Genetic Susceptibility to Sport-Related Muscle Injuries: Insights from the Literature and Novel Gene Candidates
Abstract
1. Introduction
2. Genes Significantly Associated with Susceptibility to Sport-Related Muscle Injuries
2.1. Genes Involved in the Structural Organization of Muscle Fibers and ECM
2.2. Genes Related to Muscle Growth, Development, and Regeneration
2.3. Genes Associated with Metabolism and Energy Homeostasis
2.4. Genes Involved in Inflammatory and Stress-Response Pathways
2.5. Genes Associated with Membrane Integrity, Ion Transport, and Signaling Pathways
2.6. Genes Associated with the Control of Vascular Tone and Muscle Perfusion
3. Candidate Genes Potentially Associated with Muscle Injury Risk in Athletes
| Gene * | Chromosomal Location * | Encoded Protein * | Protein Function * | Clinical Significance * | Possible Effect of Mutations on Muscle Injury | References |
|---|---|---|---|---|---|---|
| ACTA1 | 1q42.13 | actin α 1 | a crucial component of muscle fibers essential for muscle contraction and maintaining muscle structure | myopathies, including nemaline myopathy, congenital myopathy with excess of thin myofilaments, congenital myopathy with cores, and congenital myopathy with fiber-type disproportion | disrupts actin filament structure and muscle fiber integrity, leading to impaired contraction and increased muscle injury risk | [101] |
| ANO5 | 11p14.3 | anoctamin 5 | a multi-pass membrane enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen, and is involved in muscular excitation and contraction | muscle and bone disorders such as gnathodiaphyseal dysplasia | impairs membrane repair after microtears | [102] |
| ATP2A1 | 16p11.2 | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 | an enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen; it is involved in muscular contraction and relaxation | Brody myopathy | defective muscle relaxation, reduced contractile efficiency, and increased susceptibility to exercise-induced muscle damage | [103] |
| BGN | Xq28 | biglycan | a protein plays a role in the extracellular matrix of various tissues; it is involved in collagen fibril assembly, cell signaling, and may also regulate inflammation and innate immunity | X-linked spondyloepimetaphyseal dysplasia and thoracic aortic aneurysm syndrome | impairs collagen organization and weakened muscle–tendon integrity | [104] |
| CACNA1S | 1q32.1 | calcium voltage-gated channel subunit α1 S | it plays a critical role in muscle contraction by regulating calcium ion release within muscle cells | hypokalemic periodic paralysis, thyrotoxic periodic paralysis and malignant hyperthermia susceptibility | impairs edexcitation–contraction coupling, which may reduce contractile efficiency | [105] |
| CAV3 | 3p25.3 | caveolin 3 | scaffolding proteins for organizing and concentrating certain caveolin-interacting molecules | muscle disorders, including limb-girdle muscular dystrophy (LGMD) 1C, rippling muscle disease, and isolated hyperCKemia | membrane instability and impairs signal transduction | [106] |
| CLCN1 | 7q34 | chloride voltage-gated channel 1 | it regulates the electric excitability of the skeletal muscle membrane | recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen) | membrane hyperexcitability and myotonia, which may increase mechanical stress on fibers | [107] |
| GDF5 | 20q11.22 | growth differentiation factor 5 | it regulates the development of numerous tissue and cell types, including cartilage, joints, brown fat, teeth, and the growth of neuronal axons and dendrites | acromesomelic dysplasia, brachydactyly, chondrodysplasia, multiple synostoses syndrome, proximal symphalangism, and susceptibility to osteoarthritis | alters tendon and muscle attachment sites | [108] |
| DES | 2q35 | desmin | forms a stable intracytoplasmic filamentous network connecting myofibrils to each other and to the plasma membrane | desmin-related myopathy, a familial cardiac and skeletal myopathy (CSM), and distal myopathies | muscle fiber disarray, weakness | [109] |
| DMD | Xp21.2-p21.1 | dystrophin | forms a component of the dystrophin-glycoprotein complex (DGC), which bridges the inner cytoskeleton and the extracellular matrix | Duchenne muscular dystrophy, Becker muscular dystrophy, cardiomyopathy | impairs sarcolemma stability during contraction and increase susceptibility to muscle fiber damage compromise | [110] |
| DYSF | 2p13.2 | dysferlin | crucial to maintaining the structural integrity of muscle cells, involved in repairing damage to sarcolemma; also plays a role in muscle regeneration, vesicle trafficking, and calcium signaling | muscular dystrophies like Miyoshi myopathy and limb–girdle muscular dystrophy type 2B | defective membrane resealing after mechanical stress | [111] |
| FBN2 | 5q23.3 | fibrillin-2 | a component of connective tissue microfibrils and may be involved in elastic fiber assembly | congenital contractural arachnodactyly | weakening connective tissue support for muscle | [112] |
| FGF9 | 13q12.11 | fibroblast growth factor 9 | possesses broad mitogenic and cell survival activities, and is involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion | multiple synostoses syndrome type 3, craniosynostosis and skeletal abnormalities | impairs muscle and skeletal development, regeneration, and vascularization | [113] |
| FMOD | 1q32.1 | fibromodulin | owing to the interaction with type I and type II collagen fibrils and in vitro inhibition of fibrillogenesis, the encoded protein may play a role in the assembly of extracellular matrix; it may also regulate TGF-beta activities by sequestering TGF-beta into the extracellular matrix. | osteoarthritis, tendon injuries, and certain fibrotic disorders | compromises ECM organization and tendon resilience | [114,115] |
| FOXO3 | 6q21 | forkhead box O3 | a trigger for apoptosis through expression of genes necessary for cell death | longevity, several cancer risk, neurodegeneration, and cardiometabolic disorders | enhance proteolysis and reduce regenerative capacity | [116] |
| HSPG2 | 1p36.12 | heparan sulfate proteoglycan 2 | a versatile protein with critical roles in maintaining tissue structure, regulating cell behavior, and influencing vascular function | Schwartz–Jampel syndrome type 1, Silverman-Handmaker type of dyssegmental dysplasia, and tardive dyskinesia | impair structural support, neuromuscular junction stability, and tissue repair | [117] |
| IGF1 | 12q23.2 | Insulin-like growth factor 1 | a versatile hormone that is essential for growth, development, and metabolic regulation | insulin-like growth factor I deficiency | reduces muscle growth, regeneration, and repair capacity | [118] |
| ITGB2 | 21q22.3 | integrin subunit β 2 | integrin is vital for cell adhesion and signaling, particularly in the immune system | Leukocyte Adhesion Deficiency type 1 | disrupt leukocyte adhesion and immune signaling, which may impair inflammatory response and tissue repair | [119] |
