IgG Idiotype Diversity Shapes Cytokine Profiles and Autoantibody Targets in HTLV-1 Clinical Outcomes
Abstract
1. Introduction
2. Results
2.1. Differential Effects of IgG from ACs, HAM/TSP, and ATLL Patients on Cytokine Production by Healthy CD4+, CD8+, and γδ T Cells
2.2. HTLV-1-Infected Patients Exhibit Distinct IgG Profiles Targeting Immune System Proteins
2.3. HTLV-1-Infected Patients Produce IgG Targeting Immune Cells
2.4. HTLV-1-Infected Patients Produce IgG Targeting Various Human Tissues
2.5. Evaluation of Protein–Protein Interaction Network (PPIN) and Functional Enrichment Analysis Among Targeted Proteins
3. Discussion
4. Methods
4.1. Samples
4.2. IgG Purification
4.3. PBMC Culture with Purified IgG
4.4. Flow Cytometry
4.5. Microarrays for IgG Target Identification
4.6. Protein–Protein Interaction Network (PPIN) Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sugimoto, M.; Nakashima, H.; Watanabe, S.; Uyama, E.; Tanaka, F.; Ando, M.; Araki, S.; Kawasaki, S. T-lymphocyte alveolitis in HTLV-I-associated myelopathy. Lancet 1987, 2, 1220. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Li, J.J.; Nicolaides, A.; Zhang, W.G.; Freidman-Kien, A.E. Fibroblast growth factor 6 gene expression in AIDS-associated Kaposi’s sarcoma. Lancet 1992, 339, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, K.; Maruyama, I.; Sato, K.; Kitajima, I.; Nakajima, Y.; Osame, M. Chronic inflammatory arthropathy associated with HTLV-I. Lancet 1989, 1, 441. [Google Scholar] [CrossRef]
- Batista, E.S.; Oliveira, P.D.; Primo, J.; Varandas, C.M.N.; Nunes, A.P.; Bittencourt, A.L.; Farre, L. HTLV-1 proviral load in infective dermatitis associated with HTLV-1 does not increase after the development of HTLV-1-associated myelopathy/tropical spastic paraparesis and does not decrease after IDH remission. PLoS Negl. Trop. Dis. 2019, 13, e0007705. [Google Scholar] [CrossRef]
- Martin, F.; Taylor, G.P.; Jacobson, S. Inflammatory manifestations of HTLV-1 and their therapeutic options. Expert. Rev. Clin. Immunol. 2014, 10, 1531–1546. [Google Scholar] [CrossRef]
- Gessain, A.; Barin, F.; Vernant, J.C.; Gout, O.; Maurs, L.; Calender, A.; de Thé, G. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 1985, 2, 407–410. [Google Scholar] [CrossRef]
- Osame, M.; Usuku, K.; Izumo, S.; Ijichi, N.; Amitani, H.; Igata, A.; Matsumoto, M.; Tara, M. HTLV-I associated myelopathy, a new clinical entity. Lancet 1986, 1, 1031–1032. [Google Scholar] [CrossRef]
- Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA 1980, 77, 7415–7419. [Google Scholar] [CrossRef]
- Yoshida, M.; Miyoshi, I.; Hinuma, Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl. Acad. Sci. USA 1982, 79, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.R.; Victor, J.R. Natural Self-Ligand Gamma Delta T Cell Receptors (γδTCRs) Insight: The Potential of Induced IgG. Vaccines 2020, 8, 436. [Google Scholar] [CrossRef]
- Victor, J.R. Influence of maternal immunization with allergens on the thymic maturation of lymphocytes with regulatory potential in children: A broad field for further exploration. J. Immunol. Res. 2014, 2014, 780386. [Google Scholar] [CrossRef]
- Victor, J.R. Allergen-specific IgG as a mediator of allergy inhibition: Lessons from mother to child. Hum. Vaccines Immunother. 2017, 13, 507–513. [Google Scholar] [CrossRef]
- Victor, J.R. Do different IgG repertoires play a role in B- and T-cell functional modulation during ontogeny? The “hooks without bait” theory. Immunol. Cell Biol. 2020, 98, 540–548. [Google Scholar] [CrossRef]
