety and Depression Phenotypes. Sci. Rep. 2018, 8, 5788. [Google Scholar] [CrossRef]
- Kautzky, A.; James, G.M.; Philippe, C.; Baldinger-Melich, P.; Kraus, C.; Kranz, G.S.; Vanicek, T.; Gryglewski, G.; Wadsak, W.; Mitterhauser, M.; et al. The Influence of the Rs6295 Gene Polymorphism on Serotonin-1A Receptor Distribution Investigated with PET in Patients with Major Depression Applying Machine Learning. Transl. Psychiatry 2017, 7, e1150. [Google Scholar] [CrossRef]
- Le François, B.; Czesak, M.; Steubl, D.; Albert, P.R. Transcriptional Regulation at a HTR1A Polymorphism Associated with Mental Illness. Neuropharmacology 2008, 55, 977–985. [Google Scholar] [CrossRef]
- Donaldson, Z.R.; le Francois, B.; Santos, T.L.; Almli, L.M.; Boldrini, M.; Champagne, F.A.; Arango, V.; Mann, J.J.; A Stockmeier, C.; Galfalvy, H.; et al. The Functional Serotonin 1a Receptor Promoter Polymorphism, Rs6295, Is Associated with Psychiatric Illness and Differences in Transcription. Transl. Psychiatry 2016, 6, e746. [Google Scholar] [CrossRef]
- Lemonde, S.; Turecki, G.; Bakish, D.; Du, L.; Hrdina, P.D.; Bown, C.D.; Sequeira, A.; Kushwaha, N.; Morris, S.J.; Basak, A.; et al. Impaired Repression at a 5-Hydroxytryptamine 1A Receptor Gene Polymorphism Associated with Major Depression and Suicide. J. Neurosci. 2003, 23, 8788–8799. [Google Scholar] [CrossRef]
- Albert, P.R. Transcriptional Regulation of the 5-HT1Areceptor: Implications for Mental Illness. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2402–2415. [Google Scholar] [CrossRef]
- Lemonde, S.; Du, L.; Bakish, D.; Hrdina, P.; Albert, P.R. Association of the C(–1019)G 5-HT1A Functional Promoter Polymorphism with Antidepressant Response. Int. J. Neuropsychopharmacol. 2004, 7, 501–506. [Google Scholar] [CrossRef]
- Parsey, R.V.; Olvet, D.M.; Oquendo, M.A.; Huang, Y.; Ogden, R.T.; Mann, J.J. Higher 5-HT1A Receptor Binding Potential During a Major Depressive Episode Predicts Poor Treatment Response: Preliminary Data from a Naturalistic Study. Neuropsychopharmacology 2006, 31, 1745–1749. [Google Scholar] [CrossRef]
- Richardson-Jones, J.W.; Craige, C.P.; Guiard, B.P.; Stephen, A.; Metzger, K.L.; Kung, H.F.; Gardier, A.M.; Dranovsky, A.; David, D.J.; Beck, S.G.; et al. 5-HT1A Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron 2010, 65, 40–52. [Google Scholar] [CrossRef]
- Kaufman, J.; Sullivan, G.M.; Yang, J.; Ogden, R.T.; Miller, J.M.; Oquendo, M.A.; Mann, J.J.; Parsey, R.V.; DeLorenzo, C. Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males. Neuropsychopharmacology 2015, 40, 1692–1699. [Google Scholar] [CrossRef]
- Newman-Tancredi, A.; Depoortère, R.Y.; Kleven, M.S.; Kołaczkowski, M.; Zimmer, L. Translating Biased Agonists from Molecules to Medications: Serotonin 5-HT1A Receptor Functional Selectivity for CNS Disorders. Pharmacol. Ther. 2022, 229, 107937. [Google Scholar] [CrossRef] [PubMed]
- Depoortère, R.; Auclair, A.L.; Newman-Tancredi, A. NLX-101, a Highly Selective 5-HT1A Receptor Biased Agonist, Mediates Antidepressant-like Activity in Rats via Prefrontal Cortex 5-HT1A Receptors. Behav. Brain Res. 2021, 401, 113082. [Google Scholar] [CrossRef] [PubMed]
- Newman-Tancredi, A. Biased Agonism at Serotonin 5-HT1Areceptors: Preferential Postsynaptic Activity for Improved Therapy of CNS Disorders. Neuropsychiatry 2011, 1, 149–164. [Google Scholar] [CrossRef]
- Depoortère, R.; Papp, M.; Gruca, P.; Lason-Tyburkiewicz, M.; Niemczyk, M.; Varney, M.A.; Newman-Tancredi, A. Cortical 5-Hydroxytryptamine 1A Receptor Biased Agonist, NLX-101, Displays Rapid-Acting Antidepressant-like Properties in the Rat Chronic Mild Stress Model. J. Psychopharmacol. 2019, 33, 1456–1466. [Google Scholar] [CrossRef]
- Cabanu, S.; Pilar-Cuéllar, F.; Zubakina, P.; Florensa-Zanuy, E.; Senserrich, J.; Newman-Tancredi, A.; Adell, A. Molecular Signaling Mechanisms for the Antidepressant Effects of NLX-101, a Selective Cortical 5-HT1A Receptor Biased Agonist. Pharmaceuticals 2022, 15, 337. [Google Scholar] [CrossRef]
- Rankovic, Z.; Brust, T.F.; Bohn, L.M. Biased Agonism: An Emerging Paradigm in GPCR Drug Discovery. Bioorg. Med. Chem. Lett. 2016, 26, 241–250. [Google Scholar] [CrossRef]
- Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased Signalling: From Simple Switches to Allosteric Microprocessors. Nat. Rev. Drug Discov. 2018, 17, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Domschke, K.; Tidow, N.; Schwarte, K.; Deckert, J.; Lesch, K.-P.; Arolt, V.; Zwanzger, P.; Baune, B.T. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int. J. Neuropsychopharmacol. 2014, 17, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Schiele, M.A.; Zwanzger, P.; Schwarte, K.; Arolt, V.; Baune, B.T.; Domschke, K. Serotonin Transporter Gene Promoter Hypomethylation as a Predictor of Antidepressant Treatment Response in Major Depression: A Replication Study. Int. J. Neuropsychopharmacol. 2021, 24. [Google Scholar] [CrossRef]
- Lisoway, A.; Zai, C.; Tiwari, A.K.; Harripaul, R.; Freeman, N.; French, L.; Kaminsky, Z.; Kennedy, J.L. M85-DNA Methylation and 5-HTTLPR Genotype of the Serotonin Transporter Gene (SLC6A4) in Antidepressant Treatment Response of Major Depressive Disorder. Eur. Neuropsychopharmacol. 2019, 29 (Suppl. S3), 1001–1002. [Google Scholar] [CrossRef]
- Baudry, A.; Pietri, M.; Launay, J.M.; Kellermann, O.; Schneider, B. Multifaceted Regula-Tions of the Serotonin Transporter: Impact on Antidepressant Response. Front. Neurosci. 2019, 13, 91. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Canales, J.J.; Zucchi, R.; Espinoza, S.; Sukhanov, I.; Gainetdinov, R.R. Trace Amine-Associated Receptor 1: A Multimodal Therapeutic Target for Neuropsychiatric Diseases. Expert Opin. Ther. Targets 2018, 22, 513–526. [Google Scholar] [CrossRef]
- Liu, J.; Wu, R.; Li, J.-X. TAAR1 as an Emerging Target for the Treatment of Psychiatric Disorders. Pharmacol. Ther. 2024, 253, 108580. [Google Scholar] [CrossRef] [PubMed]
- Dedic, N.; Dworak, H.; Zeni, C.; Rutigliano, G.; Howes, O.D. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int. J. Mol. Sci. 2021, 22, 13185. [Google Scholar] [CrossRef]
- Le, G.H.; Gillissie, E.S.; Rhee, T.G.; Cao, B.; Alnefeesi, Y.; Guo, Z.; Di Vincenzo, J.D.; Jawad, M.Y.; March, A.M.; Ramachandra, R.; et al. Efficacy, Safety, and Tolerability of Ulotaront (SEP-363856, a Trace Amine-Associated Receptor 1 Agonist) for the Treatment of Schizophrenia and Other Mental Disorders: A Systematic Review of Preclinical and Clinical Trials. Expert Opin. Investig. Drugs 2023, 32, 401–415. [Google Scholar] [CrossRef]
- Heffernan, M.L.R.; Herman, L.W.; Brown, S.; Jones, P.G.; Shao, L.; Hewitt, M.C.; Campbell, J.E.; Dedic, N.; Hopkins, S.C.; Koblan, K.S.; et al. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med. Chem. Lett. 2022, 13, 92–98. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Tamura, J.K.; Lui, L.M.W.; Jawad, M.Y.; Ceban, F.; Ling, S.; Nasri, F.; Rosenblat, J.D.; McIntyre, R.S. Trace Amine-Associated Receptor 1 (TAAR1): Potential Application in Mood Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2021, 131, 192–210. [Google Scholar] [CrossRef]
- Espinoza, S.; Gainetdinov, R.R. Neuronal Functions and Emerging Pharmacology of TAAR1. In Topics in Medicinal Chemistry; Springer International Publishing: Cham, Switzerland, 2014; pp. 175–194. [Google Scholar]
- Dodd, S.; Carvalho, A.F.; Puri, B.K.; Maes, M.; Bortolasci, C.C.; Morris, G.; Berk, M. Trace Amine-Associated Receptor 1 (TAAR1): A New Drug Target for Psychiatry? Neurosci. Biobehav. Rev. 2021, 120, 537–541. [Google Scholar] [CrossRef]
- Hernández-Díaz, Y.; Tovilla-Zárate, C.A.; Castillo-Avila, R.G.; Juárez-Rojop, I.E.; Genis-Mendoza, A.D.; López-Narváez, M.L.; Villar-Juárez, G.E.; González-Castro, T.B. Association between the HTR1A Rs6295 Gene Polymorphism and Suicidal Behavior: An Updated Meta-Analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 5–14. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.L.; Newman-Tancredi, A.; Leonardo, E.D. P5-HT1A Receptors in Mood and Anxiety: Recent Insights into Autoreceptor versus Heteroreceptor Function. Psychopharmacology 2014, 231, 623–636. [Google Scholar] [CrossRef]
- Hanna, S.; Faiz, M.; Ahmed, S.; Hsieh, C.; Temkit, S.; Nunez, C.; Zhou, F. The Interplay between SLC6A4 and HTR1A Genetic Variants That May Lead to Antidepressant Failure. Pharmacogenom. J. 2025, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Maple, A.M.; Zhao, X.; Elizalde, D.I.; McBride, A.K.; Gallitano, A.L. Htr2a Expression Responds Rapidly to Environmental Stimuli in an Egr3-Dependent Manner. ACS Chem. Neurosci. 2015, 6, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Badamasi, I.M.; Lye, M.S.; Ibrahim, N.; Stanslas, J. Genetic Endophenotypes for Insomnia of Major Depressive Disorder and Treatment-Induced Insomnia. J. Neural Transm. 2019, 126, 711–722. [Google Scholar] [CrossRef]