| LMNA | 1q22 | lamin A/C | structural protein involved in nuclear stability, chromatin structure and gene expression | Emery–Dreifuss muscular dystrophy, familial partial lipodystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy, Charcot–Marie–Tooth disease, and Hutchinson–Gilford progeria syndrome | impairs nuclear integrity, alters mechanotransduction and defective muscle regeneration | [120] |
| NEB | 2q23.3 | nebulin | component of the cytoskeletal matrix that coexists with the thick and thin filaments within the sarcomeres of skeletal muscle | nemaline myopathy | impair force generation and greater susceptibility to muscle fiber damage | [121] |
| MTM1 | Xq28 | myotubularin 1 | enzyme plays a crucial role in muscle cell development and maintenance by acting as a phosphatase | X-linked myotubular myopathy | defective excitation–contraction coupling | [122] |
| MSTN | 2q32.2 | myostatin | negative regulator of skeletal muscle cell proliferation and differentiation | increased skeletal muscle mass in humans and other mammals | alters muscle fiber composition and elasticity | [79,80,81,82,83,84] |
| MYH1-4 MYH6-7 | 17p13.1 14q11.2 | myosin heavy chain 1–7 | a key component of fast-twitch muscle fibers and is involved in skeletal muscle contraction | MYH1—autoimmune/inflammatory myopathies; MYH2—congenital myopathy with ophthalmoplegia; MYH3 → distal arthrogryposis syndromes; MYH7—cardiomyopathies and skeletal myopathies (Laing distal, myosin storage) | disrupt sarcomeric function, fiber type specialization, and contractile force generation | [123] |
| MYOD1 | 11p15.1 | myogenic differentiation 1 | a protein that acts as a transcription factor, specifically activating the expression of genes necessary for muscle cell differentiation, the formation of muscle fibers, and muscle regeneration | Rhabdomyosarcoma and other cancers | impairs muscle regeneration and repair after damage | [124] |
| MYOG | 1q32.1 | myogenin | transcription factor that can induce myogenesis in a variety of cell types in tissue culture; it is essential for the development of functional skeletal muscle | implicated in congenital muscle hypoplasia (experimental evidence) and serves as a hallmark of rhabdomyosarcoma in diagnostics | impair regeneration and repair of damaged fibers | [125] |
| MYF5 | 12q21.31 | myogenic factor 5 | transcription factor involved in several processes, including muscle cell fate commitment, positive regulation of cell differentiation, and skeletal muscle cell differentiation | potential contributors to congenital myopathies, and its expression serves as a marker in rhabdomyosarcoma | reduce regenerative capacity after damage | [126] |
| MYF6 | 12q21.31 | myogenic factor 6 | a transcription factor involved in muscle development and regeneration | congenital myopathy, facioscapulohumeral muscular dystrophy, and rhabdomyosarcoma | impair regeneration and repair | [126] |
| PAX3 | 2q36.1 | paired box 3 | a transcription factor crucial for embryonic development, particularly in the formation of neural crest cells and skeletal muscle | Waardenburg syndrome, craniofacial-deafness-hand syndrome, and alveolar rhabdomyosarcoma | impairs muscle regeneration after damage | [127,128] |
| PAX7 | 1p36.13 | paired box 7 | a transcription factor crucial for the development and maintenance of skeletal muscle and the nervous system, it plays a key role in the regulation of muscle satellite cells, ensuring their self-renewal and differentiation into muscle fibers | rhabdomyosarcoma | impairs muscle regeneration after damage | [129,130] |
| PPARGC1A | 4p15.2 | PPARG coactivator 1 α | a transcriptional coactivator of multiple metabolic pathways, with a direct impact on mitochondrial biogenesis, oxidation of fatty acids, metabolism of carbohydrates, thermogenesis, and reactive oxygen species detoxification | metabolic, cardiovascular, neurodegenerative, and muscle-related disorders | impairs mitochondrial biogenesis and oxidative metabolism, reducing fatigue resistance and recovery | [91,92,93,94,95,96,97] |
| RYR1 | 19q13.2 | ryanodine receptor 1 | functions as a calcium release channel in the sarcoplasmic reticulum but also serves to connect the sarcoplasmic reticulum and transverse tubule | malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia | dysregulates excitation–contraction coupling, abnormal calcium homeostasis, and increases susceptibility to exertional rhabdomyolysis | [85,86,87,88] |
| SCN4A | 17q23.3 | sodium voltage-gated channel α subunit 4 | responsible for the generation and propagation of action potentials in muscle | several myotonia and periodic paralysis disorders | alters excitability and myotonic or periodic paralysis phenotypes, which may increase mechanical stress on fibers | [131,132] |
| SGCA SGCB SGCD SGCG | 17q21.334q12 5q33.2 13q12.12 | Sarcoglycan α, β, δ, γ | transmembrane components in the dystrophin–glycoprotein complex which help stabilize the muscle fiber membranes and link the muscle cytoskeleton to the extracellular matrix | limb–girdle muscular dystrophy | weakens sarcolemmal stability during contraction and muscle fiber degeneration | [133] |
| TGFBI | 5q31.1 | transforming growth factor β | protein plays a role in cell–collagen interactions | multiple types of corneal dystrophy | impairs tissue repair processes | [134,135] |
| TGFBR3 | 1p22.1 | transforming growth factor β receptor 3 | receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor superfamily members influencing cell growth, differentiation, and extracellular matrix remodeling | various cancers | impairs ECM homeostasis, inflammation control, and tissue repair | [136] |
| TNF | 6p21.33 | tumor necrosis factor | regulation of a wide spectrum of biological processes including cell proliferation, differentiation, apoptosis, lipid metabolism, and coagulation | cerebral malaria, septic shock, and Alzheimer disease | exacerbates muscle fiber damage and delay repair | [89,90] |
| TTN | 2q31.2 | titin | a crucial component of muscle cells, particularly in the heart and skeletal muscles; titin acts as a biological spring within structures called sarcomeres, the basic units of muscle contraction, and is essential for muscle structure, flexibility, stability, and the ability to stretch; it also plays a role in chemical signaling and sarcomere assembly | Dilated Cardiom Hypertrophic Cardiomyopathy yopathy, skeletal muscle diseases, including tibial muscular dystrophy, limb–girdle muscular dystrophy, and centronuclear myopathy | increases muscle stiffness, worsens force transmission and repair capacity | [71,72,73,74,75,76,77,78] |
| TPM2 | 9p13.3 | tropomyosin 2 | crucial for muscle contraction; it plays a key role in regulating the interaction between actin and myosin filaments, the proteins responsible for generating the force needed for muscle movement | cap disease, nemaline myopathy and distal arthrogryposis syndromes | impairs actin–myosin interaction and force generation | [137,138] |
