Bioactive Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Shell: Encapsulation, Structural Stability, and Multifunctional Activities
Abstract
1. Introduction
2. Results and Discussion
2.1. Anthocyanin, Phenolics, Vitamin C and Organic Acid Content
2.2. Structural Characterization by FTIR and Encapsulation Efficiency
2.3. Morphological and Structural Characterization of Microcapsules
2.4. Antioxidant Activity
2.5. Antimicrobial Activity
2.6. Biofilm Inhibition Activity
2.7. Antitumoral Activity
2.8. Hemolytic Activity
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of the Anthocyanin-Rich Extract
3.3. Microencapsulation Process
3.4. Determination of Anthocyanin, Phenolics, Vitamin C and Organic Acid Content
3.5. Characterization by FTIR
3.6. Morphological Analysis by Scanning Electron Microscope (SEM)
3.7. Antioxidant Capacity
3.8. Antimicrobial Activity by Macrodilution Method
3.9. Antifungal Activity
3.10. Biofilm Inhibition Evaluation
3.11. Antitumoral Activity
3.12. Hemolytic Assay
3.13. Encapsulation Efficiency (EE)
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zavala, J.F.; Rosas-Domínguez, C.; Vega-Vega, V.; González-Aguilar, G.A. Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: Looking for integral exploitation. J. Food Sci. 2010, 75, R175–R181. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, N.; Rana, J.C.; Sharma, S.K. Diversity in seed and flour properties in field pea (Pisum sativum) germplasm. Food Chem. 2010, 122, 518–525. [Google Scholar] [CrossRef]
- Abriouel, H.; Casado Muñoz, M.D.C.; Lavilla Lerma, L.; Pérez Montoro, B.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.-S.; Franz, C.M.A.P.; Gálvez, A.; et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Boyano-Orozco, L.; Gallardo-Velázquez, T.; Meza-Márquez, O.G.; Osorio-Revilla, G. Microencapsulation of rambutan peel extract by spray drying. Foods 2020, 9, 899. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- de Abreu Pinheiro, F.; Ferreira Elias, L.; de Jesus Filho, M.; Uliana Modolo, M.; Gomes Rocha, J.d.C.; Fumiere Lemos, M.; Scherer, R.; Soares Cardoso, W. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food Chem. 2021, 336, 127701. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Samaratunga, R.; Kantono, K.; Kam, R.; Gannabathula, S.; Hamid, N. Microencapsulated Asiatic Pennywort (Centella asiatica) fortified chocolate oat milk beverage: Formulation, polyphenols content, and consumer acceptability. J. Food Sci. 2024, 89, 5395–5410. [Google Scholar] [CrossRef] [PubMed]
- Avilés-Betanzos, K.A.; González-Ávila, M.; Cauich-Rodríguez, J.V.; Ramírez-Sucre, M.O.; Padilla-Camberos, E.; Rodríguez-Buenfil, I.M. Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts. Processes 2025, 13, 2826. [Google Scholar] [CrossRef]
- Soliman, T.N.; Mohammed, D.M.; El-Messery, T.M.; Elaaser, M.; Zaky, A.A.; Eun, J.-B.; Shim, J.-H.; El-Said, M.M. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl3-Induced Neuroinflammation in Rats. Front. Nutr. 2022, 9, 929977. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Kim, S.-R. Microencapsulation for pharmaceutical applications: A review. ACS Appl. Bio Mater. 2024, 7, 692–710. [Google Scholar] [CrossRef]
- Ozkan, G.; Ceyhan, T.; Çatalkaya, G.; Rajan, L.; Ullah, H.; Daglia, M.; Capanoglu, E. Encapsulated phenolic compounds: Clinical efficacy of a novel delivery method. Phytochem. Rev. 2024, 23, 781–819. [Google Scholar] [CrossRef]