- Cunha, F.R.M.; Fagundes, B.O.; Machado, N.R.; França, C.N.; Victor, J.R. IgG from individuals without atopy arising as mediators of a nonatopic profile in human peripheral CD4+ T cells. Ann. Allergy Asthma Immunol. 2024, 132, 770–772. [Google Scholar] [CrossRef]
- de-Apoena Reche, D.T.; Machado, N.R.; Fagundes, B.O.; Bergamasco, I.S.; de Sousa, T.R.; do Nascimento, L.A.; Cunha, F.R.M.; de-Oliveira, M.G.; da-Ressureição Sgnotto, F.; França, C.N.; et al. IgG from Dermatophagoides pteronyssinus (Der p)-atopic individuals modulates non-atopic thymic B cell phenotype (alfa-4/beta-7) and cytokine production (IFN-γ, IL-9, and IL-10) with direct membrane interaction. Sci. Rep. 2024, 14, 7274. [Google Scholar] [CrossRef] [PubMed]
- Rakanidis Machado, N.; Fagundes, B.O.; Fernandes, I.G.; Terra De Apoena Reche, D.; Sato, M.N.; Victor, J.R. IgG from patients with mild or severe COVID-19 reduces the frequency and modulates the function of peripheral mucosal-associated invariant T cells in PBMCs from healthy individuals. Biomed. Rep. 2023, 19, 95. [Google Scholar] [CrossRef]
- de Sousa, T.R.; Fagundes, B.O.; Nascimento, A.; Fernandes, L.A.; Sgnotto, F.D.R.; Orfali, R.L.; Aoki, V.; Duarte, A.J.D.S.; Sanabani, S.S.; Victor, J.R. IgG from Adult Atopic Dermatitis (AD) Patients Induces Thymic IL-22 Production and CLA Expression on CD4+ T Cells: Possible Epigenetic Implications Mediated by miRNA. Int. J. Mol. Sci. 2022, 23, 6867. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, B.O.; de Sousa, T.R.; Nascimento, A.; Fernandes, L.A.; Sgnotto, F.D.R.; Orfali, R.L.; Aoki, V.; Duarte, A.J.D.S.; Sanabani, S.S.; Victor, J.R. IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma-Delta T Cells (γδT) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. Int. J. Mol. Sci. 2022, 23, 6872. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.S.; Sgnotto, F.D.R.; Inoue, A.H.S.; Padreca, A.F.; Menghini, R.P.; Duarte, A.J.D.S.; Victor, J.R. IgG from Non-atopic Individuals Induces In Vitro IFN-γ and IL-10 Production by Human Intra-thymic γδT Cells: A Comparison with Atopic IgG and IVIg. Arch. Immunol. Ther. Exp. 2019, 67, 263–270. [Google Scholar] [CrossRef]
- da Ressureição Sgnotto, F.; Souza Santos, L.; Rodrigues de Sousa, T.; Feitosa de Lima, J.; Mara da Silva Oliveira, L.; Saeed Sanabani, S.; José da Silva Duarte, A.; Russo Victor, J. IgG From HIV-1-Exposed Seronegative and HIV-1-Infected Subjects Differently Modulates IFN-γ Production by Thymic T and B Cells. J. Acquir. Immune Defic. Syndr. 2019, 82, e56–e60. [Google Scholar] [CrossRef]
- Inoue, A.H.S.; Lira, A.A.L.; de-Oliveira, M.G.; de Sousa, T.R.; Sgnotto, F.D.R.; Duarte, A.J.D.S.; Victor, J.R. The Potential of IgG to Induce Murine and Human Thymic Maturation of IL-10+ B Cells (B10) Revealed in a Pilot Study. Cells 2020, 9, 2239. [Google Scholar] [CrossRef]
- Kuo, C.W.; Mirsaliotis, A.; Brighty, D.W. Antibodies to the envelope glycoprotein of human T cell leukemia virus type 1 robustly activate cell-mediated cytotoxic responses and directly neutralize viral infectivity at multiple steps of the entry process. J. Immunol. 2011, 187, 361–371. [Google Scholar] [CrossRef]
- Osame, M.; Matsumoto, M.; Usuku, K.; Izumo, S.; Ijichi, N.; Amitani, H.; Tara, M.; Igata, A. Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T-cell leukemialike cells. Ann. Neurol. 1987, 21, 117–122. [Google Scholar] [CrossRef]
- Stricker, R.B.; Winger, E.E. Update on treatment of immunologic abortion with low-dose intravenous immunoglobulin. Am. J. Reprod. Immunol. 2005, 54, 390–396. [Google Scholar] [CrossRef]