| TPM3 | 1q21.3 | tropomyosin 3 | provides stability to actin filaments and regulates access of other actin-binding proteins | Myopathies, including nemaline myopathy, congenital fiber-type disproportion, cap myopathy, and neuromuscular transmission defects | reduces contractile efficiency and structural stability | [137,138,139] |
| VEGFA | 6p21.1 | vascular endothelial growth factor A | growth factor induces proliferation and migration of vascular endothelial cells | pathological angiogenesis (eye disease, cancer) and vascular dysfunction (cardiovascular, inflammatory disorders) | impair angiogenesis and muscle perfusion, limiting oxygen and nutrient delivery during recovery | [140] |
4. Perspectives
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| A | Adenine |
| ACE | Angiotensin I-converting enzyme |
| ACL | Anterior cruciate ligament |
| ACTA1 | Actin α 1 |
| ACTN3 | Actinin alpha 3 |
| ACVR2A | Activin a receptor type 2A |
| ACVR2B | Activin a receptor type 2B |
| ADAMTS14 | A disintegrin and metalloproteinase with thrombospondin motifs 14 |
| AGT | Angiotensinogen |
| AMPD1 | Adenosine monophosphate deaminase 1 |
| ANO5 | Anoctamin 5 |
| ATP | Adenosine triphosphate |
| ATP2A1 | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 |
| BDKRB2 | Bradykinin receptor B2 |
| BDNF | Brain-derived neurotrophic factor |
| BGN | Biglycan |
| C | Cytosine |
| CACNA1S | Calcium voltage-gated channel subunit α1 S |
| CASP8 | Caspase 8 |
| CAV3 | Caveolin 3 |
| CCL2 | C-C motif chemokine ligand 2 |
| CK | Creatine kinase |
| CKM | Creatine kinase, M-type |
| CLCN1 | Chloride voltage-gated channel 1 |
| COL1A1 | Collagen type I alpha 1 chain |
| COL5A1 | Collagen type V alpha 1 chain |
| COL22A1 | Collagen type XXII α-1 chain |
| COMT | Catechol-O-methyltransferase |
| DCN | Decorin |
| D | Deletion |
| DES | Desmin |
| DMD | Dystrophin |
| DRD2 | Dopamine receptor D2 |
| DYSF | Dysferlin |
| ECM | Extracellular matrix |
| ELN | Elastin |
| eNOS | Endothelial nitric oxide synthase |
| ERM | Exertional rhabdomyolysis |
| ESR1 | Estrogen receptor 1 |
| FBN2 | Fibrillin-2 |
| FGF | Fibroblastic growth factor |
| FGF9 | Fibroblastic growth factor 9 |
| FMOD | Fibromodulin |
| FOXO3 | Forkhead box O3 |
| G | Guanine |
| GDF5 | Growth differentiation factor 5 |
| GEFT | Rho guanine nucleotide exchange factor |
| GWAS | Genome-wide association studies |
| HGF | Hepatocyte growth factor |
| HIF1A | Hypoxia inducible factor 1α |
| HSPG2 | Heparan sulfate proteoglycan 2 |
| I | Insertion |
| IGF1 | Insulin-like growth factor 1 |
| IGF2 | Insulin-like growth factor 2 |
| IL1A | Interleukin 1 α |
| IL1B | Interleukin 1 β |
| IL6 | Interleukin 6 |
| ITGB2 | Integrin subunit β 2 |
| LIF | Leukemia inhibitory factor |
| LMNA | Lamin A/C |
| MAO | Monoamine oxidase |
| MCT1 | Monocarboxylate transporter 1 |
| MH | Malignant hyperthermia |
| Met | Methionine |
| MLCK | Myosin light chain kinase |
| MMP1 | Matrix metalloproteinase 1 |
| MMP3 | Matrix metalloproteinase 3 |
| MMP12 | Matrix metalloproteinase 12 |
| MRF6 | Myogenic factor 6 |
| MSTN | Myostatin |
| MTM1 | Myotubularin 1 |
| MYF5 | Myogenic factor 5 |
| MYH1-7 | Myosin heavy chain 1–7 |
| MYOD1 | Myogenic differentiation 1 |
| MYOG | Myogenin |
| NCBI | National Center for Biotechnology Information |
| NEB | Nebulin |
| NGS | Next-generation sequencing |
| NO | Nitric oxide |
| NOS3 | Nitric oxide synthase 3 |
| PAX3 | Paired box 3 |
| PAX7 | Paired box 7 |
| PPARGC1A | Peroxisome proliferator-activated receptor gamma coactivator 1 α |
| R | Codon for arginine at position 577 of ACTN3 |
| RYR1 | Ryanodine receptor 1 |
| SCN4A | Sodium voltage-gated channel α subunit 4 |
| SGCA | Sarcoglycan α |
| SGCB | Sarcoglycan β |
| SGCD | Sarcoglycan δ |
| SGCG | Sarcoglycan γ |
| SNP | Single nucleotide polymorphism |
| SOX15 | Sex-determining region Y (SRY)-box transcription factor 15 |
| T | Thymine |
| TGFBI | Transforming growth factor β |
| TGFBR3 | Transforming growth factor β receptor 3 |
| TGS | Total genotype score |
| Thr | Threonine |
| TNC | Tenascin C |
| TNFβ | Transforming growth factor-β |
| TPM2 | Tropomyosin 2 |
| TPM3 | Tropomyosin 3 |
| TTN | Titin |
| VEGFA | Vascular endothelial growth factor A |
| VDR | Vitamin D receptor |
| VWA5A | Von Willebrand factor A domain containing 5A |
| X | Stop codon at position 577 of ACTN3 |
References
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Filbay, S.R.; Skou, S.T.; Bullock, G.S.; Le, C.Y.; Räisänen, A.M.; Toomey, C.; Ezzat, A.M.; Hayden, A.; Culvenor, A.G.; Whittaker, J.L.; et al. Long-term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: A systematic review and meta-analysis for the OPTIKNEE consensus. Br. J. Sports Med. 2022, 56, 1465–1474. [Google Scholar] [CrossRef]
- Torrejón, L.N.; Martínez-Serrano, A.; Villalón, J.M.; Alcaraz, P.E. Economic impact of muscle injury rate and hamstring strain injuries in professional football clubs: Evidence from LaLiga. PLoS ONE 2024, 19, e0314567. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Kolbe-Alexander, T.; Nguyen, B.; Katzmarzyk, P.T.; Pratt, M.; Lawson, K.D. The economic burden of physical inactivity: A systematic review and critical appraisal. Br. J. Sports Med. 2017, 51, 1392–1409. [Google Scholar] [CrossRef]
- Ljungqvist, A.; Schwellnus, M.P.; Bachl, N.; Collins, M.; Cook, J.; Khan, K.M.; Maffulli, N.; Pitsiladis, Y.; Riley, G.; Golspink, G.; et al. International Olympic Committee consensus statement: Molecular basis of connective tissue and muscle injuries in sport. Clin. Sports Med. 2008, 27, 231–239. [Google Scholar] [CrossRef]
- Silvers-Granelli, H.J.; Cohen, M.; Espregueira-Mendes, J.; Mandelbaum, B. Hamstring muscle injury in the athlete: State of the art. J. ISAKOS 2021, 6, 170–181. [Google Scholar] [CrossRef]
- Rahim, M.; Collins, M.; September, A.V. Genes and musculoskeletal soft-tissue injuries. Med. Sport Sci. 2016, 61, 68–91. [Google Scholar] [CrossRef]
- Kaynak, M.; Nijman, F.; van Meurs, J.; Reijman, M.; Meuffels, D.E. Genetic variants and anterior cruciate ligament rupture: A systematic review. Sports Med. 2017, 47, 1637–1650. [Google Scholar] [CrossRef]
- Massidda, M.; Miyamoto-Mikami, E.; Kumagai, H.; Ikeda, H.; Shimasaki, Y.; Yoshimura, M.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; et al. Association between the ACE I/D polymorphism and muscle injuries in Italian and Japanese elite football players. J. Sports Sci. 2020, 38, 2423–2429. [Google Scholar] [CrossRef]
- de Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A pilot study on the prediction of non-contact muscle injuries based on ACTN3 R577X and ACE I/D polymorphisms in professional soccer athletes. Genes 2022, 13, 2009. [Google Scholar] [CrossRef]
- Sierra, A.P.R.; Lima, G.H.O.; da Silva, E.D.S.; Maciel, J.F.D.S.; Benetti, M.P.; de Oliveira, R.A.; Kiss, M.A.P.; Ghorayeb, N.; Newsholme, P.; Pesquero, J.B.; et al. Angiotensin-converting enzyme related-polymorphisms on inflammation, muscle and myocardial damage after a marathon race. Front. Genet. 2019, 10, 984. [Google Scholar] [CrossRef]