- Kang, R.H.; Choi, M.J.; Paik, J.W.; Hahn, S.W.; Lee, M.S. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int. J. Psychiatry Med. 2007, 37, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, T.; Bundo, M.; Okada, N.; Murata, Y.; Koike, S.; Sugawara, H.; Saito, T.; Ikeda, M.; Owada, K.; Fukunaga, M.; et al. Promoter Activity-Based Case-Control Association Study on SLC6A4 Highlighting Hypermethylation and Altered Amygdala Volume in Male Patients With Schizophrenia. Schizophr. Bull. 2020, 46, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Possatti, I.; Rodrigues Gontijo, B.; Fratelli, C.F.; Sousa Silva Bonasser, L.; de Souza Silva, C.M.; Rodrigues da Silva, I.C. DRD2/ANKK1 TaqIA Genetic Variant and Major Depressive Disorder: A Systematic Review. DNA 2024, 4, 345–354. [Google Scholar] [CrossRef]
- Gonçalves, A.; Mendes, A.; Damásio, J.; Vila-Chã, N.; Boleixa, D.; Leal, B.; Cavaco, S. DRD3 Predicts Cognitive Impairment and Anxiety in Parkinson’s Disease: Susceptibility and Protective Effects. J. Park. Dis. 2024, 14, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.M.; Banks, J.B.; Fagan, T.J.; Tartar, J.L. The Influence of Val158Met COMT on Physiological Stress Responsivity. Stress 2019, 22, 276–279. [Google Scholar] [CrossRef]
- Karg, K.; Burmeister, M.; Shedden, K.; Sen, S. The Serotonin Transporter Promoter Variant (5-HTTLPR), Stress, and Depression Meta-Analysis Revisited: Evidence of Genetic Moderation. Arch. Gen. Psychiatry 2011, 68, 444–454. [Google Scholar] [CrossRef]
- Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR Genetic Variant and Major Depressive Disorder: A Review. Genes 2020, 11, 1260. [Google Scholar] [CrossRef]
- Højlund, M.; Correll, C.U. Ulotaront: A TAAR1/5-HT1A agonist in clinical development for the treatment of schizophrenia. Expert Opin. Investig. Drugs. 2022, 31, 1279–1290. [Google Scholar] [CrossRef]
- Bleys, D.; Luyten, P.; Soenens, B.; Claes, S. Gene-Environment Interactions between Stress and 5-HTTLPR in Depression: A Meta-Analytic Update. J. Affect. Disord. 2018, 226, 339–345. [Google Scholar] [CrossRef]
- Tielbeek, J.J.; Karlsson Linnér, R.; Beers, K.; Posthuma, D.; Popma, A.; Polderman, T.J.C. Meta-analysis of the Serotonin Transporter Promoter Variant (5-HTTLPR) in Relation to Adverse Environment and Antisocial Behavior. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 748–760. [Google Scholar] [CrossRef]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef]
- Munafò, M.R.; Durrant, C.; Lewis, G.; Flint, J. Gene × Environment Interactions at the Serotonin Transporter Locus. Biol. Psychiatry 2009, 65, 211–219. [Google Scholar] [CrossRef]
- Risch, N.; Herrell, R.; Lehner, T.; Liang, K.Y.; Eaves, L.; Hoh, J.; Griem, A.; Kovacs, M.; Ott, J.; Merikangas, K.R. Interaction between the Serotonin Transporter Gene (5-HTTLPR), Stressful Life Events, and Risk of Depression: A Meta-Analysis. JAMA 2009, 301, 2462–2471. [Google Scholar] [CrossRef]
- Wankerl, M.; Wüst, S.; Otte, C. Current Developments and Controversies: Does the Serotonin Transporter Gene-Linked Polymorphic Region (5-HTTLPR) Modulate the Association between Stress and Depression? Curr. Opin. Psychiatry 2010, 23, 582–587. [Google Scholar] [CrossRef]
- Fanelli, G.; Serretti, A. The Influence of the Serotonin Transporter Gene 5-HTTLPR Polymorphism on Suicidal Behaviors: A Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Rozenblat, V.; Ng, D.; Fuller-Tyszkiewicz, M.; Akkermann, K.; Collier, D.; Engels, R.; Fernandez-Aranda, F.; Harro, J.; Karwautz, A.; Homberg, J.; et al. A Meta-Analysis of Gene (5-HTT) × Environment Interactions in Eating Pathology Using Secondary Data Analyses. Eur. Psychiatry 2016, 33, S83. [Google Scholar] [CrossRef]
- Rozenblat, V.; Ong, D.; Fuller-Tyszkiewicz, M.; Akkermann, K.; Collier, D.; Engels, R.C.M.E.; Fernandez-Aranda, F.; Harro, J.; Homberg, J.R.; Karwautz, A.; et al. A Systematic Review and Secondary Data Analysis of the Interactions between the Serotonin Transporter 5-HTTLPR Polymorphism and Environmental and Psychological Factors in Eating Disorders. J. Psychiatr. Res. 2017, 84, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Oo, K.Z.; Aung, Y.K.; Jenkins, M.A.; Win, A.K. Associations of 5HTTLPR Polymorphism with Major Depressive Disorder and Alcohol Dependence: A Systematic Review and Meta-Analysis. Aust. N. Z. J. Psychiatry 2016, 50, 842–857. [Google Scholar] [CrossRef]
- Stein, K.; Maruf, A.A.; Müller, D.J.; Bishop, J.R.; Bousman, C.A. Serotonin Transporter Genetic Variation and Antidepressant Response and Tolerability: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1334. [Google Scholar] [CrossRef]
- Culverhouse, R.C.; Saccone, N.L.; Bierut, L.J. The State of Knowledge about the Relationship between 5-HTTLPR, Stress, and Depression. J. Affect. Disord. 2018, 228, 205–206. [Google Scholar] [CrossRef]
- Palma-Gudiel, H.; Fañanás, L. An Integrative Review of Methylation at the Serotonin Transporter Gene and Its Dialogue with Environmental Risk Factors, Psychopathology and 5-HTTLPR. Neurosci. Biobehav. Rev. 2017, 72, 190–209. [Google Scholar] [CrossRef]
- Savitz, J.; Hodgkinson, C.A.; Martin-Soelch, C.; Shen, P.-H.; Szczepanik, J.; Nugent, A.C.; Herscovitch, P.; Grace, A.A.; Goldman, D.; Drevets, W.C. DRD2/ANKK1 Taq1A Polymorphism (Rs1800497) Has Opposing Effects on D2/3 Receptor Binding in Healthy Controls and Patients with Major Depressive Disorder. Int. J. Neuropsychopharmacol. 2013, 16, 2095–2101. [Google Scholar] [CrossRef]
- Thompson, J.; Thomas, N.; Singleton, A.; Piggot, M.; Lloyd, S.; Perry, E.K.; Morris, C.M.; Perry, R.H.; Ferrier, I.N.; Court, J.A. D2 Dopamine Receptor Gene (DRD2) Taql A Polymorphism: Reduced Dopamine D2 Receptor Binding in the Human Striatum Associated with the A1 Allele. Pharmacogenetics 1997, 7, 479–484. [Google Scholar] [CrossRef]
- Jocham, G.; Klein, T.A.; Neumann, J.; von Cramon, D.Y.; Reuter, M.; Ullsperger, M. Dopamine DRD2 Polymorphism Alters Reversal Learning and Associated Neural Activity. J. Neurosci. 2009, 29, 3695–3704. [Google Scholar] [CrossRef]
- Admon, R.; Kaiser, R.H.; Dillon, D.G.; Beltzer, M.; Goer, F.; Olson, D.P.; Vitaliano, G.; Pizzagalli, D.A. Dopaminergic Enhancement of Striatal Response to Reward in Major Depression. Am. J. Psychiatry 2017, 174, 378–386. [Google Scholar] [CrossRef]
- Huys, Q.J.; Pizzagalli, D.A.; Bogdan, R.; Dayan, P. Mapping Anhedonia onto Reinforcement Learning: A Behavioural Meta-Analysis. Biol. Mood Anxiety Disord. 2013, 3, 12. [Google Scholar] [CrossRef]
- Tundo, A.; Betro’, S.; de Filippis, R.; Marchetti, F.; Nacca, D.; Necci, R.; Iommi, M. Pramipexole Augmentation for Treatment-Resistant Unipolar and Bipolar Depression in the Real World. A Systematic Review and Meta-Analysis. Life 2023, 13, 1043. [Google Scholar] [CrossRef]
- Jiang, D.-Q.; Jiang, L.-L.; Wang, Y.; Li, M.-X. The Role of Pramipexole in the Treatment of Patients with Depression and Parkinson’s Disease: A Meta-Analysis of Randomized Controlled Trials. Asian J. Psychiatry 2021, 61, 102691. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Meng, P.; Xu, B.; Zhou, X. Efficacy and Safety of Pramipexole in Parkinson’s Disease with Anxiety or Depression: A Meta-Analysis of Randomized Clinical Trials. Am. J. Transl. Res. 2022, 14, 1757–1764. [Google Scholar] [PubMed]
- Romeo, B.; Blecha, L.; Locatelli, K.; Benyamina, A.; Martelli, C. Meta-Analysis and Review of Dopamine Agonists in Acute Episodes of Mood Disorder: Efficacy and Safety. J. Psychopharmacol. 2018, 32, 385–396. [Google Scholar] [CrossRef]
- Leentjens, A.F.G.; Koester, J.; Fruh, B.; Shephard, D.T.S.; Barone, P.; Houben, J.J.G. The Effect of Pramipexole on Mood and Motivational Symptoms in Parkinson’s Disease: A Meta-Analysis of Placebo-Controlled Studies. Clin. Ther. 2009, 31, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Jeuring, H. The Effectiveness of Dopamine Stimulating Agents in Depressive Disorder. Am. J. Geriatr. Psychiatry 2023, 31, 46–47. [Google Scholar] [CrossRef]
- Tundo, A.; de Filippis, R.; De Crescenzo, F. Pramipexole in the Treatment of Unipolar and Bipolar Depression. A Systematic Review and Meta-analysis. Acta Psychiatr. Scand. 2019, 140, 116–125. [Google Scholar] [CrossRef]
- Brown, S.J.; Brown, A.M.; Purves-Tyson, T.D.; Huang, X.F.; Shannon Weickert, C.; Newell, K.A. GRIN2B Gene Expression Is Increased in the Anterior Cingulate Cortex in Major Depression. J. Psychiatr. Res. 2023, 160, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, Q.; Li, J.; Liu, X.; Zhang, Y.; Huang, M.; Fang, W.; Xu, J.; Yuan, T.; Xiao, L.; et al. Disrupting Phosphorylation of Tyr-1070 at GluN2B Selectively Produces Resilience to Depression-like Behaviors. Cell Rep. 2021, 36, 109612. [Google Scholar] [CrossRef]
- Mullier, B.; Wolff, C.; Sands, Z.A.; Ghisdal, P.; Muglia, P.; Kaminski, R.M.; André, V.M. GRIN2B Gain of Function Mutations Are Sensitive to Radiprodil, a Negative Allosteric Modulator of GluN2B-Containing NMDA Receptors. Neuropharmacology 2017, 123, 322–331. [Google Scholar] [CrossRef]