- Xu, L.; Chang, V.; Murphy, A.; Rock, J.A.; Damewood, M.; Schlaff, W.; Zacur, H.A. Antinuclear antibodies in sera of patients with recurrent pregnancy wastage. Am. J. Obstet. Gynecol. 1990, 163, 1493–1497. [Google Scholar] [CrossRef]
- Stagnaro-Green, A.; Roman, S.H.; Cobin, R.H.; el-Harazy, E.; Alvarez-Marfany, M.; Davies, T.F. Detection of at-risk pregnancy by means of highly sensitive assays for thyroid autoantibodies. JAMA 1990, 264, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Polgar, K.; Anderson, D.J. T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA 1995, 273, 1933–1936. [Google Scholar] [CrossRef]
- Mazer, B.D.; Gelfand, E.W. An open-label study of high-dose intravenous immunoglobulin in severe childhood asthma. J. Allergy Clin. Immunol. 1991, 87, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Jolles, S.; Hughes, J.; Rustin, M. The treatment of atopic dermatitis with adjunctive high-dose intravenous immunoglobulin: A report of three patients and review of the literature. Br. J. Dermatol. 2000, 142, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Bemanian, M.H.; Movahedi, M.; Farhoudi, A.; Gharagozlou, M.; Seraj, M.H.; Pourpak, Z.; Nabavi, M.; Aghamohammadi, A.; Shirkhoda, Z. High doses intravenous immunoglobulin versus oral cyclosporine in the treatment of severe atopic dermatitis. Iran. J. Allergy Asthma Immunol. 2005, 4, 139–143. [Google Scholar]
- Kabuto, M.; Fujimoto, N.; Tanaka, T. Increase of interleukin-10-producing B cells associated with long-term remission after i.v. immunoglobulin treatment for pemphigus. J. Dermatol. 2016, 43, 815–818. [Google Scholar] [CrossRef]
- Schwab, I.; Nimmerjahn, F. Intravenous immunoglobulin therapy: How does IgG modulate the immune system? Nat. Rev. Immunol. 2013, 13, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Ravetch, J.V. The antiinflammatory activity of IgG: The intravenous IgG paradox. J. Exp. Med. 2007, 204, 11–15. [Google Scholar] [CrossRef]
- Anthony, R.M.; Nimmerjahn, F.; Ashline, D.J.; Reinhold, V.N.; Paulson, J.C.; Ravetch, J.V. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 2008, 320, 373–376. [Google Scholar] [CrossRef]
- Kaneko, Y.; Nimmerjahn, F.; Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006, 313, 670–673. [Google Scholar] [CrossRef]
- Machado, N.R.; Fagundes, B.O.; Fernandes, L.A.; de Oliveira, A.C.P.; Nukui, Y.; Casseb, J.; Cunha, F.R.M.; Nali, L.H.D.S.; Sanabani, S.S.; Victor, J.R. Differential modulation of IL-4, IL-10, IL-17, and IFN-γ production mediated by IgG from Human T-lymphotropic virus-1 (HTLV-1) infected patients on healthy peripheral T (CD4+, CD8+, and γδ) and B cells. Front. Med. 2023, 10, 1239706. [Google Scholar] [CrossRef]
- Tattermusch, S.; Skinner, J.A.; Chaussabel, D.; Banchereau, J.; Berry, M.P.; McNab, F.W.; O’Garra, A.; Taylor, G.P.; Bangham, C.R. Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 2012, 8, e1002480. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, E.; Kubota, R.; Tanaka, Y.; Takashima, H.; Izumo, S. Visualization of HTLV-1-specific cytotoxic T lymphocytes in the spinal cords of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. J. Neuropathol. Exp. Neurol. 2015, 74, 2–14. [Google Scholar] [CrossRef]