- Larruskain, J.; Celorrio, D.; Barrio, I.; Odriozola, A.; Gil, S.M.; Fernandez-Lopez, J.R.; Nozal, R.; Ortuzar, I.; Lekue, J.A.; Aznar, J.M.; et al. Genetic variants and hamstring injury in soccer: An association and validation study. Med. Sci. Sports Exerc. 2018, 50, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Flore, L.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; Cięszczyk, P.; Maciejewska-Skrendo, A.; Tocco, F.; Calò, C.M. Association between total genotype score and muscle injuries in top-level football players: A pilot study. Sports Med. Open 2024, 10, 5. [Google Scholar] [CrossRef]
- Moreno, V.; Areces, F.; Ruiz-Vicente, D.; Ordovás, J.M.; Del Coso, J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS ONE 2020, 15, e0227548. [Google Scholar] [CrossRef]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X polymorphism is associated with the incidence and severity of injuries in professional football players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef]
- Del Coso, J.; Rodas, G.; Soler-Aguinaga, A.; López-Del Campo, R.; Resta, R.; González-Rodenas, J.; Ferrandis, J.; Moreno-Pérez, V. ACTN3 XX genotype negatively affects running performance and increases muscle injury incidence in LaLiga football players. Genes 2024, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Moreno-Pérez, V.; Del Coso, J.; Florit, D.; Osaba, L.; Lucia, A. Alpha-actinin-3 deficiency might affect recovery from non-contact muscle injuries: Preliminary findings in a top-level soccer team. Genes 2021, 12, 769. [Google Scholar] [CrossRef]
- Cerit, M.; Tuncer, S.Y.; Piri, M.M.; Anılır, M.; John, G.; Semenova, E.A.; Larin, A.K.; Generozov, E.V.; Ahmetov, I.I.; Ulucan, K.; et al. The ACTN3 R577X nonsense allele is under-represented in professional volleyball players and associated with an increased risk of muscle injury in female players. Genes 2025, 16, 1076. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Kumagai, H.; Tanisawa, K.; Taga, Y.; Hirata, K.; Kikuchi, N.; Kamiya, N.; Kawakami, R.; Midorikawa, T.; Kawamura, T.; et al. Female athletes genetically susceptible to fatigue fracture are resistant to muscle injury: Potential role of COL1A1 variant. Med. Sci. Sports Exerc. 2021, 53, 1855–1864. [Google Scholar] [CrossRef]
- Pruna, R.; Artells, R.; Ribas, J.; Montoro, B.; Cos, F.; Muñoz, C.; Rodas, G.; Maffulli, N. Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: Influence on degree of injury and recovery time. BMC Musculoskelet. Disord. 2013, 14, 221. [Google Scholar] [CrossRef]
- Pruna, R.; Artells, R.; Lundblad, M.; Maffulli, N. Genetic biomarkers in non-contact muscle injuries in elite soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3311–3318. [Google Scholar] [CrossRef]
- Varamenti, E.; Pullinger, S.A.; Kollias, P.; Chini, V. Identification of specific injury-related SNPs in high-level athletes of Arab origin: A pilot study. Heliyon 2024, 10, e37285. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Kumagai, H.; Kikuchi, N.; Kamiya, N.; Miyamoto, N.; Fuku, N. eQTL variants in COL22A1 are associated with muscle injury in athletes. Physiol. Genom. 2020, 52, 588–589. [Google Scholar] [CrossRef]
- Pruna, R.; Ribas, J.; Montoro, J.B.; Artells, R. The impact of single nucleotide polymorphisms on patterns of non-contact musculoskeletal soft tissue injuries in a football player population according to ethnicity. Med. Clin. 2015, 144, 105–110. [Google Scholar] [CrossRef]
- Maestro, A.; Del Coso, J.; Aguilar-Navarro, M.; Gutiérrez-Hellín, J.; Morencos, E.; Revuelta, G.; Casares, E.R.; Perucho, T.; Perucho, D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front. Genet. 2022, 13, 1015745. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Zempo, H.; Kumagai, H.; Hirata, K.; Takaragawa, M.; Yoshihara, T.; Fuku, M.; Kikuchi, N.; Kamiya, N.; Miyamoto, N.; et al. Genome-wide association study on muscle stiffness identified novel locus for predisposition to muscle strain injury. Med. Sci. Sports Exerc. 2025, 57, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Morencos, E.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Maestro, A.; Perucho, T.; Coso, J.D. Association of the CKM rs8111989 polymorphism with injury epidemiology in football players. Int. J. Sports Med. 2023, 44, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Eynon, N.; Bachis, V.; Corrias, L.; Culigioni, C.; Piras, F.; Cugia, P.; Scorcu, M.; Calò, C.M. Influence of the MCT1 rs1049434 on indirect muscle disorders/injuries in elite football players. Sports Med. Open 2015, 1, 33. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Miyamoto-Mikami, E.; Hirata, K.; Kikuchi, N.; Kamiya, N.; Hoshikawa, S.; Zempo, H.; Naito, H.; Miyamoto, N.; Fuku, N. ESR1 rs2234693 polymorphism is associated with muscle injury and muscle stiffness. Med. Sci. Sports Exerc. 2019, 51, 19–26. [Google Scholar] [CrossRef]
- Massidda, M.; Corrias, L.; Bachis, V.; Cugia, P.; Piras, F.; Scorcu, M.; Calò, C.M. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp. Ther. Med. 2015, 9, 1974–1978. [Google Scholar] [CrossRef]
- Gabdulkayum, A.; Amangeldikyzy, S.; Khassanova, S.; Yerezhepov, A.; Akilzhanov, K.; Kozhamkulov, U.; Rakhimova, S.; Kairov, U.; Yerezhepov, D.; Akilzhanova, A. The association of VDR gene polymorphisms with serum vitamin D levels and injury predisposition in elite athletes of Kazakhstan. Eur. J. Appl. Physiol. 2025, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand. J. Med. Sci. Sports 2022, 32, 338–350. [Google Scholar] [CrossRef]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [PubMed]
- Baumert, P.; Adams, B.; Cabot, J.A.; Edwards, V.; Johnson, K.O.; Stewart, C.E.; Lake, M.J.; Drust, B.; Erskine, E.R. Variations of collagen-encoding genes are associated with exercise-induced muscle damage. Physiol. Genom. 2018, 50, 691–693. [Google Scholar] [CrossRef]
- MacArthur, D.G.; North, K.N. ACTN3: A genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev. 2007, 35, 30–34. [Google Scholar] [CrossRef]
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef]
- Yang, N.; Schindeler, A.; McDonald, M.M.; Seto, J.T.; Houweling, P.J.; Lek, M.; Hogarth, M.; Morse, A.R.; Raftery, J.M.; Balasuriya, D.; et al. α-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone 2011, 49, 790–798. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than just a gene for speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis. PLoS ONE 2019, 14, e0217390. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Astratenkova, I.V.; Popov, D.V.; Vinogradova, O.L.; Rogozkin, V.A. The ACTN3 R577X polymorphism in Russian endurance athletes. Br. J. Sports Med. 2010, 44, 649–652. [Google Scholar] [CrossRef]
- Zouhal, H.; Del Coso, J.; Jayavel, A.; Tourny, C.; Ravé, G.; Jebabli, N.; Clark, C.C.T.; Barthélémy, B.; Hackney, A.C.; Abderrahman, A.B. Association between ACTN3 R577X genotype and risk of non-contact injury in trained athletes: A systematic review. J. Sport Health Sci. 2023, 12, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Miyamoto-Mikami, E.; Hirata, K.; Kimura, N.; Fuku, N. Association analysis of the ACTN3 R577X polymorphism with passive muscle stiffness and muscle strain injury. Scand. J. Med. Sci. Sports 2018, 28, 1209–1214. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Baltazar-Martins, G.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Oliván, J.; Del Coso, J. Effect of ACTN3 R577X genotype on injury epidemiology in elite endurance runners. Genes 2021, 12, 76. [Google Scholar] [CrossRef]
