Association of BMAL1 and CLOCK Gene Polymorphisms with Preeclampsia Risk with Subtype Analysis
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics of Participants
2.2. Associations of Gene Polymorphisms in BMAL1 and CLOCK with PE Risk Under the Codominant Model
2.3. Associations of Gene Polymorphisms in BMAL1 and CLOCK with PE Risk Under the Recessive Model
2.4. Haplotype-Based and Gene–Environment Interaction Analysis of the BMAL1 Gene for PE Risk
2.5. Associations Between BMAL1 Polymorphism and PE Subtypes
2.6. Effects of PE-Associated BMAL1 Polymorphism on Gene Expression in Whole Blood
2.7. Protein–Protein Interaction Network Analysis of BMAL1
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Data Collection
4.3. SNPs Selection and Genotyping
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turbeville, H.R.; Sasser, J.M. Preeclampsia beyond pregnancy: Long-term consequences for mother and child. Am. J. Physiol. Ren. Physiol. 2020, 318, F1315–F1326. [Google Scholar] [CrossRef]
- Erez, O.; Romero, R.; Jung, E.; Chaemsaithong, P.; Bosco, M.; Suksai, M.; Gallo, D.M.; Gotsch, F. Preeclampsia and eclampsia: The conceptual evolution of a syndrome. Am. J. Obstet. Gynecol. 2022, 226, S786–S803. [Google Scholar] [CrossRef]
- Marín, R.; Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Sobrevia, L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165961. [Google Scholar] [CrossRef]
- Li, F.; Qin, J.; Zhang, S.; Chen, L. Prevalence of hypertensive disorders in pregnancy in China: A systematic review and meta-analysis. Pregnancy Hypertens. 2021, 24, 13–21. [Google Scholar] [CrossRef]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Badagionis, M.; Sergentanis, T.N.; Pervanidou, P.; Kalampokas, E.; Vlahos, N.; Eleftheriades, M. Preeclampsia and Cerebral Palsy in Offspring. Children 2022, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.; Fragoso, M.B.T.; Dos Santos Tenório, M.C.; Silva, J.V.F.; Bueno, N.B.; Goulart, M.O.F.; de Oliveira, A.C.M. Pre-eclampsia is associated with later kidney chronic disease and end-stage renal disease: Systematic review and meta-analysis of observational studies. Pregnancy Hypertens. 2020, 22, 71–85. [Google Scholar] [CrossRef]
- Grandi, S.M.; Filion, K.B.; Yoon, S.; Ayele, H.T.; Doyle, C.M.; Hutcheon, J.A.; Smith, G.N.; Gore, G.C.; Ray, J.G.; Nerenberg, K.; et al. Cardiovascular Disease-Related Morbidity and Mortality in Women with a History of Pregnancy Complications. Circulation 2019, 139, 1069–1079, Erratum in Circulation 2019, 140, e544. [Google Scholar] [CrossRef] [PubMed]
- McNestry, C.; Killeen, S.L.; Crowley, R.K.; McAuliffe, F.M. Pregnancy complications and later life women’s health. Acta Obstet. Gynecol. Scand. 2023, 102, 523–531. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Theilen, L.H.; Meeks, H.; Fraser, A.; Esplin, M.S.; Smith, K.R.; Varner, M.W. Long-term mortality risk and life expectancy following recurrent hypertensive disease of pregnancy. Am. J. Obstet. Gynecol. 2018, 219, 107.e1–107.e6. [Google Scholar] [CrossRef] [PubMed]
- Brosens, I.; Puttemans, P.; Benagiano, G. Placental bed research: I. The placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol. 2019, 221, 437–456. [Google Scholar] [CrossRef] [PubMed]