- Queiroz, M.A.F.; Azevedo, V.N.; Amoras, E.D.S.G.; Moura, T.C.F.; Guimarães Ishak, M.O.; Ishak, R.; Vallinoto, A.C.R.; Martins Feitosa, R.N. +874A/T Polymorphism Among Asymptomatic HTLV-1-Infected Individuals Is Potentially Related to a Worse Prognosis. Front. Microbiol. 2018, 9, 795. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Kamio, M.; Kodaka, T.; Tamori, S.; Fukuhara, S.; Amakawa, R.; Uchino, H.; Araki, K. Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood 1988, 72, 1182–1186. [Google Scholar] [CrossRef]
- Mori, N.; Yamashita, U.; Tanaka, Y.; Nakata, K.; Oda, S.; Morimoto, I.; Eto, S. Interleukin-4 induces proliferation of adult T-cell leukemia cells. Eur. J. Haematol. 1993, 50, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Domingos, J.A.; Soares, L.S.; Bandeira, L.M.; Bonin, C.M.; Vicente, A.C.; Zanella, L.; Puga, M.A.; Tozetti, I.A.; Motta-Castro, A.R.; da Cunha, R.V. Cytokine profile and proviral load among Japanese immigrants and non-Japanese infected with HTLV-1 in a non-endemic area of Brazil. PLoS ONE 2017, 12, e0174869. [Google Scholar] [CrossRef] [PubMed]
- Assone, T.; Menezes, S.M.; de Toledo Gonçalves, F.; Folgosi, V.A.; da Silva Prates, G.; Dierckx, T.; Braz, M.; Smid, J.; Haziot, M.E.; Marcusso, R.M.N.; et al. Systemic cytokines and GlycA discriminate disease status and predict corticosteroid response in HTLV-1-associated neuroinflammation. J. Neuroinflamm. 2022, 19, 293. [Google Scholar] [CrossRef]
- Chen, J.; Petrus, M.; Bryant, B.R.; Nguyen, V.P.; Goldman, C.K.; Bamford, R.; Morris, J.C.; Janik, J.E.; Waldmann, T.A. Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood 2010, 116, 5948–5956. [Google Scholar] [CrossRef]
- de Sena Rodrigues Júnior, R.; Antonia Nunes Gomes, J.; Alberto da Silva Dias, G.; Fujihara, S.; Toshimitsu Yoshikawa, G.; Vilela Lopes Koyama, R.; Catarina Medeiros Sousa, R.; Antonio Simões Quaresma, J.; Thais Fuzii, H. T helper type 9 cell response and its role in the neurological clinic of patients with Human T-lymphotropic virus 1. Immunobiology 2023, 228, 152740. [Google Scholar] [CrossRef] [PubMed]
- Silbermann, K.; Schneider, G.; Grassmann, R. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT. J. Gen. Virol. 2008, 89, 2788–2798. [Google Scholar] [CrossRef]
- Mozhgani, S.H.; Zarei-Ghobadi, M.; Teymoori-Rad, M.; Mokhtari-Azad, T.; Mirzaie, M.; Sheikhi, M.; Jazayeri, S.M.; Shahbahrami, R.; Ghourchian, H.; Jafari, M.; et al. Human T-lymphotropic virus 1 (HTLV-1) pathogenesis: A systems virology study. J. Cell Biochem. 2018, 119, 3968–3979. [Google Scholar] [CrossRef]
- Keller, J.; O’ Siorain, J.R.; Kündig, T.M.; Mellett, M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem. Soc. Trans. 2024, 52, 1591–1604. [Google Scholar] [CrossRef]
- Iannello, A.; Boulassel, M.R.; Samarani, S.; Debbeche, O.; Tremblay, C.; Toma, E.; Routy, J.P.; Ahmad, A. Dynamics and consequences of IL-21 production in HIV-infected individuals: A longitudinal and cross-sectional study. J. Immunol. 2010, 184, 114–126. [Google Scholar] [CrossRef]
- Rajaei, T.; Farajifard, H.; Rafatpanah, H.; Bustani, R.; Valizadeh, N.; Rajaei, B.; Rezaee, S.A. Role of IL-21 in HTLV-1 infections with emphasis on HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Med. Microbiol. Immunol. 2017, 206, 195–201. [Google Scholar] [CrossRef]
- Ueda, M.; Imada, K.; Imura, A.; Koga, H.; Hishizawa, M.; Uchiyama, T. Expression of functional interleukin-21 receptor on adult T-cell leukaemia cells. Br. J. Haematol. 2005, 128, 169–176. [Google Scholar] [CrossRef]