- Valdez López, L.L.; Chóez Guaranda, I.A.; Carrillo Lavid, G.A.; Miranda Martínez, M. Pharmacognostic study and evaluation of the antioxidant capacity of the fruit of two varieties of Nephelium lappaceum L. (Sapindaceae), (rambutan). J. Pharm. Pharmacogn. Res. 2020, 8, 64–77. [Google Scholar] [CrossRef]
- Martinović, J.; Ambrus, R.; Planinić, M.; Perković, G.; Šelo, G.; Klarić, A.-M.; Bucić-Kojić, A. Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds. Gels 2025, 11, 130. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Barrigas, A.; Guachamin, A.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Vera, E. Bioactive composition of tropical flowers and their antioxidant and antimicrobial properties. Foods 2024, 13, 3766. [Google Scholar] [CrossRef]
- Itam, A.; Wati, M.S.; Agustin, V.; Sabri, N.; Jumanah, R.A.; Efdi, M. Comparative Study of Phytochemical, Antioxidant, and Cytotoxic Activities and Phenolic Content of Syzygium aqueum (Burm. f. Alston f.) Extracts Growing in West Sumatera Indonesia. Sci. World J. 2021, 2021, 5537597. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R.M.; Riviello-Flores, M.d.l.L.; Macías-Zaragoza, V.M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29, 1439. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Habibu, R.S.; Saidu, K.; Haliru, F.Z.; Ajiboye, H.O.; Aliyu, N.O.; Ibitoye, O.B.; Uwazie, J.N.; Muritala, H.F.; Bello, S.A.; et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiologyopen 2017, 6, e00472. [Google Scholar] [CrossRef]
- Moselhy, S.S.; Razvi, S.S.; ALshibili, F.A.; Kuerban, A.; Hasan, M.N.; Balamash, K.S.; Huwait, E.A.; Abdulaal, W.H.; Al-Ghamdi, M.A.; Kumosani, T.A.; et al. m-Coumaric acid attenuates non-catalytic protein glycosylation in the retinas of diabetic rats. J. Pestic. Sci. 2018, 43, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Bartel, I.; Mandryk, I.; Horbańczuk, J.O.; Wierzbicka, A.; Koszarska, M. Nutraceutical Properties of Syringic Acid in Civilization Diseases-Review. Nutrients 2023, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Vo, Q.V.; Bay, M.V.; Nam, P.C.; Quang, D.T.; Flavel, M.; Hoa, N.T.; Mechler, A. Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid. J. Org. Chem. 2020, 85, 15514–15520. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Méndez, G.; Moya, M.; Martínez, A.; Viera, W.; Heredia-Moya, J.; Beltrán, E.; Vera, E.; Villacís, M. Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato (Solanum betaceum) at Different Altitudes. Foods 2023, 12, 3494. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef]
- da Silva, H.R.; Assis, D. da C. de; Prada, A.L.; Silva, J.O.C.; Sousa, M.B. de; Ferreira, A.M.; Amado, J.R.R.; Carvalho, H. de O.; Santos, A.V.T. de L.T. dos; Carvalho, J.C.T. Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Rev. Bras. De Farmacogn. 2019, 29, 677–685. [Google Scholar] [CrossRef]
- Bhushan, B.; Bibwe, B.; Pal, A.; Mahawar, M.K.; Dagla, M.C.; Kr, Y.; Jat, B.S.; Kumar, P.; Aggarwal, S.K.; Singh, A.; et al. FTIR spectra, antioxidant capacity and degradation kinetics of maize anthocyanin extract under variable process conditions. Appl. Food Res. 2023, 3, 100282. [Google Scholar] [CrossRef]