- von Dadelszen, P.; Bhutta, Z.A.; Sharma, S.; Bone, J.; Singer, J.; Wong, H.; Bellad, M.B.; Goudar, S.S.; Lee, T.; Li, J.; et al. The Community-Level Interventions for Pre-eclampsia (CLIP) cluster randomised trials in Mozambique, Pakistan, and India: An individual participant-level meta-analysis. Lancet 2020, 396, 553–563, Erratum in Lancet 2020, 396, 818. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yan, J.Y.; Chen, L.C. Risk factors and maternal-fetal outcomes of pregnancies complicated by pre-eclampsia, following cesarean section after a trial vaginal birth. Chin. Med. J. 2021, 134, 2249–2251. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; da Silva Costa, F.; Nicolaides, K.; et al. Pre-eclampsia. Nat. Rev. Dis. Primers 2023, 9, 8, Erratum in Nat. Rev. Dis. Primers 2023, 9, 35. [Google Scholar] [CrossRef]
- Kalafat, E.; Thilaganathan, B. Cardiovascular origins of preeclampsia. Curr. Opin. Obstet. Gynecol. 2017, 29, 383–389. [Google Scholar] [CrossRef]
- Kornacki, J.; Olejniczak, O.; Sibiak, R.; Gutaj, P.; Wender-Ożegowska, E. Pathophysiology of Pre-Eclampsia-Two Theories of the Development of the Disease. Int. J. Mol. Sci. 2023, 25, 307. [Google Scholar] [CrossRef]
- Brosens, I.; Pijnenborg, R.; Vercruysse, L.; Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011, 204, 193–201. [Google Scholar] [CrossRef]
- Huppertz, B.; Gauster, M.; Orendi, K.; König, J.; Moser, G. Oxygen as modulator of trophoblast invasion. J. Anat. 2009, 215, 14–20. [Google Scholar] [CrossRef]
- Karumanchi, S.A. Angiogenic Factors in Preeclampsia: From Diagnosis to Therapy. Hypertension 2016, 67, 1072–1079. [Google Scholar] [CrossRef]
- Kornacki, J.; Wirstlein, P.; Wender-Ozegowska, E. Levels of syndecan-1 and hyaluronan in early- and late-onset preeclampsia. Pregnancy Hypertens. 2019, 18, 108–111. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Tannetta, D.; Masliukaite, I.; Vatish, M.; Redman, C.; Sargent, I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J. Reprod. Immunol. 2017, 119, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef] [PubMed]
- Docheva, N.; Romero, R.; Chaemsaithong, P.; Tarca, A.L.; Bhatti, G.; Pacora, P.; Panaitescu, B.; Chaiyasit, N.; Chaiworapongsa, T.; Maymon, E.; et al. The profiles of soluble adhesion molecules in the “great obstetrical syndromes”. J. Matern. Fetal Neonatal Med. 2019, 32, 2113–2136. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef]
- Verlohren, S.; Brennecke, S.P.; Galindo, A.; Karumanchi, S.A.; Mirkovic, L.B.; Schlembach, D.; Stepan, H.; Vatish, M.; Zeisler, H.; Rana, S. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022, 27, 42–50. [Google Scholar] [CrossRef]
- McLaughlin, K.; Zhang, J.; Lye, S.J.; Parker, J.D.; Kingdom, J.C. Phenotypes of Pregnant Women Who Subsequently Develop Hypertension in Pregnancy. J. Am. Heart Assoc. 2018, 7, e009595. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- Romundstad, P.R.; Magnussen, E.B.; Smith, G.D.; Vatten, L.J. Hypertension in pregnancy and later cardiovascular risk: Common antecedents? Circulation 2010, 122, 579–584. [Google Scholar] [CrossRef]
- Wu, P.; Haththotuwa, R.; Kwok, C.S.; Babu, A.; Kotronias, R.A.; Rushton, C.; Zaman, A.; Fryer, A.A.; Kadam, U.; Chew-Graham, C.A.; et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003497. [Google Scholar] [CrossRef]