- Iwao-Koizumi, K.; Ota, T.; Hayashida, M.; Yonetani, Y.; Nakata, K.; Kinoshita, K.; Koyanagi, Y.; Murata, S. The ACTN3 gene is a potential biomarker for the risk of non-contact sports injury in female athletes. J. Mol. Biomark. Diagn. 2014, S6, 2. [Google Scholar] [CrossRef]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Calò, C.M. Influence of the COL5A1 rs12722 on musculoskeletal injuries in professional soccer players. J. Sports Med. Phys. Fitness 2015, 55, 1348–1353. [Google Scholar] [PubMed]
- Kadler, K.E.; Baldock, C.; Bella, J.; Boot-Handford, R.P. Collagens at a glance. J. Cell Sci. 2007, 120, 1955–1958. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Yata, H.; Tsunoda, N. Effect of gene polymorphisms on the mechanical properties of human tendon structures. Springerplus 2013, 2, 495. [Google Scholar] [CrossRef]
- Pabalan, N.; Tharabenjasin, P.; Phababpha, S.; Jarjanazi, H. Association of COL5A1 gene polymorphisms and risk of tendon-ligament injuries among Caucasians: A meta-analysis. Sports Med. Open 2018, 4, 41. [Google Scholar] [CrossRef]
- Braun, T.; Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol. 2011, 12, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto-Uezumi, M.; Uezumi, A.; Tsuchida, K.; Fukada, S.I.; Yamamoto, H.; Yamamoto, N.; Shiomi, K.; Hashimoto, N. Pro-insulin-like growth factor-II ameliorates age-related inefficient regenerative response by orchestrating self-reinforcement mechanism of muscle regeneration. Stem Cells 2015, 33, 2456–2468. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.L.; St Pierre Schneider, B.; Eppihimer, L.A.; Cannon, J.G. Association of IGF-I and IGF-II with myofiber regeneration in vivo. Muscle Nerve 1999, 22, 347–354. [Google Scholar] [CrossRef]
- Kartibou, J.; El Ouali, E.M.; Del Coso, J.; Hackney, A.C.; Rfaki, A.; Saeidi, A.; Hage, R.E.I.; Granacher, U.; Mesfioui, A.; Zouhal, H. Association between the c.34C>T (rs17602729) polymorphism of the AMPD1 gene and the status of endurance and power athletes: A systematic review and meta-analysis. Sports Med. 2025, 55, 1429–1448. [Google Scholar] [CrossRef]
- Rico-Sanz, J.; Rankinen, T.; Joanisse, D.R.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE family study. Physiol. Genom. 2003, 14, 161–166. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Jakaitienė, A.; Pranculis, A.; Milašius, K.; Tubelis, L.; Utkus, A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014, 15, 58. [Google Scholar] [CrossRef]
- Varillas-Delgado, D. Association of genetic profile with muscle mass gain and muscle injury prevention in professional football players after creatine supplementation. Nutrients 2024, 16, 2511. [Google Scholar] [CrossRef]
- Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent roles of inflammation in skeletal muscle recovery from injury. Front. Physiol. 2020, 11, 87. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef] [PubMed]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Yamin, C.; Duarte, J.A.R.; Oliveira, J.M.F.; Amir, O.; Sagiv, M.; Eynon, N.; Sagiv, M.; Amir, R.E. IL6 (-174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur. J. Appl. Physiol. 2008, 104, 579–586. [Google Scholar] [CrossRef]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef]
- Clausen, T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 2003, 83, 1269–1324. [Google Scholar] [CrossRef]
- Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ. 2015, 22, 526–539. [Google Scholar] [CrossRef]
- Seale, K.; Burger, M.; Posthumus, M.; Häger, C.K.; Stattin, E.; Nilsson, K.G.; Collins, M.; September, A.V. The apoptosis pathway and CASP8 variants conferring risk for acute and overuse musculoskeletal injuries. J. Orthop. Res. 2020, 38, 680–688. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Shi, L. Advances in exercise-induced vascular adaptation: Mechanisms, models, and methods. Front. Bioeng. Biotechnol. 2024, 12, 1368901. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Saraf, F.; Rathore, V.S.; Darkazanli, K.; Liu, Y.; Korivi, M.; Bhaskar, L.V.K.S. Importance of selected genetic determinants on endurance performance and physical strength: A narrative review. Front. Physiol. 2025, 16, 1568334. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Skipworth, J.R.A.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Danser, A.H.J.; Schalekamp, M.A.D.H.; Bax, W.A.; van den Brink, A.M.; Saxena, P.R.; Riegger, G.A.J.; Schunkert, H. Angiotensin-converting enzyme in the human heart: Effect of the deletion/insertion polymorphism. Circulation 1995, 92, 1387–1388. [Google Scholar] [CrossRef]
- Yamin, C.; Amir, O.; Sagiv, M.; Attias, E.; Meckel, Y.; Eynon, N.; Sagiv, M.; Amir, R.E. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J. Appl. Physiol. 2007, 103, 2057–2061. [Google Scholar] [CrossRef]
- Granzier, H.; Labeit, S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 2007, 36, 740–755. [Google Scholar] [CrossRef]
- Linke, W.A. Titin gene and protein functions in passive and active muscle. Annu. Rev. Physiol. 2018, 80, 389–411. [Google Scholar] [CrossRef]
- Monroy, J.A.; Powers, K.L.; Gilmore, L.A.; Uyeno, T.A.; Lindstedt, S.L.; Nishikawa, K.C. What is the role of titin in active muscle? Exerc. Sport Sci. Rev. 2012, 40, 73–78. [Google Scholar] [CrossRef]
- Leońska-Duniec, A.; Borczyk, M.; Piechota, M.; Korostyński, M.; Brodkiewicz, A.; Cięszczyk, P. TTN variants are associated with physical performance and provide potential markers for sport-related phenotypes. Int. J. Environ. Res. Public Health 2022, 19, 10173. [Google Scholar] [CrossRef]
- Leońska-Duniec, A.; Maculewicz, E.; Massidda, M.; Buryta, M.; Mastalerz, A.; Cięszczyk, P. Impact of the TTN C>T polymorphism on selected variables of aerobic and anaerobic capacity after a 12-week training program. J. Hum. Kinet. 2024, 94, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Loescher, C.M.; Hobbach, A.J.; Linke, W.A. Titin (TTN): From molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 2022, 118, 2903–2918. [Google Scholar] [CrossRef] [PubMed]
- Stebbings, G.K.; Williams, A.G.; Herbert, A.J.; Lockey, S.J.; Heffernan, S.M.; Erskine, R.M.; Morse, C.I.; Day, S.H. TTN genotype is associated with fascicle length and marathon running performance. Scand. J. Med. Sci. Sports 2018, 28, 400–406. [Google Scholar] [CrossRef]
- Timmons, J.A.; Knudsen, S.; Rankinen, T.; Koch, L.G.; Sarzynski, M.; Jensen, T.; Keller, P.; Scheele, C.; Vollaard, N.B.J.; Nielsen, S.; et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J. Appl. Physiol. 2010, 108, 1487–1496. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Park, S.; Kim, Y.; Jung, J.; Lee, J.; Chang, Y.; Lee, S.P.; Park, B.C.; Wolfe, R.R.; Choi, C.S.; et al. Myostatin inhibition-induced increase in muscle mass and strength was amplified by resistance exercise training, and dietary essential amino acids improved muscle quality in mice. Nutrients 2021, 13, 1508. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Lee, J. Myostatin A55T genotype is associated with strength recovery following exercise-induced muscle damage. Int. J. Environ. Res. Public Health 2020, 17, 4900. [Google Scholar] [CrossRef]