- Rogel, A.; Ibrahim, F.M.; Thirdborough, S.M.; Renart-Depontieu, F.; Birts, C.N.; Buchan, S.L.; Preville, X.; King, E.V.; Al-Shamkhani, A. Fcγ receptor-mediated cross-linking codefines the immunostimulatory activity of anti-human CD96 antibodies. JCI Insight 2022, 7, e158444. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhang, J.J.; Zhang, Q.J.; Dong, Y.; Shi, Z.D.; Hong, S.H.; He, H.G.; Wu, W.; Han, C.H.; Hao, L. METTL3 regulates the proliferation, metastasis and EMT progression of bladder cancer through P3H4. Cell Signal 2024, 113, 110971. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, H.; Wang, W.D.; Wang, L.; Liu, W.J.; Wang, J.H.; Geng, Q.R.; Lu, Y. ENO2 Promotes Cell Proliferation, Glycolysis, and Glucocorticoid-Resistance in Acute Lymphoblastic Leukemia. Cell Physiol. Biochem. 2018, 46, 1525–1535. [Google Scholar] [CrossRef]
- Almamun, M.; Levinson, B.T.; van Swaay, A.C.; Johnson, N.T.; McKay, S.D.; Arthur, G.L.; Davis, J.W.; Taylor, K.H. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia. Epigenetics 2015, 10, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Celis-Gutierrez, J.; Boyron, M.; Walzer, T.; Pandolfi, P.P.; Jonjić, S.; Olive, D.; Dalod, M.; Vivier, E.; Nunès, J.A. Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO J. 2014, 33, 1928–1940. [Google Scholar] [CrossRef] [PubMed]
- Laletin, V.; Bernard, P.L.; Montersino, C.; Yamanashi, Y.; Olive, D.; Castellano, R.; Guittard, G.; Nunès, J.A. DOK1 and DOK2 regulate CD8 T cell signaling and memory formation without affecting tumor cell killing. Sci. Rep. 2024, 14, 15053. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Shi, H.; Luo, Y.; Sun, W.; Li, S.; Zhang, N.; Jiang, X.; Gong, Y.; Xie, C. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma. Cancer Med. 2020, 9, 9581–9594. [Google Scholar] [CrossRef]
- Sheikh, B.N.; Lee, S.C.; El-Saafin, F.; Vanyai, H.K.; Hu, Y.; Pang, S.H.; Grabow, S.; Strasser, A.; Nutt, S.L.; Alexander, W.S.; et al. MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 2015, 125, 1910–1921. [Google Scholar] [CrossRef]
- Bärlund, M.; Monni, O.; Weaver, J.D.; Kauraniemi, P.; Sauter, G.; Heiskanen, M.; Kallioniemi, O.P.; Kallioniemi, A. Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes. Chromosomes Cancer 2002, 35, 311–317. [Google Scholar] [CrossRef]
- Arakawa, R.; Bagashev, A.; Song, L.; Maurer, K.; Sullivan, K.E. Characterization of LRRFIP1. Biochem. Cell Biol. 2010, 88, 899–906. [Google Scholar] [CrossRef]
- Vicente, C.T.; Edwards, S.L.; Hillman, K.M.; Kaufmann, S.; Mitchell, H.; Bain, L.; Glubb, D.M.; Lee, J.S.; French, J.D.; Ferreira, M.A. Long-Range Modulation of PAG1 Expression by 8q21 Allergy Risk Variants. Am. J. Hum. Genet. 2015, 97, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, R.; Fu, D.; Zhang, B.; Cui, A.; Shao, Y.; Lai, Z.; Chen, R.; Chen, B.; Wang, Z.; et al. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci. Ther. 2024, 30, e14717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, C.; Lu, C.; Li, W.; Jing, B.; Chen, W.; Zha, Y.; Bai, C.; Liu, H.; Zhang, L. PLEKHO2 is essential for M-CSF-dependent macrophage survival. Cell Signal 2017, 37, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Espitia, C.M.; Persky, D.O.; Carew, J.S.; Nawrocki, S.T. Targeting JAK/STAT Signaling Antagonizes Resistance to Oncolytic Reovirus Therapy Driven by Prior Infection with HTLV-1 in Models of T-Cell Lymphoma. Viruses 2021, 13, 1406. [Google Scholar] [CrossRef]
- Tamaki, K.; Mera, H.; Takeshita, S.; Fujioka, S.; Goto, M.; Matsumoto, T.; Yamano, Y.; Takamatsu, Y.; Tsuboi, Y. A refractory human T-cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis patient with lymphoma-type adult T-cell leukemia/lymphoma: A case report and review of the literature. Medicine 2021, 100, e27450. [Google Scholar] [CrossRef]