- Boroń, D.; Kornacki, J.; Gutaj, P.; Mantaj, U.; Wirstlein, P.; Wender-Ozegowska, E. Corin-The Early Marker of Preeclampsia in Pregestational Diabetes Mellitus. J. Clin. Med. 2022, 12, 61. [Google Scholar] [CrossRef]
- Ogge, G.; Chaiworapongsa, T.; Romero, R.; Hussein, Y.; Kusanovic, J.P.; Yeo, L.; Kim, C.J.; Hassan, S.S. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J. Perinat. Med. 2011, 39, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Romero, R.; Kusanovic, J.P.; Ogge, G.; Hussein, Y.; Yeo, L.; Hassan, S.S.; Kim, C.J.; Chaiworapongsa, T. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J. Matern. Fetal Neonatal Med. 2012, 25, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.B.; Coiffard, B.; Desbriere, R.; Katsogiannou, M.; Donato, X.; Bretelle, F.; Mezouar, S.; Mege, J.L. Disruption of the Expression of the Placental Clock and Melatonin Genes in Preeclampsia. Int. J. Mol. Sci. 2023, 24, 2363. [Google Scholar] [CrossRef]
- Zhou, G.; Winn, E.; Nguyen, D.; Kasten, E.P.; Petroff, M.G.; Hoffmann, H.M. Co-alterations of circadian clock gene transcripts in human placenta in preeclampsia. Sci. Rep. 2022, 12, 17856. [Google Scholar] [CrossRef]
- Coiffard, B.; Diallo, A.B.; Culver, A.; Mezouar, S.; Hammad, E.; Vigne, C.; Nicolino-Brunet, C.; Dignat-George, F.; Baumstarck, K.; Boucekine, M.; et al. Circadian Rhythm Disruption and Sepsis in Severe Trauma Patients. Shock 2019, 52, 29–36. [Google Scholar] [CrossRef]
- Diallo, A.B.; Coiffard, B.; Leone, M.; Mezouar, S.; Mege, J.L. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front. Immunol. 2020, 11, 1457. [Google Scholar] [CrossRef]
- Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72, 517–549. [Google Scholar] [CrossRef]
- Honma, S. The mammalian circadian system: A hierarchical multi-oscillator structure for generating circadian rhythm. J. Physiol. Sci. 2018, 68, 207–219. [Google Scholar] [CrossRef]
- Rasmussen, E.S.; Takahashi, J.S.; Green, C.B. Time to target the circadian clock for drug discovery. Trends Biochem. Sci. 2022, 47, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol. Metab. 2016, 27, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Clarkson-Townsend, D.A.; Everson, T.M.; Deyssenroth, M.A.; Burt, A.A.; Hermetz, K.E.; Hao, K.; Chen, J.; Marsit, C.J. Maternal circadian disruption is associated with variation in placental DNA methylation. PLoS ONE 2019, 14, e0215745. [Google Scholar] [CrossRef] [PubMed]
- Mark, P.J.; Crew, R.C.; Wharfe, M.D.; Waddell, B.J. Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J. Biol. Rhythm. 2017, 32, 534–549. [Google Scholar] [CrossRef]
- Miller, B.H.; Takahashi, J.S. Central circadian control of female reproductive function. Front. Endocrinol. 2013, 4, 195. [Google Scholar] [CrossRef]
- Pérez, S.; Murias, L.; Fernández-Plaza, C.; Díaz, I.; González, C.; Otero, J.; Díaz, E. Evidence for clock genes circadian rhythms in human full-term placenta. Syst. Biol. Reprod. Med. 2015, 61, 360–366. [Google Scholar] [CrossRef]
- Frigato, E.; Lunghi, L.; Ferretti, M.E.; Biondi, C.; Bertolucci, C. Evidence for circadian rhythms in human trophoblast cell line that persist in hypoxia. Biochem. Biophys. Res. Commun. 2009, 378, 108–111. [Google Scholar] [CrossRef]
- McAlpine, C.S.; Swirski, F.K. Circadian Influence on Metabolism and Inflammation in Atherosclerosis. Circ. Res. 2016, 119, 131–141. [Google Scholar] [CrossRef]