- Kruszewski, M.; Aksenov, M.O. Association of myostatin gene polymorphisms with strength and muscle mass in athletes: A systematic review and meta-analysis of the MSTN rs1805086 mutation. Genes 2022, 13, 2055. [Google Scholar] [CrossRef]
- Leońska-Duniec, A.; Borczyk, M.; Korostyński, M.; Massidda, M.; Maculewicz, E.; Cięszczyk, P. Genetic variants in myostatin and its receptors promote elite athlete status. BMC Genom. 2023, 24, 120. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014, 32, 883–891. [Google Scholar] [CrossRef]
- Carsana, A. Exercise-induced rhabdomyolysis and stress-induced malignant hyperthermia events, association with malignant hyperthermia susceptibility, and RYR1 gene sequence variations. Sci. World J. 2013, 2013, 531465. [Google Scholar] [CrossRef]
- Liang, C.; Malik, S.; He, M.; Groom, L.; Ture, S.K.; O’Connor, T.N.; Morrell, C.N.; Dirksen, R.T. Compound heterozygous RYR1-RM mouse model reveals disease pathomechanisms and muscle adaptations to promote postnatal survival. FASEB J. 2024, 38, e23211. [Google Scholar] [CrossRef]
- Monnier, N.; Romero, N.B.; Lerale, J.; Landrieu, P.; Nivoche, Y.; Fardeau, M.; Lunardi, J. Familial and sporadic forms of central core disease are associated with mutations in the C-terminal domain of the skeletal muscle ryanodine receptor. Hum. Mol. Genet. 2001, 10, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.L.; Brooks, C.; Brown, S.L.; Ellis, F.R.; Halsall, P.J.; Quinnell, R.J.; Shaw, M.A.; Hopkins, P.M. RYR1 mutations causing central core disease are associated with more severe malignant hyperthermia in vitro contracture test phenotypes. Hum. Mutat. 2002, 20, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, T.O.; Laaksonen, D.E.; Lakka, T.A.; Herder, C.; Koenig, W.; Lindström, J.; Eriksson, J.G.; Uusitupa, M.; Kolb, H.; Laakso, M.; et al. The rs1800629 polymorphism in the TNF gene interacts with physical activity on the changes in C-reactive protein levels in the Finnish Diabetes Prevention Study. Exp. Clin. Endocrinol. Diabetes 2010, 118, 757–759. [Google Scholar] [CrossRef]
- Pereira, D.S.; Mateo, E.C.C.; de Queiroz, B.Z.; Assumpção, A.M.; Miranda, A.S.; Felício, D.C.; Rocha, N.P.; da Cruz dos Anjos, D.M.; Pereira, D.A.; Teixeira, A.L.; et al. TNF-α, IL6, and IL10 polymorphisms and the effect of physical exercise on inflammatory parameters and physical performance in elderly women. Age 2013, 35, 2455–2463. [Google Scholar] [CrossRef]
- Fernández-Verdejo, R.; Marcinko, K.; Loza-Reyes, E.; Leiva, M.; Nogueira, L. PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Int. J. Mol. Sci. 2023, 24, 12312. [Google Scholar] [CrossRef]
- Raleigh, S.M.; Orchard, K.J.A. Sarcopenia as a Risk Factor for Alzheimer’s Disease: Genetic and Epigenetic Perspectives. Genes 2024, 15, 561. [Google Scholar] [CrossRef]
- Liang, H.; Ward, W.F. PGC-1α: A key regulator of energy metabolism. Adv. Physiol. Educ. 2006, 30, 145–151. [Google Scholar] [CrossRef]
- Varillas-Delgado, D. Role of the PPARGC1A gene and its rs8192678 polymorphism on sport performance, aerobic capacity, muscle adaptation and metabolic diseases: A narrative review. Genes 2024, 15, 1631. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Lockey, S.J.; Heffernan, S.M.; Herbert, A.J.; Stebbings, G.K.; Day, S.H.; Collins, M.; Pitsiladis, Y.P.; Erskine, R.M.; Williams, A.G. The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance. J. Sports Sci. 2023, 41, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Petr, M.; Maciejewska-Skrendo, A.; Zajac, A.; Chycki, J.; Stastny, P. Association of elite sports status with gene variants of peroxisome proliferator activated receptors and their transcriptional coactivator. Int. J. Mol. Sci. 2020, 21, 162. [Google Scholar] [CrossRef] [PubMed]
- Varillas Delgado, D.; Orriols, J.J.T.; Monge Martín, D.; Del Coso, J. Genotype scores in energy and iron-metabolising genes are higher in elite endurance athletes than in non-athlete controls. Appl. Physiol. Nutr. Metab. 2020, 45, 1225–1231. [Google Scholar] [CrossRef]
- Recław, R.; Lachowiacz, M.; Prabucka, K.; Drozd, M.; Huzarska, I.; Grzywacz, A. The world of top sports people—The review of genetic, epigenetic and psychological factors underlying athletic achievements in terms of neural transmission. J. Kinesiol. Exerc. Sci. 2024, 34, 54–60. [Google Scholar] [CrossRef]
- Silva, H.-H.; Silva, M.-R.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes: Review and future perspectives. J. Sports Med. Phys. Fitness 2022, 62, 418–434. [Google Scholar] [CrossRef]
- Marrouh, A.; Haddouchi, A.E.; Kartti, S.; Fahime, E.E.; Boutayeb, S.; Chagar, Y.; Baudot, C.; Belyamani, L.; Dakka, T.; Eljaoudi, R. The role of genetic and epigenetic factors in sports-related muscle, bone, and brain injuries. Sci. Prog. 2025, 108, 00368504251385937. [Google Scholar] [CrossRef]
- Laing, N.G.; Dye, D.E.; Wallgren-Pettersson, C.; Richard, G.; Monnier, N.; Lillis, S.; Winder, T.L.; Lochmüller, H.; Graziano, C.; Mitrani-Rosenbaum, S.; et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum. Mutat. 2009, 30, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, J.; Güttsches, A.K.; Schara-Schmidt, U.; Vorgerd, M.; Heute, C.; Preusse, C.; Stenzel, W.; Roos, A. ANO5-related muscle diseases: From clinics and genetics to pathology and research strategies. Genes Dis. 2022, 9, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fujii, J.; Phillips, M.S.; Chen, H.S.; Karpati, G.; Yee, W.C.; Schrank, B.; Cornblath, D.R.; Boylan, K.B.; MacLennan, D.H. Characterization of cDNA and genomic DNA encoding SERCA1, the Ca2+-ATPase of human fast-twitch skeletal muscle sarcoplasmic reticulum, and its elimination as a candidate gene for Brody disease. Genomics 1995, 30, 415–424. [Google Scholar] [CrossRef]
- Lechner, B.E.; Lim, J.H.; Mercado, M.L.; Fallon, J.R. Developmental regulation of biglycan expression in muscle and tendon. Muscle Nerve 2006, 34, 347–355. [Google Scholar] [CrossRef]
- Flucher, B.E. Skeletal muscle CaV1.1 channelopathies. Pflügers Arch. 2020, 472, 739–754. [Google Scholar] [CrossRef]
- Cagliani, R.; Bresolin, N.; Prelle, A.; Gallanti, A.; Fortunato, F.; Sironi, M.; Ciscato, P.; Fagiolari, G.; Bonato, S.; Galbiati, S.; et al. A CAV3 microdeletion differentially affects skeletal muscle and myocardium. Neurology 2003, 61, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Pusch, M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum. Mutat. 2002, 19, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Flore, L.; Francalacci, P.; Massidda, M.; Robledo, R.; Calò, C.M. Influence of different evolutive forces on GDF5 gene variability. Genes 2023, 14, 1895. [Google Scholar] [CrossRef]