- Farida, S.; Saati, E.A.; Damat, D.; Wahyudi, A.; Van Minh, N. Identification of functional groups and types of anthocyanin pigments of purple sweet potato cv. antin 2 and cv. antin 3. BIO Web Conf. 2024, 104, 00040. [Google Scholar] [CrossRef]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium species (ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Nemes, S.-A.; Teleky, B.-E.; Călinoiu, L.F.; Mitrea, L.; Martău, G.A.; Szabo, K.; Mihai, M.; Vodnar, D.C.; Crișan, G. Microencapsulation and bioaccessibility of phenolic compounds of vaccinium leaf extracts. Antioxidants 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Righi da Rosa, J.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Cezimbra Weis, G.C.; Rychecki Hecktheuer, L.H.; Muller, E.I.; Ragagnin de Menezes, C.; Severo da Rosa, C. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019, 89, 742–748. [Google Scholar] [CrossRef]
- Mustarichie, R. The antioxidant activity and phytochemical screening of ethanol extract, fractions of water, ethyl acetate and n-hexane from mistletoe tea (Scurrula atropurpurea bl. dans). Asian J. Pharm. Clin. Res. 2017, 10, 343. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Zhuang, Y. Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro. J. Food Sci. 2012, 77, C198–C204. [Google Scholar] [CrossRef]
- Dastmalchi, K.; Flores, G.; Petrova, V.; Pedraza-Peñalosa, P.; Kennelly, E.J. Edible neotropical blueberries: Antioxidant and compositional fingerprint analysis. J. Agric. Food Chem. 2011, 59, 3020–3026. [Google Scholar] [CrossRef]
- Perković, G.; Planinić, M.; Šelo, G.; Martinović, J.; Nedić, R.; Puš, M.; Bucić-Kojić, A. Optimisation of the encapsulation of grape pomace extract by spray drying using goat whey protein as coating material. Preprints 2024. [Google Scholar] [CrossRef]
- Pseudomonas aeruginosa (Schroeter) Migula-27853|ATCC. Available online: https://www.atcc.org/products/27853 (accessed on 21 October 2025).
- Burkholderia cepacia (Palleroni and Holmes) Yabuuchi et al.-25416|ATCC. Available online: https://www.atcc.org/products/25416?matchtype=&network=x&device=c&adposition=&keyword=&gad_source=1&gad_campaignid=17725151935&gbraid=0AAAAADR6fpo8dTeeFGCs9tOxtgX-W1CwH&gclid=CjwKCAjw3tzHBhBREiwAlMJoUgRiiO2t1Gi2l3B57lQdd8IJXNzg2hSkkgd-zfHq0f8auJIeJj_v2RoC7E8QAvD_BwE (accessed on 21 October 2025).
- Farias-Cervantes, V.S.; Chávez-Rodríguez, A.; García-Salcedo, P.A.; García-López, P.M.; Casas-Solís, J.; Andrade-González, I. Antimicrobial effect and in vitro release of anthocyanins from berries and Roselle obtained via microencapsulation by spray drying. J. Food Process. Preserv. 2018. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future antimicrobials: Natural and functionalized phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Xu, W.; Lin, Z.; Cortez-Jugo, C.; Qiao, G.G.; Caruso, F. Antimicrobial phenolic materials: From assembly to function. Angew. Chem. Int. Ed 2025, 64, e202423654. [Google Scholar] [CrossRef]
- Lima, E.M.F.; Winans, S.C.; Pinto, U.M. Quorum sensing interference by phenolic compounds-A matter of bacterial misunderstanding. Heliyon 2023, 9, e17657. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Lei, Y.; Gan, Z.; Zhao, W.; Shi, J.; Jia, C.; Sun, A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021, 10, 3053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, Y.; Memon, F.U.; Hao, K.; Xu, B.; Wang, S.; Wang, Y.; Wu, E.; Chen, X.; Xiong, W.; et al. A Natural Antimicrobial Agent: Analysis of Antibacterial Effect and Mechanism of Compound Phenolic Acid on Escherichia coli Based on Tandem Mass Tag Proteomics. Front. Microbiol. 2021, 12, 738896. [Google Scholar] [CrossRef] [PubMed]