- Suyama, K.; Silagi, E.S.; Choi, H.; Sakabe, K.; Mochida, J.; Shapiro, I.M.; Risbud, M.V. Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: Implications in maintenance of intervertebral disc health. Oncotarget 2016, 7, 23056–23071. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, M.; Zhao, G.; Fu, W.; Shi, Z.; Ding, Y.; Tang, X.; Guo, D. Loss of CLOCK under high glucose upregulates ROCK1-mediated endothelial to mesenchymal transition and aggravates plaque vulnerability. Atherosclerosis 2018, 275, 58–67. [Google Scholar] [CrossRef]
- Xie, Z.; Su, W.; Liu, S.; Zhao, G.; Esser, K.; Schroder, E.A.; Lefta, M.; Stauss, H.M.; Guo, Z.; Gong, M.C. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J. Clin. Investig. 2015, 125, 324–336. [Google Scholar] [CrossRef]
- Lee, J.; Moulik, M.; Fang, Z.; Saha, P.; Zou, F.; Xu, Y.; Nelson, D.L.; Ma, K.; Moore, D.D.; Yechoor, V.K. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol. Cell Biol. 2013, 33, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Pekovic-Vaughan, V.; Gibbs, J.; Yoshitane, H.; Yang, N.; Pathiranage, D.; Guo, B.; Sagami, A.; Taguchi, K.; Bechtold, D.; Loudon, A.; et al. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 2014, 28, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Spengler, M.L.; Kuropatwinski, K.K.; Comas, M.; Gasparian, A.V.; Fedtsova, N.; Gleiberman, A.S.; Gitlin, I.I.; Artemicheva, N.M.; Deluca, K.A.; Gudkov, A.V.; et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc. Natl. Acad. Sci. USA 2012, 109, E2457–E2465. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wu, H.; Xu, W. Deletion of Bmal1 Impairs Pancreatic β-Cell Function via Mitochondrial Signaling Pathway. BioMed Res. Int. 2020, 2020, 9803024. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Hou, Y.; Huang, L.; Bian, Y.; Song, G.; Qiao, C. Circadian clock gene Clock is involved in the pathogenesis of preeclampsia through hypoxia. Life Sci. 2020, 247, 117441. [Google Scholar] [CrossRef]
- Min, Q.; Hu, W.; Lei, D.; He, X.; Liu, C.; Li, Q.; Tian, W. The correlation of shift work and CLOCK, BMAL1, and PER1 gene polymorphisms with hypertension in healthcare workers: A cross-sectional study. Medicine 2024, 103, e40148. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Yazar, S.; et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021, 53, 1300–1310. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Guo, B.; Chatterjee, S.; Li, L.; Kim, J.M.; Lee, J.; Yechoor, V.K.; Minze, L.J.; Hsueh, W.; Ma, K. The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J. 2012, 26, 3453–3463. [Google Scholar] [CrossRef]
- Lin, F.; Chen, Y.; Li, X.; Zhao, Q.; Tan, Z. Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem. Funct. 2013, 31, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Y.; Zheng, Q. The regulated cell death at the maternal-fetal interface: Beneficial or detrimental? Cell Death Discov. 2024, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Mezhnina, V.; Ebeigbe, O.P.; Poe, A.; Kondratov, R.V. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxid. Redox Signal. 2022, 37, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Tang, H.; Tang, X.; Ma, X.; Guo, D.; Chen, F. BMAL1 suppresses ROS-induced endothelial-to-mesenchymal transition and atherosclerosis plaque progression via BMP signaling. Am. J. Transl. Res. 2018, 10, 3150–3161. [Google Scholar]