- Goldfarb, L.G.; Vicart, P.; Goebel, H.H.; Dalakas, M.C. Desmin myopathy. Brain 2004, 127, 723–734. [Google Scholar] [CrossRef]
- Muntoni, F.; Torelli, S.; Ferlini, A. Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurol. 2003, 2, 731–740. [Google Scholar] [CrossRef]
- Amato, A.A.; Brown, R.H., Jr. Dysferlinopathies. Handb. Clin. Neurol. 2011, 101, 111–118. [Google Scholar] [CrossRef]
- Summers, K.M. Genetic models of fibrillinopathies. Genetics 2024, 226, iyad189. [Google Scholar] [CrossRef]
- Leek, C.C.; Soulas, J.M.; Bhattacharya, I.; Ganji, E.; Locke, R.C.; Smith, M.C.; Bhavsar, J.D.; Polson, S.W.; Ornitz, D.M.; Killian, M.L. Deletion of fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev. Dyn. 2021, 250, 1778–1795. [Google Scholar] [CrossRef]
- Lee, E.J.; Nam, J.H.; Choi, I. Fibromodulin modulates myoblast differentiation by controlling calcium channel. Biochem. Biophys. Res. Commun. 2018, 503, 580–585. [Google Scholar] [CrossRef]
- Zheng, Z.; Granado, H.S.; Li, C. Fibromodulin, a multifunctional matricellular modulator. J. Dent. Res. 2023, 102, 125–134. [Google Scholar] [CrossRef]
- Stefanetti, R.J.; Voisin, S.; Russell, A.; Lamon, S. Recent advances in understanding the role of FOXO3. F1000Research 2018, 7, F1000 Faculty Rev-1372. [Google Scholar] [CrossRef]
- Johnson, B.B.; Cosson, M.V.; Tsansizi, L.I.; Holmes, T.L.; Gilmore, T.; Hampton, K.; Song, O.R.; Vo, N.T.N.; Nasir, A.; Chabronova, A.; et al. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep. 2024, 43, 113668. [Google Scholar] [CrossRef]
- Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314. [Google Scholar] [CrossRef]
- Parvaneh, N.; Mamishi, S.; Rezaei, A.; Rezaei, N.; Tamizifar, B.; Parvaneh, L.; Sherkat, R.; Ghalehbaghi, B.; Kashef, S.; Chavoshzadeh, Z.; et al. Characterization of 11 new cases of leukocyte adhesion deficiency type 1 with seven novel mutations in the ITGB2 gene. J. Clin. Immunol. 2010, 30, 756–760. [Google Scholar] [CrossRef]
- Ignatieva, E.V.; Ivanova, O.A.; Komarova, M.Y.; Khromova, N.V.; Polev, D.E.; Kostareva, A.A.; Sergushichev, A.; Dmitrieva, R.I. LMNA mutations G232E and R482L cause dysregulation of skeletal muscle differentiation, bioenergetics, and metabolic gene expression profile. Genes 2020, 11, 1057. [Google Scholar] [CrossRef]
- Sewry, C.A.; Laitila, J.M.; Wallgren-Pettersson, C. Nemaline myopathies: A current view. J. Muscle Res. Cell Motil. 2019, 40, 111–126. [Google Scholar] [CrossRef]
- Lawlor, M.W.; Dowling, J.J. X-linked myotubular myopathy. Neuromuscul. Disord. 2021, 31, 1004–1012. [Google Scholar] [CrossRef]
- Weiss, A.; Leinwand, L.A. The mammalian myosin heavy chain gene family. Annu. Rev. Cell Dev. Biol. 1996, 12, 417–439. [Google Scholar] [CrossRef]
- Thompson, W.R.; Nadal-Ginard, B.; Mahdavi, V. A MyoD1-independent muscle-specific enhancer controls the expression of the β-myosin heavy chain gene in skeletal and cardiac muscle cells. J. Biol. Chem. 1991, 266, 22678–22688. [Google Scholar] [CrossRef] [PubMed]
- Tseng, B.S.; Cavin, S.T.; Hoffman, E.P.; Iannaccone, S.T.; Mancias, P.; Booth, F.W.; Butler, I.J. Human bHLH transcription factor gene myogenin (MYOG): Genomic sequence and negative mutation analysis in patients with severe congenital myopathies. Genomics 1999, 57, 419–423. [Google Scholar] [CrossRef]
- Yokoyama, S.; Asahara, H. The myogenic transcriptional network. Cell. Mol. Life Sci. 2011, 68, 1843–1849. [Google Scholar] [CrossRef]
- Boudjadi, S.; Chatterjee, B.; Sun, W.; Vemu, P.; Barr, F.G. The expression and function of PAX3 in development and disease. Gene 2018, 666, 145–157. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, Y.; Su, X.; Cao, J.; Zhang, Y.; Li, H. PAX3-FOXO1 escapes miR-495 regulation during muscle differentiation. Int. J. Mol. Med. 2019, 44, 593–602. [Google Scholar] [CrossRef]
- Shahriyari, M.; Islam, M.R.; Sakib, S.M.; Rinn, M.; Rika, A.; Krüger, D.; Kaurani, L.; Gisa, V.; Winterhoff, M.; Anandakumar, H.; et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J. Cachexia Sarcopenia Muscle 2022, 13, 3106–3121. [Google Scholar] [CrossRef]
- Quinelato, V.; Bonato, L.L.; Vieira, A.R.; Granjeiro, J.M.; Menezes, K.; Borojevic, R.; Casado, P.L.; Calasans-Maia, J.A.; Tesch, R. PAX7 gene polymorphism in muscular temporomandibular disorders as potentially related to muscle stem cells. BMC Musculoskelet. Disord. 2021, 22, 959. [Google Scholar] [CrossRef]
- Vicart, S.; Sternberg, D.; Fontaine, B.; Meola, G. Human skeletal muscle sodium channelopathies. Neurol. Sci. 2005, 26, 194–202. [Google Scholar] [CrossRef]
- Wakeman, B.; MacDonald, I.M.; Ginjaar, I.; Tarleton, J.; Babu, D. Extraocular muscle hypertrophy in myotonia congenita: Mutation identified in the SCN4A gene (V445M). J. AAPOS 2009, 13, 526–527. [Google Scholar] [CrossRef]
- Kirschner, J.; Lochmüller, H. Sarcoglycanopathies. Handb. Clin. Neurol. 2011, 101, 41–46. [Google Scholar] [CrossRef]
- Kollias, H.D.; McDermott, J.C. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. 2008, 104, 579–587. [Google Scholar] [CrossRef]
- Ceco, E.; McNally, E.M. Modifying muscular dystrophy through transforming growth factor-beta. FEBS J. 2013, 280, 4198–4209. [Google Scholar] [CrossRef]
- Derynck, R.; Chen, R.H.; Ebner, R.; Filvaroff, E.H.; Lawler, S. An emerging complexity of receptors for transforming growth factor-beta. Princess Takamatsu Symp. 1994, 24, 264–275. [Google Scholar] [PubMed]
- Kee, A.J.; Hardeman, E.C. Tropomyosins in skeletal muscle diseases. Adv. Exp. Med. Biol. 2008, 644, 143–157. [Google Scholar] [CrossRef]
- Wallgren-Pettersson, C.; Jokela, M.; Lehtokari, V.L.; Tyynismaa, H.; Sainio, M.T.; Ylikallio, E.; Tynninen, O.; Pelin, K.; Auranen, M. Variants in tropomyosins TPM2 and TPM3 causing muscle hypertonia. Neuromuscul. Disord. 2024, 35, 29–32. [Google Scholar] [CrossRef]
- Dube, D.K.; Dube, S.; Abbott, L.; Elsekaily, O.; Sanger, J.W.; Sanger, J.M.; Poiesz, B.J. Sarcomeric TPM3 expression in human heart and skeletal muscle. Cytoskeleton 2020, 77, 313–328. [Google Scholar] [CrossRef]
- An, X.; Ogawa-Wong, A.; Carmody, C.; Ambrosio, R.; Cicatiello, A.G.; Luongo, C.; Salvatore, D.; Handy, D.E.; Larsen, P.R.; Wajner, S.M.; et al. A type 2 deiodinase-dependent increase in Vegfa mediates myoblast–endothelial cell crosstalk during skeletal muscle regeneration. Thyroid 2021, 31, 115–127. [Google Scholar] [CrossRef]
- Borzemska, B.; Cięszczyk, P.; Żekanowski, C. The genetic basis of non-contact soft tissue injuries—Are there practical applications of genetic knowledge? Cells 2024, 13, 1828. [Google Scholar] [CrossRef]
- Leońska-Duniec, A. Comprehensive genetic analysis of associations between obesity-related parameters and physical activity: A scoping review. Genes 2024, 15, 1137. [Google Scholar] [CrossRef]
- Pranckeviciene, E.; Ginevičienė, V.; Jakaitienė, A.; Januska, L.; Utkus, A. Total genotype score modelling of polygenic endurance-power profiles in Lithuanian elite athletes. Genes 2021, 12, 1067. [Google Scholar] [CrossRef]
- de Boer, E.N.; van der Wouden, P.E.; Johansson, L.F.; van Diemen, C.C.; Haisma, H.J. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Ther. 2019, 26, 338–346. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef]