- Korkut, A.; Özkaya Gül, S.; Aydemir, E.; Er, H.; Odabaş Köse, E. Cinnamic Acid Compounds (p-Coumaric, Ferulic, and p-Methoxycinnamic Acid) as Effective Antibacterial Agents Against Colistin-Resistant Acinetobacter baumannii. Antibiotics 2025, 14, 71. [Google Scholar] [CrossRef]
- Pandey, P.; Shekhar, B.R.; Das, D.K.; Vavilala, S.L. Mechanistic In-Silico Insights into the Anti-quorum Sensing Potential of Coumaric Acid and Syringic Acid in Serratia marcescens with In vitro Analysis. Protein J. 2025; in press. [Google Scholar] [CrossRef]
- Purba, M.R.; Tanjung, D.S.; Purba, S.A. Comparison of Antibacterial Effectiveness of Rambutan Leaf Extract (Nephelium lappaceum L.) and Tin Leaf Extract. Biosci. Med. J. Biomed. Transl. Res. 2023, 6, 2976–2979. [Google Scholar]
- Sultan, R.S.; Shawkat, M.S.; Hadi, S.M. Antimicrobial, antibiofilm and antiplasmid activity offruit peel extracts on bacterial dental caries. Curr. Res. Microbiol. Biotechnol. 2017, 5, 1266–1272. [Google Scholar]
- Salsabila, G.; Soulissa, A.G.; Widyarman, A.S. Antibiofilm Effect of Rambutan Leaf Extract (Nephelium lappaceum L.) against Aggregatibacter actinomycetemcomitans and Treponema denticola (in vitro). E-GiGi 2022, 10, 103–110. [Google Scholar] [CrossRef]
- Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Zdebik, A.; Orlewska, K.; Wąsik, T.J. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules 2015, 20, 13536–13549. [Google Scholar] [CrossRef]
- Gao, C.; Tian, L.; Lu, J.; Gong, G. A Novel Bioactive Antimicrobial Film Based on Polyvinyl Alcohol-Protocatechuic Acid: Mechanism and Characterization of Biofilm Inhibition and its Application in Pork Preservation. Food Bioprocess Technol. 2024, 17, 3319–3332. [Google Scholar] [CrossRef]
- Landa, I.; Ganly, I.; Chan, T.A.; Mitsutake, N.; Matsuse, M.; Ibrahimpasic, T.; Ghossein, R.A.; Fagin, J.A. Frequent somatic TERT promoter mutations in thyroid cancer: Higher prevalence in advanced forms of the disease. J. Clin. Endocrinol. Metab. 2013, 98, E1562–E1566. [Google Scholar] [CrossRef]
- Kasaian, K.; Wiseman, S.M.; Walker, B.A.; Schein, J.E.; Zhao, Y.; Hirst, M.; Moore, R.A.; Mungall, A.J.; Marra, M.A.; Jones, S.J.M. The genomic and transcriptomic landscape of anaplastic thyroid cancer: Implications for therapy. BMC Cancer 2015, 15, 984. [Google Scholar] [CrossRef] [PubMed]
- Adeyi, O.E.; Somade, O.T.; Ajayi, B.O.; James, A.S.; Adeyi, A.O.; Olayemi, Z.M.; Tella, N.B. Syringic acid demonstrates better anti-apoptotic, anti-inflammatory and antioxidative effects than ascorbic acid via maintenance of the endogenous antioxidants and downregulation of pro-inflammatory and apoptotic markers in DMN-induced hepatotoxicity in rats. Biochem. Biophys. Rep. 2023, 33, 101428. [Google Scholar] [CrossRef]
- Yıldız, F. Investigation of the effects of Protocatechuic acid on apoptosis, oxidant and antioxidant status in Caco-2 colorectal cancer cells. Acta Med. Alanya 2024, 8, 136–141. [Google Scholar] [CrossRef]
- Gheena, S.; Ezhilarasan, D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum. Exp. Toxicol. 2019, 38, 694–702. [Google Scholar] [CrossRef]
- Li, D.; Luo, D.; Hu, S.; Zhao, H.; Peng, B. Syringic acid suppressed proliferation, invasion, and migration via inhibition of matrix metalloproteinases expression on glioblastoma cells by promoting apoptosis. Curr. Pharm. Biotechnol. 2023, 24, 310–316. [Google Scholar] [CrossRef]