- Zhou, X.; Han, T.L.; Chen, H.; Baker, P.N.; Qi, H.; Zhang, H. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp. Cell Res. 2017, 359, 195–204. [Google Scholar] [CrossRef]
- Gibbs, J.; Ince, L.; Matthews, L.; Mei, J.; Bell, T.; Yang, N.; Saer, B.; Begley, N.; Poolman, T.; Pariollaud, M.; et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 2014, 20, 919–926. [Google Scholar] [CrossRef]
- Burgermeister, E.; Battaglin, F.; Eladly, F.; Wu, W.; Herweck, F.; Schulte, N.; Betge, J.; Härtel, N.; Kather, J.N.; Weis, C.A.; et al. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. eBioMedicine 2019, 45, 139–154. [Google Scholar] [CrossRef]
- Early, J.O.; Menon, D.; Wyse, C.A.; Cervantes-Silva, M.P.; Zaslona, Z.; Carroll, R.G.; Palsson-McDermott, E.M.; Angiari, S.; Ryan, D.G.; Corcoran, S.E.; et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. USA 2018, 115, E8460–E8468. [Google Scholar] [CrossRef]
- Peng, S.; Deyssenroth, M.A.; Di Narzo, A.F.; Lambertini, L.; Marsit, C.J.; Chen, J.; Hao, K. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet. 2017, 26, 3432–3441. [Google Scholar] [CrossRef]
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Waddell, B.J.; Wharfe, M.D.; Crew, R.C.; Mark, P.J. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta 2012, 33, 533–539. [Google Scholar] [CrossRef]
- Hoffman, A.E.; Yi, C.H.; Zheng, T.; Stevens, R.G.; Leaderer, D.; Zhang, Y.; Holford, T.R.; Hansen, J.; Paulson, J.; Zhu, Y. CLOCK in breast tumorigenesis: Genetic, epigenetic, and transcriptional profiling analyses. Cancer Res. 2010, 70, 1459–1468. [Google Scholar] [CrossRef]
- Rahman, L.; Anwar, R.; Mose, J.C. Maternal and neonatal outcome among women with early-onset preeclampsia and late-onset preeclampsia. Hypertens. Pregnancy 2024, 43, 2405991. [Google Scholar] [CrossRef]
- Hypertensive Disorders in Pregnancy Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Diagnosis and treatment of hypertension and pre-eclampsia in pregnancy: A clinical practice guideline in China (2020). Zhonghua Fu Chan Ke Za Zhi 2020, 55, 227–238. [Google Scholar] [CrossRef]
- Huppertz, B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension 2008, 51, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, F.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]

| Characteristics | PE (n = 202) | Control (n = 400) | Statistical Value | p Value |
|---|---|---|---|---|
| Age (years) | 33.891 | <0.001 *** | ||
| <30 | 58 (28.71) | 202 (50.50) | ||
| 30–35 | 88 (43.57) | 148 (37.00) | ||
| ≥35 | 56 (27.72) | 50 (12.50) | ||
| Residence | 24.120 | <0.001 *** | ||
| Urban | 170 (84.16) | 383 (95.75) | ||
| Rural | 32 (15.84) | 17 (4.25) | ||
| Pre-pregnancy BMI (kg/m2) | 83.977 | <0.001 *** | ||
| Normal weight (18.5–24.0) | 110 (54.46) | 286 (71.50) | ||
| Underweight (<18.5) | 14 (6.93) | 79 (19.75) | ||
| Overweight/obesity (≥24.0) | 78 (38.61) | 35 (8.75) | ||
| History of pregnancy complications | 8.630 | 0.003 ** | ||
| No | 164 (81.19) | 359 (89.75) | ||
| Yes | 38 (18.81) | 41 (10.25) | ||
| History of adverse pregnancy outcomes | 2.891 | 0.089 | ||
| No | 105 (51.98) | 237 (59.25) | ||
| Yes | 97 (48.02) | 163 (40.75) | ||
| History of anemia during pregnancy | 4.284 | 0.038 * | ||
| No | 164 (81.19) | 350 (87.50) | ||
| Yes | 38 (18.81) | 50 (12.50) | ||