- Holmes, S.E.; Asch, R.H.; Davis, M.T.; DellaGioia, N.; Pashankar, N.; Gallezot, J.D.; Nabulsi, N.; Matuskey, D.; Sanacora, G.; Carson, R.E.; et al. Differences in Quantification of the Metabotropic Glutamate Receptor 5 Across Bipolar Disorder and Major Depressive Disorder. Biol. Psychiatry 2023, 93, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Esterlis, I.; DellaGioia, N.; Pietrzak, R.H.; Matuskey, D.; Nabulsi, N.; Abdallah, C.G.; Yang, J.; Pittenger, C.; Sanacora, G.; Krystal, J.H.; et al. Ketamine-Induced Reduction in mGluR5 Availability Is Associated with an Antidepressant Response: An [11C]ABP688 and PET Imaging Study in Depression. Mol. Psychiatry 2018, 23, 824–832. [Google Scholar] [CrossRef]
- Chaki, S.; Watanabe, M. mGlu2/3 Receptor Antagonists for Depression: Overview of Underlying Mechanisms and Clinical Development. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.E.; Yuan, H.; Perszyk, R.E.; Banke, T.G.; Xing, H.; Tsai, M.C.; Menniti, F.S.; Traynelis, S.F. Therapeutic Potential of N-Methyl-D-Aspartate Receptor Modulators in Psychiatry. Neuropsychopharmacology 2024, 49, 51–66. [Google Scholar] [CrossRef]
- Lv, S.; Yao, K.; Zhang, Y.; Zhu, S. NMDA Receptors as Therapeutic Targets for Depression Treatment: Evidence from Clinical to Basic Research. Neuropharmacology 2023, 225, 109378. [Google Scholar] [CrossRef]
- Shin, W.; Kim, K.; Serraz, B.; Cho, Y.S.; Kim, D.; Kang, M.; Lee, E.J.; Lee, H.; Bae, Y.C.; Paoletti, P.; et al. Early Correction of Synaptic Long-Term Depression Improves Abnormal Anxiety-like Behavior in Adult GluN2B-C456Y-Mutant Mice. PLoS Biol. 2020, 18, 3000717. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Song, W.; Qin, Y.; Todd, N.; Gao, M. Traxoprodil Produces Antidepressant-Like Behaviors in Chronic Unpredictable Mild Stress Mice through BDNF/ERK/CREB and AKT/FOXO/Bim Signaling Pathway. Oxidative Med. Cell. Longev. 2023, 2023, 1131422. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, M.; Ren, T.; Wang, Y. Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants? Cell. Mol. Neurobiol. 2023, 43, 1931–1940. [Google Scholar] [CrossRef]
- Antos, Z.; Żukow, X.; Bursztynowicz, L.; Jakubów, P. Beyond NMDA Receptors: A Narrative Review of Ketamine’s Rapid and Multifaceted Mechanisms in Depression Treatment. Int. J. Mol. Sci. 2024, 25, 13658. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, C.K.; Wang, P.; Zheng, L.C.; Cheng, Y.; Ren, Z.H.; Jin, Y.H.; Yao, Y.Y.; Liu, H.Z. S-Ketamine Alleviates Depression-like Behavior and Hippocampal Neuroplasticity in the Offspring of Mice That Experience Prenatal Stress. Sci. Rep. 2024, 14, 26929. [Google Scholar] [CrossRef] [PubMed]
- Preskorn, S.; Macaluso, M.; Mehra, D.O.V.; Zammit, G.; Moskal, J.R.; Burch, R.M.; GLYX-13 Clinical Study Group. Randomized Proof of Concept Trial of GLYX-13, an N-Methyl-D-Aspartate Receptor Glycine Site Partial Agonist, in Major Depressive Disorder Nonresponsive to a Previous Antidepressant Agent. J. Psychiatr. Pract. 2015, 21, 140–149. [Google Scholar] [CrossRef]
- Rodolico, A.; Cutrufelli, P.; Di Francesco, A.; Aguglia, A.; Catania, G.; Concerto, C.; Cuomo, A.; Fagiolini, A.; Lanza, G.; Mineo, L.; et al. Efficacy and Safety of Ketamine and Esketamine for Unipolar and Bipolar Depression: An Overview of Systematic Reviews with Meta-Analysis. Front. Psychiatry 2024, 15, 1325399. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.J.; Colby, S.M.; Yesiltepe, Y.; Nuñez, J.R.; McGrady, M.Y.; Renslow, R.S. Application and Assessment of Deep Learning for the Generation of Potential NMDA Receptor Antagonists. Phys. Chem. Chem. Phys. PCCP 2021, 23, 1197–1214. [Google Scholar] [CrossRef]
- Hu, L.; Qiu, M.J.; Fan, W.J.; Wang, W.E.; Liu, S.H.; Liu, X.Q.; Liu, S.W.; Shen, Z.J.; Zheng, Y.F.; Liu, G.C.; et al. Characterization of GABAergic Marker Expression in Prefrontal Cortex in Dexamethasone Induced Depression/Anxiety Model. Front. Endocrinol. 2024, 15, 1433026. [Google Scholar] [CrossRef]
- Hu, Y.T.; Tan, Z.L.; Hirjak, D.; Northoff, G. Brain-Wide Changes in Excitation-Inhibition Balance of Major Depressive Disorder: A Systematic Review of Topographic Patterns of GABA- and Glutamatergic Alterations. Mol. Psychiatry 2023, 28, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
- Asim, M.; Wang, H.; Waris, A.; He, J. Basolateral amygdala parvalbumin and cholecystokinin-expressing GABAergic neurons modulate depressive and anxiety-like behaviors. Transl. Psychiatry 2024, 14, 418. [Google Scholar] [CrossRef]
- Ding, X.; Lin, Y.; Chen, C.; Yan, B.; Liu, Q.; Zheng, H.; Wu, Y.; Zhou, C. DNMT1 Mediates Chronic Pain-Related Depression by Inhibiting GABAergic Neuronal Activation in the Central Amygdala. Biol. Psychiatry 2023, 94, 672–684. [Google Scholar] [CrossRef]
- Thompson, S.M. Modulators of GABAA Receptor-Mediated Inhibition in the Treatment of Neuropsychiatric Disorders: Past, Present, and Future. Neuropsychopharmacology 2024, 49, 83–95. [Google Scholar] [CrossRef]
- Guet-McCreight, A.; Mazza, F.; Prevot, T.D.; Sibille, E.; Hay, E. Therapeutic Dose Prediction of α5-GABA Receptor Modulation from Simulated EEG of Depression Severity. PLoS Comput. Biol. 2024, 20, 1012693. [Google Scholar] [CrossRef] [PubMed]
- Aouci, R.; Fontaine, A.; Vion, A.; Belz, L.; Levi, G.; Narboux-Nême, N. The Antidepressant Action of Fluoxetine Involves the Inhibition of Dlx5/6 in Cortical GABAergic Neurons through a TrkB-Dependent Pathway. Cells 2024, 13, 1262. [Google Scholar] [CrossRef] [PubMed]
- Luscher, B.; Maguire, J.L.; Rudolph, U.; Sibille, E. GABAA Receptors as Targets for Treating Affective and Cognitive Symptoms of Depression. Trends Pharmacol. Sci. 2023, 44, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Mazza, F.; Guet-McCreight, A.; Prevot, T.D.; Valiante, T.; Sibille, E.; Hay, E. Electroencephalography Biomarkers of A5-GABA Positive Allosteric Modulators in Rodents. Biol. Psychiatry Glob. Open Sci. 2024, 5, 100435. [Google Scholar] [CrossRef]
- Kwakowsky, A.; Waldvogel, H.J.; Faull, R.L.M. Therapeutic Potential of Alpha 5 Subunit Containing GABAA Receptors in Alzheimer’s Disease. Neural Regen. Res. 2021, 16, 1550–1551. [Google Scholar] [CrossRef]
- Moraru, M.V.; Stoleru, S.; Zugravu, A.; Coman, O.A.; Fulga, I. New Insights Into Pharmacology of GABAA Receptor Alpha Subunits-Selective Modulators. Am. J. Ther. 2024, 31, e669–e676. [Google Scholar] [CrossRef]
- Rudolph, U.; Knoflach, F. Beyond Classical Benzodiazepines: Novel Therapeutic Potential of GABAA Receptor Subtypes. Nat. Rev. Drug Discov. 2011, 10, 685–697. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H.; Hu, Z.; Jiang, J.; Dong, X.; Zhu, J.; Chen, H.; Brose, N.; Lipstein, N.; Xu, T.; et al. Chronic Stress Induces Depression through MDGA1-Neuroligin2 Mediated Suppression of Inhibitory Synapses in the Lateral Habenula. Theranostics 2025, 15, 1842–1863. [Google Scholar] [CrossRef]
- Antoniv, T.T.; Ivashkiv, L.B. Interleukin-10-Induced Gene Expression and Suppressive Function Are Selectively Modulated by the PI3K-Akt-GSK3 Pathway. Immunology 2011, 132, 567–577. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Zwierzyńska, E. Neuroactive Steroids as Novel Promising Drugs in Therapy of Postpartum Depression-Focus on Zuranolone. Int. J. Mol. Sci. 2025, 26, 6545. [Google Scholar] [CrossRef]
- Miyata, S.; Kakizaki, T.; Fujihara, K.; Obinata, H.; Hirano, T.; Nakai, J.; Tanaka, M.; Itohara, S.; Watanabe, M.; Tanaka, K.F.; et al. Global Knockdown of Glutamate Decarboxylase 67 Elicits Emotional Abnormality in Mice. Mol. Brain 2021, 14, 5. [Google Scholar] [CrossRef]
- Seney, M.L.; Tripp, A.; McCune, S.; Lewis, D.A.; Sibille, E. Laminar and Cellular Analyses of Reduced Somatostatin Gene Expression in the Subgenual Anterior Cin-Gulate Cortex in Major Depression. Neurobiol. Dis. 2015, 73, 213–219. [Google Scholar] [CrossRef]
- Hsu, D.T.; Mickey, B.J.; Langenecker, S.A.; Heitzeg, M.M.; Love, T.M.; Wang, H.; Kennedy, S.E.; Peciña, M.; Shafir, T.; Hodgkinson, C.A.; et al. Variation in the Corticotropin-Releasing Hormone Receptor 1 (CRHR1) Gene Influences fMRI Signal Responses during Emotional Stimulus Processing. J. Neurosci. 2012, 32, 3253–3260. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, C.R.; Carey, C.E.; Michalski, L.J.; Corral-Frias, N.S.; Conley, E.D.; Hariri, A.R.; Bogdan, R. Hypothalamic-Pituitary-Adrenal Axis Genetic Variation and Early Stress Moderates Amygdala Function. Psychoneuroendocrinology 2017, 80, 170–178. [Google Scholar] [CrossRef]
- Coric, V.; Feldman, H.H.; Oren, D.A.; Shekhar, A.; Pultz, J.; Dockens, R.C.; Wu, X.; Gentile, K.A.; Huang, S.P.; Emison, E.; et al. Multicenter, Randomized, Double-Blind, Active Comparator and Placebo-Controlled Trial of a Corticotropin-Releasing Factor Recep-Tor-1 Antagonist in Generalized Anxiety Disorder. Depress. Anxiety 2010, 27, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Schwandt, M.L.; Cortes, C.R.; Kwako, L.E.; George, D.T.; Momenan, R.; Sinha, R.; Grigoriadis, D.E.; Pich, E.M.; Leggio, L.; Heilig, M. The CRF1 Antagonist Verucerfont in Anxious Alcohol-Dependent Women: Translation of Neuroendocrine, But Not of Anti-Craving Effects. Neuropsychopharmacology 2016, 41, 2818–2829. [Google Scholar] [CrossRef] [PubMed]