- Shikha, J. Antiproliferative activity of syringic acid-loaded nanostructured lipid carriers against MCF-7 human breast carcinoma cells. J. Drug Deliv. Sci. Technol. 2024, 98, 105902. [Google Scholar] [CrossRef]
- Bagatini, M.D.; dos Santos Jaques, J.A.; de Oliveira, C.S.; de Oliveira, G.A.; Pillat, M.M.; Mânica, A.; dos Santos Moser, C.; dos Santos, L.D.; Ulrich, H.; Bagatini, M.D.; et al. Oxidative Stress: Noxious but Also Vital; IntechOpen: London, UK, 2018; ISBN 978-1-78923-087-1. [Google Scholar]
- Jiang, S.; Liu, H.; Li, C. Dietary regulation of oxidative stress in chronic metabolic diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef]
- Selvaraj, N.R.; Nandan, D.; Nair, B.G.; Nair, V.A.; Venugopal, P.; Aradhya, R. Oxidative stress and redox imbalance: Common mechanisms in cancer stem cells and neurodegenerative diseases. Cells 2025, 14, 511. [Google Scholar] [CrossRef]
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
- Mohamed, S.I.A.; Jantan, I.; Haque, M.A. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int. Immunopharmacol. 2017, 50, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Lara-Hernández, G.; Ramos-Silva, J.A.; Pérez-Soto, E.; Figueroa, M.; Flores-Berrios, E.P.; Sánchez-Chapul, L.; Andrade-Cabrera, J.L.; Luna-Angulo, A.; Landa-Solís, C.; Avilés-Arnaut, H. Anticancer activity of plant tocotrienols, fucoxanthin, fucoidan, and polyphenols in dietary supplements. Nutrients 2024, 16, 4274. [Google Scholar] [CrossRef] [PubMed]
- Hashim, G.M.; Shahgolzari, M.; Hefferon, K.; Yavari, A.; Venkataraman, S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering 2024, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [Google Scholar] [CrossRef]
- Sitepu, K.M.; Zainal. Potential of encapsulated rambutan peel extract (Nephelium lappaceum) as a food preservative. IOP Conf. Ser. Earth Environ. Sci. 2023, 1230, 012154. [Google Scholar] [CrossRef]
- Barba-Ostria, C.; Gonzalez-Pastor, R.; Castillo-Solís, F.; Carrera-Pacheco, S.E.; Lopez, O.; Zúñiga-Miranda, J.; Debut, A.; Guamán, L.P. Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus. Molecules 2024, 29, 5504. [Google Scholar] [CrossRef]
- Aksoylu Özbek, Z.; Günç Ergönül, P.; Taşkın, B. Microencapsulation Technology: An Alternative Preservation Method for Opuntia spp. Derived Products and Their Bioactive Compounds. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Ramadan, M.F., Ayoub, T.E.M., Rohn, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 799–825. ISBN 978-3-030-78443-0. [Google Scholar]
- Zorzenon, M.R.T.; Formigoni, M.; da Silva, S.B.; Hodas, F.; Piovan, S.; Ciotta, S.R.; Jansen, C.A.; Dacome, A.S.; Pilau, E.J.; Mareze-Costa, C.E.; et al. Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders. J. Food Sci. 2020, 85, 3590–3600. [Google Scholar] [CrossRef]
- Cao, W.; Guan, S.; Tristanto, N.A.; Yuan, Y.; Li, Z.; Tong, Y.; Hua, X. Tributyrin microcapsule prepared by ultrahigh methoxylated pectin combination with maltodextrin: The characterization, gastrointestinal digestion, and fecal fermentation behavior. Food Hydrocoll. 2024, 148, 109505. [Google Scholar] [CrossRef]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Chung, P.Y.; Navaratnam, P.; Chung, L.Y. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 25. [Google Scholar] [CrossRef]
- ASTM E11-24; Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM: West Conshohocken, PA, USA, 2024. Available online: https://store.astm.org/e0011-24.html (accessed on 8 July 2025).