| Gravidity | 1.921 | 0.166 | ||
| 1 | 73 (36.14) | 168 (42.00) | ||
| ≥2 | 129 (63.86) | 232 (58.00) | ||
| Parity | 0.007 | 0.932 | ||
| 0 | 123 (60.89) | 245 (61.25) | ||
| ≥1 | 79 (39.11) | 155 (38.75) | ||
| Smoking during pregnancy | 1.485 | 0.223 | ||
| No | 196 (97.03) | 394 (98.50) | ||
| Yes | 6 (2.97) | 6 (1.50) | ||
| Secondhand smoke exposure during pregnancy | 7.840 | 0.005 ** | ||
| No | 138 (68.32) | 226 (56.50) | ||
| Yes | 64 (31.68) | 174 (43.50) | ||
| Alcohol consumption during pregnancy | 2.956 | 0.086 | ||
| No | 196 (97.03) | 375 (93.75) | ||
| Yes | 6 (2.97) | 25 (6.25) | ||
| Tea consumption during pregnancy | 8.621 | 0.003 ** | ||
| No | 166 (82.18) | 362 (90.50) | ||
| Yes | 36 (17.82) | 38 (9.50) | ||
| Folic acid supplementation during pregnancy | 0.526 | 0.468 | ||
| No | 2 (0.99) | 7 (1.75) | ||
| Yes | 200 (99.01) | 393 (98.25) | ||
| Sleep quality during pregnancy | 28.341 | <0.001 *** | ||
| Poor | 62 (30.69) | 51 (12.75) | ||
| Good | 140 (69.31) | 349 (87.25) | ||
| Daily sleep duration during pregnancy (hours/day) | 32.588 | <0.001 *** | ||
| <7 | 52 (25.74) | 34 (8.50) | ||
| ≥7 | 150 (74.26) | 366 (91.50) | ||
| History of autoimmune disease | 0.189 | 0.663 | ||
| No | 198 (98.02) | 394 (98.50) | ||
| Yes | 4 (1.98) | 6 (1.50) | ||
| Fever in early pregnancy | 1.503 | 0.220 | ||
| No | 190 (94.06) | 385 (96.25) | ||
| Yes | 12 (5.94) | 15 (3.75) | ||
| Respiratory tract infection in early pregnancy | 0.137 | 0.711 | ||
| No | 189 (93.56) | 371 (92.75) | ||
| Yes | 13 (6.44) | 29 (7.25) | ||
| Gastrointestinal infection in early pregnancy | 0.094 | 0.759 | ||
| No | 200 (99.01) | 397 (99.25) | ||
| Yes | 2 (0.99) | 3 (0.75) | ||
| Periodontitis in early pregnancy | 4.780 | 0.029 * | ||
| No | 186 (92.08) | 385 (96.25) | ||
| Yes | 16 (7.92) | 15 (3.75) | ||
| Urinary tract infection in early pregnancy | 0.001 | 1.000 | ||
| No | 200 (99.01) | 396 (99.00) | ||
| Yes | 2 (0.99) | 4 (1.00) | ||
| Reproductive tract infection in early pregnancy | 7.975 | 0.005 ** | ||
| No | 180 (89.11) | 381 (95.25) | ||
| Yes | 22 (10.89) | 19 (4.75) |
| Gene | SNP | Genotype | PE (n = 202) | Control (n = 400) | HWE p Value | OR (95% CI) | aOR (95% CI) |
|---|---|---|---|---|---|---|---|
| BMAL1 | rs4757144 | GG | 80 (39.60) | 148 (37.00) | 0.647 | 1.00 (Ref.) | 1.00 (Ref.) |
| GA | 94 (46.53) | 187 (46.75) | 0.93 (0.64, 1.34) | 1.02 (0.66, 1.57) | |||
| AA | 28 (13.87) | 65 (16.25) | 0.80 (0.47, 1.34) | 0.98 (0.54, 1.80) | |||
| BMAL1 | rs11022780 | CC | 104 (51.49) | 210 (52.50) | 0.906 | 1.00 (Ref.) | 1.00 (Ref.) |
| CT | 93 (46.04) | 159 (39.75) | 1.18 (0.83, 1.67) | 1.09 (0.72, 1.64) | |||
| TT | 5 (2.47) | 31 (7.75) | 0.33 (0.12, 0.86) * | 0.26 (0.09, 0.78) * | |||
| BMAL1 | rs969485 | GG | 66 (32.67) | 142 (35.50) | 0.255 | 1.00 (Ref.) | 1.00 (Ref.) |
| GA | 105 (51.98) | 184 (46.00) | 1.23 (0.84, 1.79) | 1.21 (0.77, 1.89) | |||
| AA | 31 (15.35) | 74 (18.50) | 0.90 (0.54, 1.50) | 0.65 (0.36, 1.19) | |||
| CLOCK | rs1048004 | CC | 173 (85.64) | 352 (88.00) | 0.250 | 1.00 (Ref.) | 1.00 (Ref.) |
| CA | 28 (13.86) | 45 (11.25) | 1.27 (0.76, 2.10) | 1.59 (0.88, 2.87) | |||
| AA | 1 (0.50) | 3 (0.75) | 0.68 (0.07, 6.57) | 1.16 (0.09, 14.77) |
| Gene | SNP | Genotype | PE (n = 202) | Control (n = 400) | OR (95% CI) | aOR (95% CI) |