- Deans, C.; Maggert, K.A. What do you mean, “epigenetic”? Genetics 2015, 199, 887–896. [Google Scholar] [CrossRef]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical exercise and epigenetic modifications in skeletal muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef]
- Laurent, M.; Geoffroy, M.; Pavani, G.; Guiraud, S. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells 2024, 13, 800. [Google Scholar] [CrossRef]
- Fatehi, S.; Marks, R.M.; Rok, M.J.; Perillat, L.; Ivakine, E.A.; Cohn, R.D. Advances in CRISPR/Cas9 genome editing for the treatment of muscular dystrophies. Hum. Gene Ther. 2023, 34, 388–403. [Google Scholar] [CrossRef]
- Ali, A.; Rahman, M.Y.; Sheikh, D. The Role of CRISPR/Cas9 in Revolutionizing Duchenne’s Muscular Dystrophy Treatment: Opportunities and Obstacles. Glob. Med. Genet. 2024, 11, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Juvvuna, P.K.; Kukreti, H.; Chavali, S. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Hum. Gene Ther. 2021, 32, 640–657. [Google Scholar] [CrossRef]
- Dick, D.M. Gene-environment interaction in psychological traits and disorders. Annu. Rev. Clin. Psychol. 2011, 7, 383–409. [Google Scholar] [CrossRef]
| Gene * | Chromosomal Location * | Encoded Protein * | Polymorphism * | Polymorphism Location (GRCh38) * | (1) Muscle Injury Risk, (2) Severity, (3) Incidence or (4) Recovery Time | References |
|---|---|---|---|---|---|---|
| Regulators of vascular function and perfusion | ||||||
| ACE | 17q23.3 | angiotensin I-converting enzyme | rs4646994 or rs4341, I/D | intron 16 | (1) ↑ I, ↓ D | [9,10] |
| AGT | 1q42.2 | angiotensinogen | rs699, A/G, Met235Thr | 1:230,710,048 | (1) ↑ Met, ↓ Thr | [11] |
| BDKRB2 | 14q32.2 | bradykinin receptor B2 | rs5810761, +9/−9 | exon 1 | (1) ↑ −9, ↓ +9 | [11] |
| HIF1A | 14q23.2 | Hypoxia-inducible factor 1α | rs11549465, C/T, Pro582Ser | exon 12 14:61,740,839 | (1) ↑ CC, ↓ CT | [12] |
| NOS3 | 7q36.1 | nitric oxide synthase 3 | rs1799983, G/T, Glu298Asp | exon 7 7:150,999,023 | (3) ↑ G, ↓ T | [12] |
| Genes involved in the structural organization of muscle fibers and ECM | ||||||
| ACTN3 | 11q13.2 | actinin alpha 3 | rs1815739, C/T, R577X | exon 16 11:66,560,624 | (1), (2), (3), (4) ↑ X, ↓ R | [10,13,14,15,16,17,18,19] |
| ADAMTS14 | 10q22.1 | ADAM metallopeptidase with thrombospondin type 1 motif 14 | rs4747096, A/G, Glu/Gln | exon 21 10:70,758,253 | (2) ↑ AG, ↓ AA | [12] |
| COL1A1 | 17q21.33 | collagen type I alpha 1 chain | rs1107946, A/C | promoter 17:50,203,629 | (1) ↑ AA, ↓ CC, AC | [20] |
| COL5A1 | 9q34.3 | collagen type V alpha 1 chain | rs12722, C/T | 3′ UTR 9:134,842,570 | (2) ↑ CT, ↓ CC, TT | [21,22] |
| (1) ↓ TT | [23] | |||||
| rs16399, I/D | 3′ UTR 9:134,843,389 | (3) ↑ DI, ↓ DD, II | [12] | |||
| COL22A1 | 8q24.23-q24.3 | collagen type XXII α-1 chain | rs11784270, A/C | intron 1 8:138,908,388 | (1) ↑ A, ↓ C | [24] |
| rs6577958, T/C | intron 1 8:138,903,960 | (1) ↑ T, ↓ C | ||||
| DCN | 12q21.33 | decorin | rs516115, A/G | intron 3 12:91,163,515 | (3) ↑ A, ↓ G | [12] |
| ELN | 7q11.23 | elastin | 6124052A>G (no rs number) | unknown | (2) ↑ AA, ↓ AG, GG | [25] |
| MLCK | 3q21.1 | myosin light chain kinase | rs28497577, C/A, | 5′ UTR 3:123,793,780 | (1) ↑ C, ↓ A | [26] |
| rs2700352, C/T | 5′ UTR 3:123,831,616 | (2) ↑ TT, ↓ CT, CC | [12] | |||
| MMP1 | 11q22.2 | matrix metalloproteinase 1 | rs1799750 | promoter | (3) ↑ DD, DI, ↓ II | [12] |
| MMP3 | 11q22.2 | matrix metalloproteinase 3 | rs679620, G/A, Glu45Lys | exon 2 11:102,842,889 | (1) ↑ A, ↓ G | [12] |
| MMP12 | 11q22.2 | matrix metalloproteinase 12 | rs2276109, A/G | promoter | (3) ↑ A, ↓ G | [12] |
| TNC | 9q33.1 | tenascin C | rs2104772, A/T | exon 17 9:115,046,506 | (3) ↑ A, ↓ T | [12] |
| VWA5A interaction region | 11q24.2 | von Willebrand factor A domain containing 5A | rs12807854 T/C | intergenic region 11:124,066,891 | (1) ↑ C, ↓ T | [27] |
| Genes associated with metabolism and energy homeostasis | ||||||
| AMPD1 | 1p13.2 | adenosine monophosphate deaminase 1 | rs17602729, C/T, Gln12Stop | exon 2 1:114,693,436 | (1) ↑ T, ↓ C | [26] |
| CKM | 19q13.32 | creatine kinase, M-type | rs8111989, A/G | 3′ UTR 19:45,305,950 | (2) ↑ AG, ↓ GG | [28] |
| MCT1 | 1p13.2 | monocarboxylate transporter 1 | rs1049434, A/T, Glu490Asp | exon 5 1:112,913,924 | (3) ↑ A, ↓ T | [13,29] |
| Genes associated with membrane integrity, ion transport, and signaling pathways | ||||||
| CASP8 | 2q33.1 | caspase 8 | rs3834129, I/D | promoter 2:201,232,809 | (2) ↑ DD, II, ↓ ID | [12] |
| GEFT | 12q13.3 | Rho guanine nucleotide exchange factor | rs11613457, A/G | cytogenetic region 12:57,618,450 | (4) ↑ AG, ↓ GG | [22] |
| Genes related to muscle growth, development, and regeneration | ||||||
| IGF2 | 11p15.5 | insulin like growth factor 2 | rs3213221, C/G | intron 1 11:2,135,814 | (2) ↑ GG, CC, ↓ GC | [21,22,25] |
| ESR1 | 6q25.1-q25.2 | estrogen receptor 1 | rs2234693, C/T | intron 1 6:151,842,200 | (1) ↑ T, ↓ C | [30] |
| HGF | 7q21.11 | hepatocyte growth factor | rs5745678, C/T | 3′ UTR 7:81,742,731 | (2, 4) ↑ C, ↓ T | [22] |
| rs5745697, A/C | intron 7:81,728,033 | (3) ↑AA, AC, ↓CC (2), (4) ↑CC, ↓ AA, AC | ||||
| rs1011694, A/T | intron 7:81,703,677 | (3) ↑ TT, TA, ↓ AA (2) ↑ AA ↓ TT, TA, | ||||
| LIF | 22q12.2 | leukemia inhibitory factor | rs929071, C/T | intron 20:42,350,790 | (4) ↑ CT, CC, ↓ TT | [22] |
| SOX15 | 17p13.1 | SRY-box transcription factor 15 | rs4227, G/T | 3′ UTR 17:7,587,859 | (3) ↑ G, ↓ T | [22] |
| VDR | 12q13.11 | vitamin D receptor | rs7975232, ApaI, C/A | intron 8 12:47,845,054 | (1) ↑ GG | [31,32] |
| Genes involved in inflammatory and stress-response pathways | ||||||
| IL1A | 2q14.1 | interleukin 1 α | rs1800587, C/T | promoter 2:112,785,383 | (2) ↑ CT, ↓ CC, TT | [12] |
| IL6 | 7p15.3 | interleukin 6 | rs1800795, G/C | promoter 7:22,727,026 | (1) ↑ GG, ↓ GC, CC | [12] |
| (1) ↑ CC, ↓ GC, GG | [33] | |||||
| CCL2 | 17q12 | C-C motif chemokine ligand 2 | rs2857656, G/C | promoter 17:34,254,988 | (2) ↑ GG, ↓ CC, CG | [21,22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leońska-Duniec, A. Genetic Susceptibility to Sport-Related Muscle Injuries: Insights from the Literature and Novel Gene Candidates. Int. J. Mol. Sci. 2025, 26, 11175. https://doi.org/10.3390/ijms262211175
Leońska-Duniec A. Genetic Susceptibility to Sport-Related Muscle Injuries: Insights from the Literature and Novel Gene Candidates. International Journal of Molecular Sciences. 2025; 26(22):11175. https://doi.org/10.3390/ijms262211175
Chicago/Turabian StyleLeońska-Duniec, Agata. 2025. "Genetic Susceptibility to Sport-Related Muscle Injuries: Insights from the Literature and Novel Gene Candidates" International Journal of Molecular Sciences 26, no. 22: 11175. https://doi.org/10.3390/ijms262211175
APA StyleLeońska-Duniec, A. (2025). Genetic Susceptibility to Sport-Related Muscle Injuries: Insights from the Literature and Novel Gene Candidates. International Journal of Molecular Sciences, 26(22), 11175. https://doi.org/10.3390/ijms262211175