- Pape, J.C.; Carrillo-Roa, T.; Rothbaum, B.O.; Nemeroff, C.B.; Czamara, D.; Zan-nas, A.S.; Iosifescu, D.; Mathew, S.J.; Neylan, T.C.; Mayberg, H.S.; et al. DNA Methylation Levels Are Associated with CRF1 Receptor Antagonist Treatment Outcome in Women with Post-Traumatic Stress Disorder. Clin. Epigenet. 2018, 10, 136. [Google Scholar] [CrossRef]
- Roseboom, P.H.; Nanda, S.A.; Fox, A.S.; Oler, J.A.; Shackman, A.J.; Shelton, S.E.; Davidson, R.J.; Kalin, N.H. Neuropeptide Y Receptor Gene Expression in the Primate Amygdala Predicts Anxious Temperament and Brain Metabolism. Biol. Psychiatry 2014, 76, 850–857. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, G.; Hariri, A.R.; Enoch, M.A.; Scott, D.; Sinha, R.; Virkkunen, M.; Mash, D.C.; Lipsky, R.H.; Hu, X.Z.; et al. Genetic Variation in Human NPY Expression Affects Stress Response and Emotion. Nature 2008, 452, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cao, C. The Mediation Effect of Glucocorticoid Receptor Gene (NR3C1) Methylation between Childhood Maltreatment and Depressive Symptoms in Chinese Adolescents: A 2-Year Longitudinal Study. Child Dev. 2024, 95, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Juruena, M.F.; Bocharova, M.; Agustini, B.; Young, A.H. Atypical Depression and Non-Atypical Depression: Is HPA Axis Function a Biomarker? A Systematic Review. J. Affect. Disord. 2018, 233, 45–67. [Google Scholar] [CrossRef]
- Nandam, L.S.; Brazel, M.; Zhou, M.; Jhaveri, D.J. Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front. Psychiatry 2020, 10, 974. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.J.; Lee, T.Y.; Kim, N.S.; Kwon, J.S. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int. J. Mol. Sci. 2020, 22, 373. [Google Scholar] [CrossRef]
- Parmentier, T.; Sienaert, P. The Use of Triiodothyronine (T3) in the Treatment of Bipolar Depression: A Review of the Literature. J. Affect. Disord. 2018, 229, 410–414. [Google Scholar] [CrossRef]
- Calkin, C.; Kamintsky, L.; Friedman, A. Reversal of Insulin Resistance Is Associated with Repair of Blood-Brain Barrier Dysfunction and Remission in a Patient with Treatment-Resistant Bipolar Depression. Bipolar Disord. 2022, 24, 553–555. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Wang, D.; Du, X.; Liu, S. Bioinformatics Screening and Experimental Validation for Deciphering the Immune Signature of Late-Onset Depression. Neuropsychiatr. Dis. Treat. 2024, 20, 2347–2361. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, P.; Wang, W.; Guo, L.; Pan, Q. The Antidepressant Ef-Fects of GLP-1 Receptor Agonists: A Systematic Review and Meta-Analysis. Am. J. Geriatr. Psychiatry 2024, 32, 117–127. [Google Scholar] [CrossRef]
- Aftab, A.; Kemp, D.E.; Ganocy, S.J.; Schinagle, M.; Conroy, C.; Brownrigg, B.; D’Arcangelo, N.; Goto, T.; Woods, N.; Serrano, M.B.; et al. Double-Blind, Placebo-Controlled Trial of Pioglitazone for Bipolar Depression. J. Affect. Disord. 2019, 245, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Potměšil, P. What Combinations of Agomelatine with Other Antidepres-Sants Could Be Successful during the Treatment of Major Depressive Disorder or Anxiety Disorders in Clinical Practice? Ther. Adv. Psychopharmacol. 2019, 9, 2045125319855206. [Google Scholar] [CrossRef]
- Maki, P.M.; Kornstein, S.G.; Joffe, H.; Bromberger, J.T.; Freeman, E.W.; Ath-appilly, G.; Bobo, W.V.; Rubin, L.H.; Koleva, H.K.; Cohen, L.S.; et al. Guidelines for the Evaluation and Treatment of Perimenopausal Depression: Summary and Recommendations. J. Women’s Health 2019, 28, 117–134. [Google Scholar] [CrossRef]
- Nuñez, N.A.; Joseph, B.; Pahwa, M.; Kumar, R.; Resendez, M.G.; Prokop, L.J.; Veldic, M.; Seshadri, A.; Biernacka, J.M.; Frye, M.A.; et al. Augmentation Strategies for Treatment Resistant Major Depression: A Systematic Review and Network Meta-Analysis. J. Affect. Disord. 2022, 302, 385–400. [Google Scholar] [CrossRef]
- Calkin, C.; McClelland, C.; Cairns, K.; Kamintsky, L.; Friedman, A. Insulin Resistance and Blood-Brain Barrier Dysfunction Underlie Neuroprogression in Bipolar Disorder. Front. Psychiatry 2021, 12, 636174. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory Markers in Depression: A Meta-Analysis of Mean Differences and Variability in 5,166 Patients and 5,083 Controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef]
- Eggerstorfer, B.; Kim, J.H.; Cumming, P.; Lanzenberger, R.; Gryglewski, G. Meta-Analysis of Molecular Imaging of Translocator Protein in Major Depression. Front. Mol. Neurosci. 2022, 15, 981442. [Google Scholar] [CrossRef]
- Gritti, D.; Delvecchio, G.; Ferro, A.; Bressi, C.; Brambilla, P. Neuroinflammation in Major Depressive Disorder: A Review of PET Imaging Studies Examining the 18-kDa Translocator Protein. J. Affect. Disord. 2021, 292, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Wichers, M.C.; Maes, M. The Role of Indoleamine 2,3-Dioxygenase (IDO) in the Pathophysiology of Interferon-Alpha-Induced Depression. J. Psychiatry Neurosci. 2004, 29, 11–17. [Google Scholar] [CrossRef]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef]
- Yu, H.; Li, R.; Liang, X.J.; Yang, W.M.; Guo, L.; Liu, L.; Tan, Q.-R.R.; Peng, Z.W. A Cross-Section Study of the Comparison of Plasma Inflammatory Cytokines and Short-Chain Fatty Acid in Patients with Depression and Schizophrenia. BMC Psychiatry 2024, 24, 834. [Google Scholar] [CrossRef]
- Abdel-Haq, R.; Schlachetzki, J.C.M.; Glass, C.K.; Mazmanian, S.K. Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 2019, 216, 41–59. [Google Scholar] [CrossRef]
- Akcay, E.; Karatas, H. P2X7 Receptors from the Perspective of NLRP3 Inflammasome Pathway in Depression: Potential Role of Cannabidiol. Brain Behav. Immun.-Health 2024, 41, 100853. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Li, W.; Chen, P.; Wang, L.; Bao, X.; Huang, R.; Liu, G.; Chen, X. Microglial NLRP3 Inflammasome-Mediated Neuroinflammation and Therapeutic Strate-Gies in Depression. Neural Regen. Res. 2024, 19, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Ghaffaripour Jahromi, G.; Razi, S.; Rezaei, N. NLRP3 Inflammatory Pathway. Can We Unlock Depression? Brain Res. 2024, 1822, 148644. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.F.; Wang, C.Y.; Wang, J.H.; Wang, Q.N.; Li, S.J.; Wang, H.O.; Zhou, F.; Li, J.M. Short-Chain Fatty Acids Ameliorate Depressive-like Behaviors of High Fructose-Fed Mice by Rescuing Hippocampal Neurogenesis Decline and Blood-Brain Barrier Damage. Nutrients 2022, 14, 1882. [Google Scholar] [CrossRef]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Cleare, A.J.; Young, A.H.; Stone, J.M. Exploring the Mechanisms of Action of Probiotics in Depression: Results from a Randomized Controlled Pilot Trial. J. Affect. Disord. 2025, 376, 241–250. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Cleare, A.J.; Young, A.H.; Stone, J.M. Acceptability, Tolerability, and Estimates of Putative Treatment Effects of Probiotics as Adjunctive Treatment in Patients With Depression: A Randomized Clinical Trial. JAMA Psychiatry 2023, 80, 842–847. [Google Scholar] [CrossRef]
- Zainal, N.H.; Newman, M.G. Increased Inflammation Predicts Nine-Year Change in Major Depressive Disorder Diagnostic Status. J. Abnorm. Psychol. 2021, 130, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, J.; Teng, T.; Yin, B.; He, Y.; Jiang, Y.; Liu, X.; Yu, Y.; Li, X.; Zhou, X. Biomarkers of Intestinal Permeability and Blood-Brain Barrier Permeability in Adolescents with Major Depressive Disorder. J. Affect. Disord. 2023, 323, 659–666. [Google Scholar] [CrossRef]
- Lin, P.; Li, D.; Shi, Y.; Li, Q.; Guo, X.; Dong, K.; Chen, Q.; Lou, X.; Li, Z.; Li, P.; et al. Dysbiosis of the Gut Microbiota and Kynurenine (Kyn) Pathway Activity as Potential Biomarkers in Patients with Major De-Pressive Disorder. Nutrients 2023, 15, 1752. [Google Scholar] [CrossRef]
- Losenkov, I.S.; Mulder, N.J.; Levchuk, L.A.; Vyalova, N.M.; Loonen, A.J.; Bosker, F.J.; Simutkin, G.G.; Boiko, A.S.; Bokhan, N.A.; Wilffert, B.; et al. Association between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Front. Psychiatry 2020, 11, 38. [Google Scholar] [CrossRef]
- Arosio, B.; Guerini, F.R.; Voshaar, R.C.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front. Behav. Neurosci. 2021, 15, 626906. [Google Scholar] [CrossRef]
- Kao, C.F.; Liu, Y.L.; Yu, Y.W.; Yang, A.C.; Lin, E.; Kuo, P.H.; Tsai, S.J. Gene-Based Analysis of Genes Related to Neurotrophic Pathway Suggests Association of BDNF and VEGFA with Antidepressant Treatment-Response in Depressed Patients. Sci. Rep. 2018, 8, 6983. [Google Scholar] [CrossRef]
- Chang, L.C.; Jamain, S.; Lin, C.W.; Rujescu, D.; Tseng, G.C.; Sibille, E. A Conserved BDNF, Glutamate- and GABA-Enriched Gene Module Related to Human Depression Identified by Coexpression Meta-Analysis and DNA Variant Genome-Wide Association Studies. PLoS ONE 2014, 9, e90980. [Google Scholar] [CrossRef]
- Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialogues Clin. Neurosci. 2019, 21, 397–405. [Google Scholar] [CrossRef]
- Zheleznyakova, G.Y.; Cao, H.; Schiöth, H.B. BDNF DNA Methylation Changes as a Biomarker of Psychiatric Disorders: Literature Review and Open Access Database Analysis. Behav. Brain Funct. 2016, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.S.; Cardoso, A.; Vale, N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023, 15, 2081. [Google Scholar] [CrossRef] [PubMed]
- Maier, H.B.; Neyazi, A.; Bundies, G.L.; Meyer-Bockenkamp, F.; Bleich, S.; Pathak, H.; Ziert, Y.; Neuhaus, B.; Müller, F.J.; Pollmann, I.; et al. Validation of the Predictive Value of BDNF-87 Methylation for Antidepressant Treatment Success in Severely Depressed Patients—A Randomized Rater-Blinded Trial. Trials 2024, 25, 247. [Google Scholar] [CrossRef] [PubMed]
- Paolini, M.; Fortaner-Uyà, L.; Lorenzi, C.; Spadini, S.; Maccario, M.; Zanardi, R.; Colombo, C.; Poletti, S.; Benedetti, F. Association between NTRK2 Polymorphisms, Hippocampal Volumes and Treatment Resistance in Major Depressive Disorder. Genes 2023, 14, 2037. [Google Scholar] [CrossRef]
- Goes, F.S.; Collado-Torres, L.; Zandi, P.P.; Huuki-Myers, L.; Tao, R.; Jaffe, A.E.; Pertea, G.; Shin, J.H.; Weinberger, D.R.; Kleinman, J.E.; et al. Large-Scale Transcriptomic Analyses of Major Depressive Disorder Reveal Convergent Dysregulation of Synaptic Pathways in Excitatory Neurons. Nat. Commun. 2025, 16, 3981. [Google Scholar] [CrossRef]
- Kato, T. Role of mTOR1 Signaling in the Antidepressant Effects of Ketamine and the Potential of mTORC1 Activators as Novel Antidepressants. Neuropharmacology 2023, 223, 109325. [Google Scholar] [CrossRef]
- Ignácio, Z.M.; Réus, G.Z.; Arent, C.O.; Abelaira, H.M.; Pitcher, M.R.; Quevedo, J. New Perspectives on the Involvement of mTOR in Depression as Well as in the Action of Antidepressant Drugs. Br. J. Clin. Pharmacol. 2016, 82, 1280–1290. [Google Scholar] [CrossRef]
- Li, K.; Wang, K.; Xu, S.X.; Xie, X.H.; Tang, Y.; Zhang, L.; Liu, Z. In Vivo Evidence of Increased Vascular Endothelial Growth Factor in Patients with Major Depressive Disorder. J. Affect. Disord. 2025, 368, 151–159. [Google Scholar] [CrossRef]
- Nebie, O.; Buée, L.; Blum, D.; Burnouf, T. Can the Administration of Platelet Lysates to the Brain Help Treat Neurological Disorders? Cell. Mol. Life Sci. 2022, 79, 379. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, Q.; Yang, Y.; Yu, L.L.; Fan, N.L.; Wu, Y.; Wang, J.Y.; Dang, X.L.; Guo, Y.Q.; Li, C.; et al. Elevated NEGR1 in Brain Induces Anxiety or Depression-like Phenotypes and Synaptic Dysfunction. Mol. Psychiatry 2025, 30, 4627–4640. [Google Scholar] [CrossRef]
- Lieb, K.; Dreimüller, N.; Wagner, S.; Schlicht, K.; Falter, T.; Neyazi, A.; Müller-Engling, L.; Bleich, S.; Tadić, A.; Frieling, H. BDNF Plasma Levels and BDNF Exon IV Promoter Methylation as Predictors for Antidepressant Treatment Response. Front. Psychiatry 2018, 9, 511. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Fujita, M.; Gao, Z.; White, C.C.; Green, G.S.; Habib, N.; Menon, V.; Bennett, D.A.; Boyle, P.; Klein, H.U.; et al. A Single-Nucleus Transcriptome-Wide Association Study Implicates Novel Genes in Depression Pathogenesis. Biol. Psychiatry 2024, 96, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Shinohara, R.; Fogaça, M.V.; Hare, B. Neurobiology of Rapid-Acting Antidepressants: Convergent Effects on GluA1-Synaptic Function. Mol. Psychiatry 2019, 24, 1816–1832. [Google Scholar] [CrossRef]
- Maffioletti, E.; Carvalho Silva, R.; Bortolomasi, M.; Baune, B.T.; Gennarelli, M.; Minelli, A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Häusl, A.S.; Balsevich, G.; Gassen, N.C.; Schmidt, M.V. Focus on FKBP51: A Molecular Link between Stress and Metabolic Disorders. Mol. Metab. 2019, 29, 170–181. [Google Scholar] [CrossRef]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA de-methylation mediates gene-childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- Han, K.M.; Won, E.; Sim, Y.; Kang, J.; Han, C.; Kim, Y.K.; Kim, S.H.; Joe, S.H.; Lee, M.S.; Tae, W.S.; et al. Influence of FKBP5 Polymorphism and DNA Methylation on Structural Changes of the Brain in Major Depressive Disorder. Sci. Rep. 2017, 7, 42621. [Google Scholar] [CrossRef]
- Bustamante, A.C.; Aiello, A.E.; Guffanti, G.; Galea, S.; Wildman, D.E.; Uddin, M. FKBP5 DNA Methylation Does Not Mediate the Association between Childhood Maltreatment and Depression Symptom Severity in the Detroit Neighborhood Health Study. J. Psychiatr. Res. 2018, 96, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Klinger-König, J.; Hertel, J.; Van der Auwera, S.; Frenzel, S.; Pfeiffer, L.; Waldenberger, M.; Golchert, J.; Teumer, A.; Nauck, M.; Homuth, G.; et al. Methylation of the FKBP5 Gene in Association with FKBP5 Genotypes, Childhood Maltreatment and Depression. Neuropsychopharmacology 2019, 44, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Liu, Q.; Liang, J.; Weng, Z.; Li, W.; Xu, J.; Zhang, X.; Xu, C.; Huang, T.; Gu, A. Air Pollution, Genetic Factors and the Risk of Depression. Sci. Total Environ. 2022, 850, 158001. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, M.; Huang, N.; Guo, X.; Huang, T. Long-Term Air Pollution, Genetic Susceptibility, and the Risk of Depression and Anxiety: A Prospective Study in the UK Biobank Cohort. Environ. Health Perspect. 2023, 131, 17002. [Google Scholar] [CrossRef]
- Poon, C.H.; Heng, B.C.; Lim, L.W. New Insights on Brain-Derived Neurotrophic Factor Epigenetics: From Depression to Memory Extinction. Ann. N. Y. Acad. Sci. 2021, 1484, 9–31. [Google Scholar] [CrossRef]
- Iaconelli, J.; Xuan, L.; Karmacharya, R. HDAC6 Modulates Signaling Pathways Relevant to Synaptic Biology and Neuronal Differentiation in Human Stem-Cell-Derived Neurons. Int. J. Mol. Sci. 2019, 20, 1605. [Google Scholar] [CrossRef]
- Yang, W.; Liu, M.; Zhang, Q.; Zhang, J.; Chen, J.; Chen, Q.; Suo, L. Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Curr. Neurovasc. Res. 2020, 17, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Xu, D.; Kong, Y.; Cao, Y.; Wang, L.; Hong, Y.; Li, L.; Gao, C.; Liu, J.; Zhang, G.; et al. circFKBP8(5S,6)-Encoded Protein as a Novel Endogenous Regulator in Major Depressive Disorder by Inhibiting Glu-Cocorticoid Receptor Nucleus Translocation. Sci. Bull. 2024, 69, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.; Adams, M.J.; Kwong, A.S.F.; Haley, C.S.; Amador, C.; McIntosh, A.M. Genome-by-Trauma Exposure Interactions in Adults With Depression in the UK Biobank. JAMA Psychiatry 2022, 79, 1110–1117. [Google Scholar] [CrossRef]
- Warrier, V.; Kwong, A.S.F.; Luo, M.; Dalvie, S.; Croft, J.; Sallis, H.M.; Baldwin, J.; Munafò, M.R.; Nievergelt, C.M.; Grant, A.J.; et al. Gene-Environment Correlations and Causal Effects of Childhood Maltreatment on Physical and Mental Health: A Genetically Informed Approach. Lancet Psychiatry 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Trifu, S. Neuroendocrine Insights into Burnout Syndrome. Acta Endocrinol. Buchar. 2019, 15, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Dionisio-García, D.M.; Genis-Mendoza, A.D.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juarez-Rojop, I.E.; López-Narváez, M.L.; Hernández-Díaz, Y.; Nicolini, H.; Olvera-Hernández, V. DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sci. 2023, 13, 584. [Google Scholar] [CrossRef]
- Cheng, Z.; Su, J.; Zhang, K.; Jiang, H.; Li, B. Epigenetic Mechanism of Early Life Stress-Induced Depression: Focus on the Neurotransmitter Systems. Front. Cell Dev. Biol. 2022, 10, 929732. [Google Scholar] [CrossRef]
- Torres-Berrío, A.; Issler, O.; Parise, E.M.; Nestler, E.J. Unraveling the Epigenetic Landscape of Depression: Focus on Early Life Stress. Dialogues Clin. Neurosci. 2019, 21, 341–357. [Google Scholar] [CrossRef]
- Peng, H.; Zhu, Y.; Strachan, E.; Fowler, E.; Bacus, T.; Roy-Byrne, P.; Goldberg, J.; Vaccarino, V.; Zhao, J. Childhood Trauma, DNA Methylation of Stress-Related Genes, and Depression: Findings From Two Monozygotic Twin Studies. Psychosom. Med. 2018, 80, 599–608. [Google Scholar] [CrossRef]
- Höhne, N.; Poidinger, M.; Merz, F.; Pfister, H.; Brückl, T.; Zimmermann, P.; Uhr, M.; Holsboer, F.; Ising, M. FKBP5 Genotype-Dependent DNA Methylation and mRNA Regulation after Psychosocial Stress in Remitted Depression and Healthy Controls. Int. J. Neuropsychopharmacol. 2014, 18, pyu087. [Google Scholar] [CrossRef]
- Bakusic, J.; Vrieze, E.; Ghosh, M.; Bekaert, B.; Claes, S.; Godderis, L. Increased Methylation of NR3C1 and SLC6A4 Is Associated with Blunted Cortisol Reactivity to Stress in Major Depression. Neurobiol. Stress 2020, 13, 100272. [Google Scholar] [CrossRef]
- Braithwaite, E.C.; Kundakovic, M.; Ramchandani, P.G.; Murphy, S.E.; Champagne, F.A. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 2015, 10, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.J.; Ionescu, D.F.; Li, X.; Lane, R.; Lim, P.; Sanacora, G.; Hough, D.; Manji, H.; Drevets, W.C.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Major Depressive Disorder Symptoms in Patients Who Have Active Suicidal Ideation With Intent: Double-Blind, Randomized Study (ASPIRE I). J. Clin. Psychiatry 2020, 81, 19m13191. [Google Scholar] [CrossRef]