|---|---|---|---|---|---|---|
| BMAL1 | rs4757144 | GG + GA | 174 (86.14) | 335 (83.75) | 1.00 (Ref.) | 1.00 (Ref.) |
| AA | 28 (13.86) | 65 (16.25) | 0.83 (0.51, 1.34) | 0.97 (0.56, 1.70) | ||
| BMAL1 | rs11022780 | CC + CT | 197 (97.52) | 369 (92.25) | 1.00 (Ref.) | 1.00 (Ref.) |
| TT | 5 (2.48) | 31 (7.75) | 0.30 (0.12, 0.79) * | 0.25 (0.09, 0.74) * | ||
| BMAL1 | rs969485 | GG + GA | 171 (84.65) | 326 (81.50) | 1.00 (Ref.) | 1.00 (Ref.) |
| AA | 31 (15.35) | 74 (18.50) | 0.80 (0.51, 1.26) | 0.59 (0.34, 1.01) | ||
| CLOCK | rs1048004 | CC + CA | 201 (99.50) | 397 (99.25) | 1.00 (Ref.) | 1.00 (Ref.) |
| AA | 1 (0.50) | 3 (0.75) | 0.66 (0.07, 6.37) | 1.06 (0.08, 13.59) |
| Gene & SNP | Genetic Model | Genotype | eoPE vs. Control | loPE vs. Control | ||
|---|---|---|---|---|---|---|
| aOR (95% CI) | p Value | aOR (95% CI) | p Value | |||
| BMAL1 rs11022780 | Codominant | CC | 1.00 (Ref.) | 0.029 * | 1.00 (Ref.) | 0.098 |
| CT | 1.60 (0.95, 2.71) | 0.078 | 0.70 (0.41, 1.21) | 0.198 | ||
| TT | 0.16 (0.02, 1.27) | 0.083 | 0.28 (0.08, 1.01) | 0.051 | ||
| Recessive | CC + CT | 1.00 (Ref.) | 0.048 * | 1.00 (Ref.) | 0.084 | |
| TT | 0.13 (0.02, 0.98) * | 0.33 (0.09, 1.16) | ||||
| SNP | Samples | Assessed | Other | Z-Score | p Value | FDR |
|---|---|---|---|---|---|---|
| rs11022780 | 30,935 | C | T | −5.269 | 1.372 × 10−7 *** | <0.001 *** |
| Query Protein | Predicted Functional Partners | Coexpression | Experiments | Databases | Textmining | Homology | Score |
|---|---|---|---|---|---|---|---|
| BMAL1 (ARNTL) | CRY1 | 0.116 | 0.982 | 0.900 | 0.998 | - | 0.999 |
| NPAS2 | 0.110 | 0.919 | 0.800 | 0.991 | 0.640 | 0.999 | |
| CLOCK | 0.117 | 0.994 | 0.800 | 0.991 | 0.645 | 0.999 | |
| CRY2 | 0.091 | 0.973 | 0.900 | 0.983 | - | 0.999 | |
| SIRT1 | 0.049 | 0.345 | 0.750 | 0.987 | - | 0.997 | |
| PER2 | - | 0.963 | 0.900 | 0.482 | 0.575 | 0.997 | |
| CSNK1E | - | 0.696 | 0.900 | 0.927 | - | 0.997 | |
| NPAS4 | - | 0.585 | 0.900 | 0.795 | 0.560 | 0.990 | |
| BHLHE41 | - | 0.089 | 0.500 | 0.978 | - | 0.989 | |
| NR1D1 | 0.049 | - | 0.500 | 0.979 | - | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Wang, P.; Li, Z.; Wei, J.; Wei, J.; Wu, Y.; Liu, C.; Lin, S.; Guo, S.; He, L.; et al. Association of BMAL1 and CLOCK Gene Polymorphisms with Preeclampsia Risk with Subtype Analysis. Int. J. Mol. Sci. 2025, 26, 10797. https://doi.org/10.3390/ijms262110797
Xia F, Wang P, Li Z, Wei J, Wei J, Wu Y, Liu C, Lin S, Guo S, He L, et al. Association of BMAL1 and CLOCK Gene Polymorphisms with Preeclampsia Risk with Subtype Analysis. International Journal of Molecular Sciences. 2025; 26(21):10797. https://doi.org/10.3390/ijms262110797
Chicago/Turabian StyleXia, Fan, Peiwen Wang, Ziye Li, Jiehua Wei, Jianhui Wei, Yuhang Wu, Chu Liu, Shanyu Lin, Suyan Guo, Linbin He, and et al. 2025. "Association of BMAL1 and CLOCK Gene Polymorphisms with Preeclampsia Risk with Subtype Analysis" International Journal of Molecular Sciences 26, no. 21: 10797. https://doi.org/10.3390/ijms262110797
APA StyleXia, F., Wang, P., Li, Z., Wei, J., Wei, J., Wu, Y., Liu, C., Lin, S., Guo, S., He, L., Chen, M., Chen, L., & Wang, T. (2025). Association of BMAL1 and CLOCK Gene Polymorphisms with Preeclampsia Risk with Subtype Analysis. International Journal of Molecular Sciences, 26(21), 10797. https://doi.org/10.3390/ijms262110797