- Pérez, B.P.; Endara, A.B.; Garrido, J.A.; de los Ramírez Cárdenas, L.Á. Extraction of anthocyanins from Mortiño (Vaccinium floribundum) and determination of their antioxidant capacity. Rev. Fac. Nac. Agron. Medellín 2021, 74. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Orbea, G.L.; García-Villalba, R.; Bernal, M.J.; Hernández-Jiménez, A.; Egea, J.A.; Tomás-Barberán, F.A.; Sánchez-Siles, L.M. Effect of storage conditions on the stability of polyphenols of apple and strawberry purees produced at industrial scale by different processing techniques. J. Agric. Food Chem. 2023, 71, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available technologies on improving the stability of polyphenols in food processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of bioactive compounds and antioxidant activity in 51 minor tropical fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef]
- Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Pérez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; et al. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019, 24, 2696. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Staphylococcus aureus subsp. aureus Rosenbach-25923|ATCC. Available online: https://www.atcc.org/products/25923 (accessed on 21 October 2025).
- Listeria monocytogenes (Murray et al.) Pirie-13932|ATCC. Available online: https://www.atcc.org/products/13932 (accessed on 21 October 2025).
- Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz-29212|ATCC. Available online: https://www.atcc.org/products/29212 (accessed on 21 October 2025).
- Salmonella enterica subsp. enterica (ex Kauffmann and Edwards) Le Minor and Popoff Serovar Typhimurium-14028|ATCC. Available online: https://www.atcc.org/products/14028 (accessed on 21 October 2025).
- Escherichia coli (Migula) Castellani and Chalmers-25922|ATCC. Available online: https://www.atcc.org/products/25922 (accessed on 21 October 2025).
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Arikan, S. Current status of antifungal susceptibility testing methods. Med. Mycol. 2007, 45, 569–587. [Google Scholar] [CrossRef]
- Rudra, B.; Duncan, L.; Shah, A.J.; Shah, H.N.; Gupta, R.S. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: Proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Int. J. Syst. Evol. Microbiol. 2022, 72, 005542. [Google Scholar] [CrossRef]
- Merritt, J.H.; Kadouri, D.E.; O’Toole, G.A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 2005. [Google Scholar] [CrossRef]
- Hep G2 [HEPG2]-HB-8065|ATCC. Available online: https://www.atcc.org/products/hb-8065 (accessed on 21 October 2025).
- NIH/3T3-CRL-1658|ATCC. Available online: https://www.atcc.org/products/crl-1658 (accessed on 21 October 2025).