- Canuso, C.M.; Ionescu, D.F.; Li, X.; Qiu, X.; Lane, R.; Turkoz, I.; Nash, A.I.; Lopena, T.J.; Fu, D.J. Esketamine Nasal Spray for the Rapid Reduction of Depressive Symptoms in Major Depressive Disorder with Acute Suicidal Ideation or Behavior. J. Clin. Psychopharmacol. 2021, 41, 516–524. [Google Scholar] [CrossRef]
- Clayton, A.H.; Lasser, R.; Parikh, S.V.; Iosifescu, D.V.; Jung, J.; Kotecha, M.; Forrestal, F.; Jonas, J.; Kanes, S.J.; Doherty, J. Zuranolone for the Treatment of Adults with Major Depressive Disorder: A Randomized, Placebo-Controlled Phase 3 Trial. Am. J. Psychiatry 2023, 180, 676–684. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Kezic, I.; Popova, V.; Melkote, R.; Van Der Ark, P.; Pemberton, D.J.; Mareels, G.; Canuso, C.M.; Fava, M.; Drevets, W.C. Efficacy and Safety of Aticaprant, a Kappa Receptor Antagonist, Adjunctive to Oral SSRI/SNRI Antidepressant in Major Depressive Disorder: Results of a Phase 2 Randomized, Double-Blind, Placebo-Controlled Study. Neuropsychopharmacology 2024, 49, 1437–1447. [Google Scholar] [CrossRef]
- Butler, C.R.; Popiolek, M.; McAllister, L.A.; LaChapelle, E.A.; Kramer, M.; Beck, E.M.; Mente, S.; Brodney, M.A.; Brown, M.; Gilbert, A.; et al. Design and Synthesis of Clinical Candidate PF-06852231 (CVL-231): A Brain Penetrant, Selective, Positive Allosteric Modulator of the M4 Muscarinic Acetylcho-Line Receptor. J. Med. Chem. 2024, 67, 10831–10847. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Kane, J.M.; Correll, C.U.; Walling, D.P.; Leoni, M.; Duvvuri, S.; Patel, S.; Chang, I.; Iredale, P.; Frohlich, L.; et al. Emraclidine, a Novel Positive Allosteric Modulator of Cholinergic M4 Receptors, for the Treatment of Schizophrenia: A Two-Part, Randomised, Double-Blind, Placebo-Controlled, Phase 1b Trial. Lancet 2022, 400, 2210–2220. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Navoly, G.; Giannakopoulou, O.; Levey, D.F.; Koller, D.; Pathak, G.A.; Koen, N.; Lin, K.; Adams, M.J.; Rentería, M.E.; et al. Multi-Ancestry Genome-Wide Association Study of Major Depres-Sion Aids Locus Discovery, Fine Mapping, Gene Prioritization and Causal Inference. Nat. Genet. 2024, 56, 222–233. [Google Scholar] [CrossRef]
- Wang, S.; Tang, S.; Huang, J.; Chen, H. Rapid-Acting Antidepressants Targeting Modulation of the Glutamatergic System: Clinical and Preclinical Evidence and Mechanisms. Gen. Psychiatr. 2022, 35, e100922. [Google Scholar] [CrossRef]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant Drugs Act by Directly Binding to TRKB Neurotrophin Receptors. Cell 2021, 184, 1299–1313.e19. [Google Scholar] [CrossRef]
- Luscher, B.; Feng, M.; Jefferson, S.J. Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. Adv. Pharmacol. 2020, 89, 43–78. [Google Scholar] [CrossRef]
- Aguilar-Valles, A.; De Gregorio, D.; Matta-Camacho, E.; Eslamizade, M.J.; Khlaifia, A.; Skaleka, A.; Lopez-Canul, M.; Torres-Berrio, A.; Bermudez, S.; Rurak, G.M.; et al. Antidepressant Actions of Ketamine Engage Cell-Specific Translation via eIF4E. Nature 2021, 590, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, D.F.; Fu, D.J.; Qiu, X.; Lane, R.; Lim, P.; Kasper, S.; Hough, D.; Drevets, W.C.; Manji, H.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Depressive Symptoms in Patients with Major Depressive Disorder Who Have Active Sui-Cide Ideation With Intent: Results of a Phase 3, Double-Blind, Randomized Study (ASPIRE II). Int. J. Neuropsychopharmacol. 2021, 24, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Skiteva, O.; Zhang, X.; Svenningsson, P.; Chergui, K. Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol. Psychiatry 2018, 23, 2066–2077. [Google Scholar] [CrossRef]
- Kato, T.; Pothula, S.; Liu, R.J.; Duman, C.H.; Terwilliger, R.; Vlasuk, G.P.; Saiah, E.; Hahm, S.; Duman, R.S. Sestrin Modulator NV-5138 Produces Rapid Antide-Pressant Effects via Direct mTORC1 Activation. J. Clin. Investig. 2019, 129, 2542–2554. [Google Scholar] [CrossRef] [PubMed]
- Ragguett, R.M.; Rong, C.; Kratiuk, K.; McIntyre, R.S. Rapastinel—An Investigational NMDA-R Modulator for Major Depressive Disorder: Evidence to Date. Expert Opin. Investig. Drugs 2019, 28, 113–119. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Jones, A.; O’Gorman, C.; Streicher, C.; Feliz, S.; Fava, M.; Tabuteau, H. Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients with Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). J. Clin. Psychiatry 2022, 83, 21m14345. [Google Scholar] [CrossRef]
- Nakamoto, K.; Tokuyama, S. Stress-Induced Changes in the Endogenous Opioid System Cause Dysfunction of Pain and Emotion Regulation. Int. J. Mol. Sci. 2023, 24, 11713. [Google Scholar] [CrossRef]
- Nummenmaa, L.; Karjalainen, T.; Isojärvi, J.; Kantonen, T.; Tuisku, J.; Kaasinen, V.; Joutsa, J.; Nuutila, P.; Kalliokoski, K.; Hirvonen, J.; et al. Lowered Endogenous Mu-Opioid Receptor Availability in Subclinical Depression and Anxiety. Neuropsychopharmacology 2020, 45, 1953–1959. [Google Scholar] [CrossRef]
- Miller, J.M.; Zanderigo, F.; Purushothaman, P.D.; DeLorenzo, C.; Rubin-Falcone, H.; Ogden, R.T.; Keilp, J.; Oquendo, M.A.; Nabulsi, N.; Huang, Y.H.; et al. Kappa Opioid Receptor Binding in Major Depression: A Pilot Study. Synapse 2018, 72, e22042. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Husbands, S.M. Targeting Opioid Receptor Signaling in Depression: Do We Need Selective κ Opioid Receptor Antagonists? Neuronal Signal. 2018, 2, NS20170145. [Google Scholar] [CrossRef] [PubMed]
- Goode-Romero, G.; Dominguez, L. Descriptive Molecular Pharmacology of the δ Opioid Receptor (DOR): A Computational Study with Structural Approach. PLoS ONE 2024, 19, e0304068. [Google Scholar] [CrossRef]
- Whipp, A.M.; Drouard, G.; Rose, R.J.; Pulkkinen, L.; Kaprio, J. Protein Associations and Protein-Metabolite Interactions with Depressive Symptoms and the p-Factor. Transl. Psychiatry 2025, 15, 128. [Google Scholar] [CrossRef]
- Hu, X.; Pang, H.; Liu, J.; Wang, Y.; Lou, Y.; Zhao, Y. A Network Medicine-Based Approach to Explore the Relationship between Depression and Inflammation. Front. Psychiatry 2023, 14, 1184188. [Google Scholar] [CrossRef] [PubMed]
- Mekli, K.; Payton, A.; Miyajima, F.; Platt, H.; Thomas, E.; Downey, D.; Lloyd-Williams, K.; Chase, D.; Toth, Z.G.; Elliott, R.; et al. The HTR1A and HTR1B Receptor Genes Influence Stress-Related Information Processing. Eur. Neuropsychopharmacol. 2011, 21, 129–139. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, L.; Li, X.; Zhang, J.; Chen, B. The DRD2 Rs1800497 Polymorphism Increase the Risk of Mood Disorder: Evidence from an Update Meta-Analysis. J. Affect. Disord. 2014, 158, 71–77. [Google Scholar] [CrossRef]
- Ishitobi, Y.; Nakayama, S.; Yamaguchi, K.; Kanehisa, M.; Higuma, H.; Maruyama, Y.; Ninomiya, T.; Okamoto, S.; Tanaka, Y.; Tsuru, J.; et al. Association of CRHR1 and CRHR2 with Major Depressive Disorder and Panic Disorder in a Japanese Population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159B, 429–436. [Google Scholar] [CrossRef]
- Hernández-Díaz, Y.; González-Castro, T.B.; Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; López-Narváez, M.L.; Genis-Mendoza, A.D.; Fresan, A.; Nicolini, H. The Role of Rs242941, Rs1876828, Rs242939 and Rs110402 Polymorphisms of CRHR1 Gene and the Depression: Systematic Review and Meta-Analysis. Genes Genom. 2021, 43, 1339–1349. [Google Scholar] [CrossRef]
- Efstathopoulos, P.; Andersson, F.; Melas, P.A.; Yang, L.L.; Villaescusa, J.C.; Rȕegg, J.; Ekström, T.J.; Forsell, Y.; Galanti, M.R.; Lavebratt, C. NR3C1 hypermethylation in depressed and bullied adolescents. Transl. Psychiatry 2018, 8, 121. [Google Scholar] [CrossRef]
- Zhu, J.H.; Bo, H.H.; Liu, B.P.; Jia, C.X. The Associations between DNA Methylation and Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2023, 327, 439–450. [Google Scholar] [CrossRef]
- Youssef, M.M.; Underwood, M.D.; Huang, Y.Y.; Hsiung, S.C.; Liu, Y.; Simpson, N.R.; Bakalian, M.J.; Rosoklija, G.B.; Dwork, A.J.; Arango, V.; et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int. J. Neuropsychopharmacol. 2018, 21, 528–538. [Google Scholar] [CrossRef]
- Ai, M.; Wang, J.; Chen, J.; Wang, W.; Xu, X.; Gan, Y.; Li, X.; Gou, X.; Cao, J.; Lv, Z.; et al. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and the BDNF Val66Met Polymorphism in Suicide: A Prospective Study in Patients with Depressive Disorder. Pharmgenomics Pers. Med. 2019, ume 12, 97–106. [Google Scholar] [CrossRef]
- Summary Annotation for Rs6295 (HTR1A); Antidepressants, Fluvoxamine, Paroxetine, Selective Serotonin Reuptake Inhibitors or Sertraline; Depressive Disorder and Depressive Disorder, Major (Level 3 Efficacy). Available online: https://www.clinpgx.org/summaryAnnotation/655384772 (accessed on 23 October 2025).