- Shiohama, Y.; Naito, T.; Matsuzaki, T.; Tanaka, R.; Tomoyose, T.; Takashima, H.; Fukushima, T.; Tanaka, Y.; Saito, M. Prevalence of plasma autoantibody against cancer testis antigen NY-ESO-1 in HTLV-1 infected individuals with different clinical status. Virol. J. 2017, 14, 130. [Google Scholar] [CrossRef]
- Darnell, R.B.; Posner, J.B. Paraneoplastic syndromes involving the nervous system. N. Engl. J. Med. 2003, 349, 1543–1554. [Google Scholar] [CrossRef]
- Liu, J.; Su, Y.; Zhang, C.; Dong, H.; Yu, R.; Yang, X.; Tian, Y.; Feng, Y.; Zhang, J.; Shi, M.; et al. NCOA3 impairs the efficacy of anti-PD-L1 therapy via HSP90α/EZH2/CXCL9 axis in colon cancer. Int. Immunopharmacol. 2025, 155, 114579. [Google Scholar] [CrossRef]
- Young, A.; Quandt, Z.; Bluestone, J.A. The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol. Res. 2018, 6, 1445–1452. [Google Scholar] [CrossRef]
- Tan, E.M. Autoantibodies, autoimmune disease, and the birth of immune diagnostics. J. Clin. Investig. 2012, 122, 3835–3836. [Google Scholar] [CrossRef]
- Lopez, E.; Scott, N.E.; Wines, B.D.; Hogarth, P.M.; Wheatley, A.K.; Kent, S.J.; Chung, A.W. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Front. Immunol. 2019, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- Belkadi, A.; Dietrich, C.; Machavoine, F.; Victor, J.R.; Leite-de-Moraes, M. γδ T cells amplify Blomia tropicalis-induced allergic airway disease. Allergy 2018, 74, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Sgnotto, F.D.R.; Oliveira, M.G.; Lira, A.A.L.; Bento-de-Souza, L.; Duarte, A.J.D.S.; Victor, J.R. Low doses of IgG from atopic individuals can modulate in vitro IFN-γ production by human intra-thymic TCD4 and TCD8 cells: An IVIg comparative approach. Hum. Vaccin. Immunother. 2017, 13, 1563–1572. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamasco, I.S.; Machado, N.R.; do Nascimento, L.A.; Fagundes, B.O.; da Ressureição Sgnotto, F.; Casseb, J.; Sanabani, S.S.; Da Silva Nali, L.H.; Miyashiro, D.; Sanches, J.A.; et al. IgG Idiotype Diversity Shapes Cytokine Profiles and Autoantibody Targets in HTLV-1 Clinical Outcomes. Int. J. Mol. Sci. 2025, 26, 10858. https://doi.org/10.3390/ijms262210858
Bergamasco IS, Machado NR, do Nascimento LA, Fagundes BO, da Ressureição Sgnotto F, Casseb J, Sanabani SS, Da Silva Nali LH, Miyashiro D, Sanches JA, et al. IgG Idiotype Diversity Shapes Cytokine Profiles and Autoantibody Targets in HTLV-1 Clinical Outcomes. International Journal of Molecular Sciences. 2025; 26(22):10858. https://doi.org/10.3390/ijms262210858
Chicago/Turabian StyleBergamasco, Isabela Siuffi, Nicolle Rakanidis Machado, Lais Alves do Nascimento, Beatriz Oliveira Fagundes, Fabio da Ressureição Sgnotto, Jorge Casseb, Sabri Saeed Sanabani, Luiz Henrique Da Silva Nali, Denis Miyashiro, José Antonio Sanches, and et al. 2025. "IgG Idiotype Diversity Shapes Cytokine Profiles and Autoantibody Targets in HTLV-1 Clinical Outcomes" International Journal of Molecular Sciences 26, no. 22: 10858. https://doi.org/10.3390/ijms262210858
APA StyleBergamasco, I. S., Machado, N. R., do Nascimento, L. A., Fagundes, B. O., da Ressureição Sgnotto, F., Casseb, J., Sanabani, S. S., Da Silva Nali, L. H., Miyashiro, D., Sanches, J. A., & Victor, J. R. (2025). IgG Idiotype Diversity Shapes Cytokine Profiles and Autoantibody Targets in HTLV-1 Clinical Outcomes. International Journal of Molecular Sciences, 26(22), 10858. https://doi.org/10.3390/ijms262210858