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef] [PubMed]




| Parameter | |||
|---|---|---|---|
| Total anthocyanin (mg D-ch/100 g DW) | 2.9 | ± | 0.43 |
| TPC (mg GAE/100 g DW) | 4344.0 | ± | 32.0 |
| Vitamin C (mg/100 g DW) | nd | ||
| Phenolics (mg/100 g DW) | |||
| Gallic acid | 31.0 | ± | 1.1 |
| Vanillic acid | 15.7 | ± | 0.7 |
| Protocatechic acid | 659.8 | ± | 53.6 |
| m-Coumaric acid | 3514.3 | ± | 262.0 |
| Syringic acid | 180.8 | ± | 9.9 |
| Kamferol acid | 27.1 | ± | 1.7 |
| Total phenolics | 4428.5 | ± | 32.9 |
| Organic acid (mg/100 g DW) | |||
| Tartaric acid | 2271.0 | ± | 152.4 |
| Malic acid | 20,141.7 | ± | 101.8 |
| Citric acid | 56,648.9 | ± | 18.9 |
| Total organic acid | 29,061.7 | ± | 279.4 |
| Wavenumber (cm−1) | Functional Group | Microencapsulated (Qualitative Intensity) |
|---|---|---|
| 3200–3600 | O-H stretching (hydroxyl) | Medium |
| 2800–3000 | C-H stretching (alkanes) | Medium |
| 1700–1750 | C=O stretching (carbonyl) | Low |
| 1300–1350 | C-H bending/aromatic ring deformation | Medium |
| 1200–1250 | C-O stretching (ethers, glycosidic bonds) | Medium |
| 1050–1100 | C-O stretching (polysaccharide-like) | Medium |
| 1000–1050 | C-O stretching (phenolic-like) | - |
| 1140–1160 | C-O-C stretching (polysaccharides) | Medium |
| 850–950 | Aromatic skeletal vibration/out-of-plane bending | Low |
| 750–770 | C-H out-of-plane bending (ring mode) | Low |
| Compound | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | TEAC * (μmol TE/g) |
|---|---|---|---|
| Microencapsulated N.lappaceum | 19.86 ± 4.7 | 536.03 ± 24.62 | 535.52 ± 24.51 |
| Ascorbic acid | 3.41 ± 1.35 | 68.09 ± 29.12 | 4678.83 ± 241.10 |
| Bacterial Strain | MBC (mg/mL) |
|---|---|
| P. aeruginosa ATCC 27853 [37] | 62 |
| B. cepacea ATCC 25416 [38] | 62 |
| P. aeruginosa * | 62 |
| HeLa | HCT116 | THJ29T | HepG2 | NIH3T3 | |
|---|---|---|---|---|---|
| IC50 | 1853 ± 0.01 | 1142 ± 0.2 | 3571 ± 0.4 | 1259 ± 0.1 | 1092 ± 0.1 |
| TI | 0.6 | 1 | 0.3 | 0.9 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barba-Ostria, C.; López, O.; Debut, A.; Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Coyago-Cruz, E.; Gonzalez-Pastor, R.; Cartuchi, K.; Viteri, A.; Peñaherrera-Pazmiño, A.B.; et al. Bioactive Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Shell: Encapsulation, Structural Stability, and Multifunctional Activities. Int. J. Mol. Sci. 2025, 26, 10859. https://doi.org/10.3390/ijms262210859
Barba-Ostria C, López O, Debut A, Mayorga-Ramos A, Zúñiga-Miranda J, Coyago-Cruz E, Gonzalez-Pastor R, Cartuchi K, Viteri A, Peñaherrera-Pazmiño AB, et al. Bioactive Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Shell: Encapsulation, Structural Stability, and Multifunctional Activities. International Journal of Molecular Sciences. 2025; 26(22):10859. https://doi.org/10.3390/ijms262210859
Chicago/Turabian StyleBarba-Ostria, Carlos, Orestes López, Alexis Debut, Arianna Mayorga-Ramos, Johana Zúñiga-Miranda, Elena Coyago-Cruz, Rebeca Gonzalez-Pastor, Kevin Cartuchi, Antonella Viteri, Ana Belén Peñaherrera-Pazmiño, and et al. 2025. "Bioactive Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Shell: Encapsulation, Structural Stability, and Multifunctional Activities" International Journal of Molecular Sciences 26, no. 22: 10859. https://doi.org/10.3390/ijms262210859
APA StyleBarba-Ostria, C., López, O., Debut, A., Mayorga-Ramos, A., Zúñiga-Miranda, J., Coyago-Cruz, E., Gonzalez-Pastor, R., Cartuchi, K., Viteri, A., Peñaherrera-Pazmiño, A. B., & Guamán, L. P. (2025). Bioactive Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Shell: Encapsulation, Structural Stability, and Multifunctional Activities. International Journal of Molecular Sciences, 26(22), 10859. https://doi.org/10.3390/ijms262210859