- Eisenstein, S.A.; Bogdan, R.; Love-Gregory, L.; Corral-Frías, N.S.; Koller, J.M.; Black, K.J.; Moerlein, S.M.; Perlmutter, J.S.; Barch, D.M.; Hershey, T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016, 70, 418–431. [Google Scholar] [CrossRef]
- Guin, D.; Mishra, M.K.; Talwar, P.; Rawat, C.; Kushwaha, S.S.; Kukreti, S.; Kukreti, R. A Systematic Review and Integrative Approach to Decode the Common Molecular Link between Levodopa Response and Parkinson’s Disease. BMC Med. Genom. 2017, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Fischell, J.; Van Dyke, A.M.; Kvarta, M.D.; LeGates, T.A.; Thompson, S.M. Rapid Antidepressant Action and Restoration of Excitatory Synaptic Strength After Chronic Stress by Negative Modulators of Alpha5-Containing GABAA Receptors. Neuropsychopharmacology 2015, 40, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Bradley, B.; Mletzko, T.C.; Deveau, T.C.; Musselman, D.L.; Nemeroff, C.B.; Ressler, K.J.; Binder, E.B. Effect of Childhood Trauma on Adult Depression and Neuroendocrine Function: Sex-Specific Moderation by CRH Receptor 1 Gene. Front. Behav. Neurosci. 2009, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Ressler, K.J.; Bradley, B.; Mercer, K.B.; Deveau, T.C.; Smith, A.K.; Gillespie, C.F.; Nemeroff, C.B.; Cubells, J.F.; Binder, E.B. Polymorphisms in CRHR1 and the Serotonin Transporter Loci: Gene x Gene x Environment Interactions on Depressive Symptoms. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 812–824. [Google Scholar] [CrossRef]
- Figueroa-Hall, L.K.; Paulus, M.P.; Savitz, J. Toll-Like Receptor Signaling in Depression. Psychoneuroendocrinology 2020, 121, 104843. [Google Scholar] [CrossRef]
- Rodrigues, N.B.; Chen-Li, D.; Di Vincenzo, J.D.; Juneja, A.; Pinder, B.D.; McIntyre, R.S.; Rosenblat, J.D. Brain-Derived Neurotrophic Factor Val66Met and CYP2B6 Polymorphisms as Predictors for Ketamine Effectiveness in Patients with Treatment-Resistant Depression. J. Psychopharmacol. 2024, 38, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Lin, W.C.; Tsai, S.J.; Li, C.T.; Cheng, C.M.; Wu, H.J.; Bai, Y.M.; Hong, C.J.; Tu, P.C.; Su, T.P. Effects of Treatment Refractoriness and Brain-Derived Neurotrophic Factor Val66Met Polymorphism on Antidepressant Response to Low-Dose Ketamine Infusion. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
| Section Heading | What It Covers | Representative Genes/Receptors Discussed | |
|---|---|---|---|
| 1 | Monoaminergic systems—split into Serotonin (Section 3.1) and Dopamine (Section 3.2) | Classical neurotransmitters that mediate fast synaptic transmission and neuromodulation | HTR1A, HTR2A, SLC6A4, DRD2, DRD3, COMT, TAAR1 |
| 2 | Glutamatergic signalling (Section 3.3) | Excitatory aminoacid transmission and its role in synaptic plasticity and rapid-acting antidepressants | GRIN2B, GRM5, mGluR2/3, NMDA-receptor modulators (ketamine, rapastinel) |
| 3 | GABAergic inhibition (Section 3.4) | The brain’s chief inhibitory system and its extrasynaptic “tonic” control of network excitability | GAD1 (GAD67), SST interneuro, MDGA1/Nlgn2, GABA_A receptor–gephyrin, GABA_A δ subunit |
| 4 | Neuropeptide stress axes (Section 3.5) | Peptides that orchestrate the stress response and resilience | CRHR1, NPY1R |
| 5 | Hormonal & metabolic receptors (Section 3.6) | Endocrine and metabolic messengers that couple body physiology to mood | NR3C1, ER-α/β, TR-α/β, Central insulin receptor signalling, GLP-1 receptor, PPAR-γ receptor, MT1/MT2 |
| 6 | Immuno-inflammatory interfaces (Section 3.7) | Cytokine, toll-like and purinergic signalling that link peripheral/central inflammation to depression | IL-6, TLR4, P2RX7, FFAR2 (GPR43), IDO1 |
| 7 | Neurotrophic & synaptic-plasticity genes (Section 3.8) | Growth-factor pathways that remodel synapses and circuits | BDNF, NTRK2 (TrkB), Synaptic scaffolds (PSD95/DLG4, SHANK3, GRIA2), mTORC1 pathway, VEGF, NEGR1 |
| 8 | Epigenome & gene–environment interplay (Section 3.9) | DNA-methylation, histone marks and other epigenetic mechanisms—especially after early-life stress (ELS) | FKBP5, BDNF exon IV, polygenic-risk × pollution models |
| 9 | Translational and Therapeutic Horizons (Section 3.10) | Not a molecular pathway per se, but a translational roundup of drugs and gene-editing tools that act on the above domains | Esketamine, zuranolone, κ-opioid, muscarinic M4 receptor, multi-ancestry GWAS loci |
| 10 | Opioidergic Modulation (Section 3.12) | Neuropeptide-based opioid signaling axis modulating stress-, reward-, and affect-related neural circuits | MOR, KOR, DOR |
| Gene/Receptor | Variant/Strategy | Key Finding | References |
|---|---|---|---|
| HTR1A | rs6295 C→G | 5-HT1A postsynaptic: inhibitory; predicts SSRI response | [48,49,50] |
| HTR2A | rs6311/rs6313 | Insomnia | [51,52,53] |
| SLC6A4 | Promoter CpG hyper-methylation | Blunted SSRI response | [50,54] |
| DRD2/ANKK1 | Taq1A (rs1800497) | Anhedonia; ↓ striatal DRD2 | [55] |
| DRD3 | Ser9Gly | CC genotype → impaired performance on DRS-2 (Initiation/Perseveration and Construction) | [56] |
| COMT | Val158Met | Met allele ↑ stress sensitivity | [57] |
| SLC6A4 (5-HTTLPR) | S/L promoter VNTR | S allele × stress → ↑ depression risk | [58,59] |
| TAAR1 | Ulotaront/SEP-363856, other TAAR1 agonists | Modulates dopamine, serotonin, glutamate|Antipsychotic, anxiolytic, antidepressant; improves positive, negative, cognitive symptoms | [43,44,45,46,47,60] |
| Target/ Modulator | Main Findings | Plasticity Interpretation | Clinical Implications in MDD/TRD | References |
|---|---|---|---|---|
| GRIN2B/GluN2B (gene → subunit) | Post-mortem anterior-cingulate samples from MDD show increased GRIN2B mRNA (+32–40%) and a lower GRIN2A:GRIN2B ratio; animal work with the C456Y knock-in and other GRIN2B variants demonstrates impaired LTD and stress-sensitive hyperconnectivity. | Excess GluN2B skews NMDAR calcium entry toward a “high-gain” state that lowers the threshold for maladaptive metaplasticity. | Identifies extrasynaptic GluN2B as a prime target for rapid-acting or circuit-sparing antagonists. | [86,94] |
| GluN2B-selective antagonists (e.g., traxoprodil/CP-101,606) | A placebo-controlled human study and parallel chronic-stress mouse models show that a single traxoprodil dose produces ≥1-week symptom relief and durable spine restoration. | Selective dampening of extrasynaptic GluN2B channels permits synaptic NMDAR signalling to drive BDNF-mTOR plasticity without global blockade. | Proof-of-concept for subunit-selective NMDAR drugs that spare cognition while delivering ketamine-like speed. | [95] |
| GRM5/mGluR5 | PET studies report a decrease in cortical mGluR5 binding in unmedicated MDD, inversely correlating with symptom severity; ketamine further suppresses the signal in responders. | Reduced mGluR5 tone may be a homeostatic response that lowers IP3-Ca2+ bursts, resetting metaplastic set-points after ketamine. | Supports trials of mGluR5 negative allosteric modulators (MTEP, GRN-529) as stand-alone or post-ketamine maintenance agents. | [89] |
| mGluR2/3 antagonists (presynaptic disinhibitors) | Reviews and pre-clinical packets show LY341495, MGS0039 and related inhibitors reproduce ketamine-like behavioural rescue, spine growth and mTOR-BDNF activation without dissociation. | Blocking the autoreceptor “brake” transiently amplifies glutamate bursts that recruit AMPAR and GluN2B-dependent plasticity. | Under exploration as oral, non-dissociative fast-acting antidepressants; may synergise with psychotherapy by opening a plasticity window. | [91,96] |
| Broad & site-specific NMDAR modulators (ketamine, esketamine, rapastinel, etc.) | Ketamine/esketamine: rapid symptom drop within 2 h, linked to interneuron NMDAR blockade → cortical disinhibition → BDNF-mTOR spine formation; S-ketamine up-regulates BDNF, PSD-95, AKT/mTOR in hippocampus. Rapastinel (GLYX-13) and next-gen analogues act as glycine-site PAMs, delivering 2 h–7 day relief in POC trials without psychotomimetic effects. | All converge on transiently boosting synaptogenesis (“synaptogenic burst”) that normalises circuit throughput. | Intranasal esketamine is FDA-approved for TRD; IV/SC ketamine is widely used off-label. Rapastinel failed phase III but drives development of safer NMDA-site modulators. | [97,98,99] |
| Gene/Receptor | Variant/Strategy | Key Finding | Reference |
|---|---|---|---|
| GAD1 (GAD67) | Global knock-down (mouse) | Reduced GAD67 lowers cortical GABA and produces depressive-like behaviour | [117] |
| SST interneuron | Decreased SST mRNA (human sgACC) | Loss of dendrite-targeting inhibition linked to MDD | [118] |
| MDGA1/Nlgn2 | Stress-driven MDGA1 over-expression; Nlgn2 variant | MDGA1 blocks Nlgn2, prunes GABA synapses in LHb; reversing interaction rescues depression | [114] |
| GABA_A receptor–gephyrin | IL-10 deficiency impairs PI3K-AKT-gephyrin trafficking | IL-10 over-expression restores receptor surface delivery and mood | [115] |
| GABA_A δ subunit | Neurosteroid PAM (zuranolone) | Oral zuranolone yields rapid antidepressant response in adults with MDD | [116] |
| Gene/Receptor | Variant/Strategy | Key Finding (Last 10 Years) | Reference |
|---|---|---|---|
| CRHR1 | rs110402 A allele (intronic; enhancer region) | Among healthy young adults, A-carriers show greater amygdala BOLD reactivity to threat faces than GG homozygotes; the effect is amplified by high early-life stress, linking the SNP to limbic hyper-responsivity and mood-disorder risk. | [119] |
| CRHR1 | Early-life stress × rs110402 (multilocus HPA-score) | In a cohort of 308 subjects, a high HPA genetic-risk score that includes rs110402 potentiated the positive correlation between childhood adversity and right-amygdala reactivity, supporting a gene-by-environment pathway to anxiety symptoms. | [120] |
| CRHR1/CRF1 | Pharmacologic—pexacerfont (oral CRF1 antagonist) | A 6-week randomised, placebo-controlled trial in 242 patients with generalised anxiety disorder found no symptomatic advantage for pexacerfont despite good safety and pharmacodynamic target engagement. | [121] |
| CRHR1/CRF1 | Pharmacologic—verucerfont (CRF1 antagonist) | In 39 alcohol-dependent women, verucerfont robustly suppressed cortisol responses but failed to reduce stress-induced craving, illustrating target engagement without clinical efficacy and hinting that biomarker-guided subgroups will be needed. | [122] |
| CRHR1 | DNA-methylation change during CRF1-blockade | In PTSD patients treated with the CRF1 antagonist GSK561679, lower baseline CRHR1 methylation and treatment-related demethylation tracked greater symptom reduction, suggesting epigenetic status may stratify responders. | [123] |
| NPY1R | Elevated amygdala NPY1R mRNA (gene-expression endophenotype) | In rhesus macaques, higher NPY1R expression in the central amygdala predicted lower anxious temperament and reduced metabolic activity in threat circuits, linking the Y1 receptor to resilience. | [124] |
| Receptor/Pathway | Mechanistic Change in MDD | Key Recent Evidence | Clinical/ Therapeutic Note | Reference |
|---|---|---|---|---|
| Glucocorticoid receptor (NR3C1) | Childhood maltreatment leaves an epigenetic “scar”: higher DNA-methylation in the NR3C1-1F promoter lowers GR expression and perpetuates cortisol hyper-secretion | 2-year, 3-wave study (n = 370 adolescents) shows NR3C1 methylation mediates the maltreatment → depression link | Highlights GR resistance as a treatable node (e.g., psychotherapy, mifepristone trials) | [126] |
| Estrogen receptors (ER-α/β) | Perimenopausal estradiol fall disrupts ER-dependent synaptic plasticity in fronto-limbic circuits | Multidisciplinary guideline summarises RCT data showing transdermal estradiol relieves perimenopausal depressive symptoms | Defines a “hormone-window” where add-on estradiol can augment standard antidepressants | [136] |
| Thyroid-hormone receptors (TR-α/β) | Low-grade “cerebral hypothyroidism” slows cortical metabolism | Network meta-analysis of 65 RCTs finds liothyronine (T3) among the most effective augmentation agents for treatment-resistant depression | Supports low-dose T3 (25–50 µg/day) augmentation in refractory MDD | [137] |
| Central insulin receptor signalling | Insulin resistance (IR) associates with BBB leakage and worse mood | MRI study links extensive BBB leakage + IR to more severe bipolar depression | Points to metformin/lifestyle or GLP-1RA use to normalise IR and mood | [138] |
| GLP-1 receptor | Gut–brain incretin signalling modulates neuroinflammation and reward circuits | Meta-analysis of 6 trials (n ≈ 2070) shows GLP-1R agonists reduce depression scores vs. controls (SMD = −0.12) | Liraglutide/semaglutide offer weight-independent mood benefits; trials in primary MDD underway | [133] |
| PPAR-γ receptor | Nuclear receptor that couples metabolism and inflammation | Double-blind RCT (n = 56) found pioglitazone safe but not superior to placebo for bipolar depression; leptin change tracked symptom change | Suggests PPAR-γ modulation may help selected metabolic-inflammatory subgroups | [134] |
| Melatonin MT1/MT2 (plus 5-HT2C antagonism) | Circadian misalignment and metabolic dyscontrol in MDD | Large real-world VIVALDI cohort confirms agomelatine’s antidepressant efficacy and good tolerability | Chronobiotic strategy useful where sleep–wake disruption co-drives depression | [135] |
| Gene/ Receptor | Variant/Strategy (Last-Decade Evidence) | Key Finding Relevant to Depression | Reference |
|---|---|---|---|
| IL-6 (IL6) | Persistently elevated baseline serum IL-6 (systemic low-grade inflammation) | High IL-6 and CRP at baseline predicted a new MDD diagnosis nine years later in a population cohort, underscoring cytokine priming as a risk factor | [154] |
| TLR4 (LPS sensor) | “Leaky-gut” translocation of LPS, zonulin ↑/I-FABP ↑ in adolescents with MDD | Raised gut-permeability markers suggest endotoxin leakage that can activate TLR4 on monocytes and microglia, fuelling neuro-inflammation | [155] |
| P2RX7 → NLRP3 inflammasome | ATP-driven P2X7 activation/genetic or drug blockade | Review of 2024 summarises human & rodent data: P2X7-triggered NLRP3 activation elevates IL-1β; selective antagonists or knock-out reverse anhedonia & despair-like behaviour | [147] |
| FFAR2 (GPR43) | Exogenous short-chain fatty acid (butyrate) supplementation | SCFA administration restores microglial homeostasis, repairs BBB and abolishes depressive-like behaviour in stress- or diet-induced mouse models; human MDD plasma shows SCFA deficit | [145] |
| IDO1/Kynurenine pathway | Microbiome-driven ↑ Kynurenine: Tryptophan ratio | Multi-omics study links gut dysbiosis to skewed kynurenine metabolism and higher depressive severity, implicating IDO1 activation as a neurotoxic switch | [156] |
| Microbiota (multi-strain probiotic) | 8-week adjunctive probiotic RCT in SSRI partial responders | Randomised trial (n = 49) showed greater HAM-D improvement and reduced plasma IL-6 vs. placebo, supporting “psychobiotic” augmentation | [152] |
| Gene/Receptor | Variant/Strategy (Last-Decade Data) | Key Finding Relevant to Depression | Reference |
|---|---|---|---|
| BDNF | Promoter CpG-87 hyper-methylation (exon IV) | Hypermethylation dampens BDNF transcription; in a 199-patient cohort, it predicted poorer SSRI/SNRI response, whereas demethylation tracked remission. | [172] |
| NTRK2 (TrkB) | rs2579372 polymorphism | Risk allele linked to smaller bilateral hippocampal volumes and higher odds of treatment resistance; volume statistically mediated the genotype-outcome link. | [165] |
| Synaptic scaffolds (PSD95/DLG4, SHANK3, GRIA2) | Cell-type transcriptional shift (snRNA-seq, sgACC) | Single-nucleus TWAS of 320 post-mortem brains showed coordinated down-regulation of excitatory-synapse genes and up-regulation of microglial pruning genes in MDD. | [173] |
| mTORC1 pathway | Ketamine ± rapamycin manipulation | Ketamine’s rapid spine gain and antidepressant behaviour required mTORC1; intra-PFC rapamycin blocked both molecular and behavioural effects in rodents. | [174] |
| VEGF | Baseline plasma level and treatment response | Lower baseline VEGF predicted non-response, while responders showed VEGF increases after ECT/rTMS, implicating inducible angiogenic signalling in recovery. | [175] |
| NEGR1 | Brain over-expression | Elevating NEGR1 in ventral hippocampus induced anxiety-/depression-like phenotypes and synaptic dysfunction; knock-down or rescue reversed stress anhedonia. | [171] |
| Study | Sample (Follow-Up) | Environmental Exposure | Genetic Measure | Key Result |
|---|---|---|---|---|
| Gao et al., 2023 [182] | 398,241 UK Biobank adults (median 8.7 y) | Annual PM2.5, NOx, NO2 | Genome-wide PRS for depression/anxiety | Highest pollution quintile plus high PRS: HR 1.11 (95% CI 1.05–1.18) for incident mood-anxiety disorders; significant additive interaction |
| Fu et al., 2022 [181] | ~500,000 adults prospective cohort | PM2.5, PM10, NO2, NOx | 11-SNP genetic-risk score | Air pollutants + high genetic risk produced relative-excess risk due to interaction (RERI) 0.10–0.15 for depression |
| Gene/Receptor Target | Drug/Strategy | Key Recent Finding | References |
|---|---|---|---|
| NMDA (GluN2B-containing) receptor | Esketamine nasal spray, non-competitive NMDA antagonist | Phase-3 ASPIRE trials showed a clinically meaningful fall in depressive symptoms and suicidal ideation 24 h after the first dose in severely ill MDD patients | [197] |
| GABAA receptor (extrasynaptic δ-containing) | Zuranolone oral neuro-steroid PAM | A phase-3 RCTs met the MADRS primary end-point after a 14-day, once daily 50 mg course with benefits visible by Day 3 | [199] |
| Kappa-opioid receptor (KOR) | Aticaprant (JNJ-67953964) antagonist | Adjunctive phase-2 trial delivered a −5.6 MADRS advantage over placebo at Week 4; a 2025 phase-3 programme was halted for futility, illustrating target-risk | [200] |
| Muscarinic M4 receptor | Emraclidine (CVL-231) positive allosteric modulator | Brain-penetrant, highly selective M4 PAM produced antipsychotic-like efficacy without cognitive burden in early trials and is now moving into mood-disorder studies | [201,202] |
| Multi-ancestry GWAS loci (354 genes) | Genomic discovery platform | 2024 mega-GWAS mapped 354 depression-risk loci enriched for synaptic-vesicle and neurodevelopmental genes—a roadmap for future receptor-based drugs | [203] |
| Receptor | Typical State in Depression | Functional Consequence | Therapeutic Logic | References |
|---|---|---|---|---|
| MOR | Hypofunction/partial engagement | Reduced antidepressant and anxiolytic tone; possible increased suicidal ideation | Restore MOR signaling (e.g., low-dose buprenorphine, partial agonists) | [214] |
| KOR | Overactivated by stress-induced dynorphins | Dysphoria, anhedonia | Block KOR (e.g., aticaprant) | [200] |
| DOR | Reduced expression in key brain regions (amygdala, hippocampus) | Impaired mood regulation, increased anxiety, cognitive-emotional deficits | Activate DOR (investigational agonists) | [217] |
| Domain | Gene/ Receptor | Robustly Documented Variant/Alteration | Main Phenotypic Signal in Affective Pathology | References |
|---|---|---|---|---|
| Serotonin | HTR1A | rs6295 (C-1019G, promoter) | increase presynaptic 5-HT1A, decrease cortical binding; slower or poorer SSRI response | [20,228] |
| Dopamine | DRD2/ANKK1 | rs1800497 (Taq1A, A1) | 5–12% decrease striatal D2/3 BP; higher anhedonia & reward-blunting in MDD | [74,229] |
| Glutamate | GRIN2A | rs7192557 (intronic) | Replicated in tardive dyskinesia; only nominal signals for MDD—not GW-significant | [230] |
| GABA | GABRA5 | α5-GABA_A NAMs | Rapid antidepressants in animals, restoring synaptic strength much like ketamine, yet without NMDAR blockade | [231] |
| Neuropeptide/Stress | CRHR1 | rs110402 | A-allele buffers, G-allele amplifies childhood-abuse risk for adult MDD (G × E) | [232,233] |
| Hormonal (HPA axis) | NR3C1 | Hyper-methylation of promoter exon 1F in neonates of depressed mothers | Alters infant cortisol reactivity; candidate mechanism for perinatal MDD transmission | [196] |
| Innate immune | TLR4 | Asp299Gly (D299G) | Loss-of-function variant reduces pro-inflammatory signaling; mixed evidence for mood effects—no melancholic specificity, possibly associated with inflammation-mediated depression | [234] |
| Neurotrophic | BDNF | Val66Met (rs6265) | Met carriers show attenuated rapid antidepressant & anti-suicidal response to ketamine | [235,236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oatu, A.; Trifu, S.; Coman, E. Molecular Mechanisms of Depression: The Interplay Between Genes and Receptors. Int. J. Mol. Sci. 2025, 26, 11325. https://doi.org/10.3390/ijms262311325
Oatu A, Trifu S, Coman E. Molecular Mechanisms of Depression: The Interplay Between Genes and Receptors. International Journal of Molecular Sciences. 2025; 26(23):11325. https://doi.org/10.3390/ijms262311325
Chicago/Turabian StyleOatu, Anamaria, Simona Trifu, and Elena Coman. 2025. "Molecular Mechanisms of Depression: The Interplay Between Genes and Receptors" International Journal of Molecular Sciences 26, no. 23: 11325. https://doi.org/10.3390/ijms262311325
APA StyleOatu, A., Trifu, S., & Coman, E. (2025). Molecular Mechanisms of Depression: The Interplay Between Genes and Receptors. International Journal of Molecular Sciences, 26(23), 11325. https://doi.org/10.3390/ijms262311325

