Cell-Free DNA Hypermethylation in Patients with Acute Pancreatitis
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Change in Hypermethylation Profile of Patients over Time
2.3. Clinical Correlates
2.3.1. Association Between Total Hypermethylated Genes and Severity Markers in Acute Pancreatitis
2.3.2. Association Between Individual Hypermethylated Genes and Severity Markers in Acute Pancreatitis
2.3.3. Association Between Selected Genes and Proxy Markers for Acute Pancreatitis
3. Discussion
3.1. cfDNA Hypermethylation Pattern in Patients with Acute Pancreatitis
3.2. Total Hypermethylation of 23-Gene Panel and Markers for Severity in Acute Pancreatitis
3.3. Individual Hypermethylated Genes and Markers for Severity in Acute Pancreatitis
3.4. Clinical Relevance of the Hypermethylated Genes
3.5. Limitations
4. Materials and Methods
4.1. Study Design and Setting
4.2. Population and Blood Samples
4.3. Laboratory Analysis
4.4. Assessment of Acute Pancreatitis Severity
4.5. Statistical Analysis and the Deduction of a New Seven-Gene Panel
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| cfDNA | Cell-free deoxyribonucleic acid |
| AP | Acute pancreatitis |
| ICU | Intensive care unit |
| PDAC | Pancreatic ductal adenocarcinoma |
| ALX4 | Aristaless-like homeobox 4 |
| APC | Adenomatous polyposis coli |
| BMP3 | Bone morphogenetic protein 3 |
| BNC1 | Basonuclin 1 |
| BRCA1 | Breast cancer 1 |
| CDKN2B | Cyclin-dependent kinase inhibitor 2B |
| ESR1 | Estrogen receptor 1 |
| EYA2 | Eyes absent homolog 2 |
| HIC1 | Hypermethylated in cancer 1 |
| MEST1v2 | Mesoderm-specific transcript variant 2 |
| MGMT | O-6-methylguanine-DNA methyltransferase |
| NEUROG1 | Neurogenin 1 |
| NPTX2 | Neuronal pentraxin 2 |
| p16 (CDKN2A) | Cyclin-dependent kinase inhibitor 2A |
| RARB | Retinoic acid receptor beta |
| RASSF1A | Ras association domain family member 1, isoform A |
| SEPT9v2 | Septin 9, variant 2 |
| SFRP1 | Secreted frizzled-related protein 1 |
| SFRP2 | Secreted frizzled-related protein 2 |
| SST1 | Somatostatin 1 |
| TFPI2 | Tissue factor pathway inhibitor 2 |
| TAC1 | Tachykinin precursor 1 |
| WNT5A | Wnt family member 5A |
References
- Xiao, A.Y.; Tan, M.L.Y.; Wu, L.M.; Asrani, V.M.; Windsor, J.A.; Yadav, D.; Petrov, M.S. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 2016, 1, 45–55. [Google Scholar] [CrossRef]
- Bhatia, M.; Fei, L.W.; Cao, Y.; Hon, Y.L.; Huang, J.; Puneet, P.; Chevali, L. Pathophysiology of acute pancreatitis. Pancreatology 2005, 5, 132–144. [Google Scholar] [CrossRef]
- Waller, A.; Long, B.; Koyfman, A.; Gottlieb, M. Acute Pancreatitis: Updates for Emergency Clinicians. J. Emerg. Med. 2018, 55, 769–779. [Google Scholar] [CrossRef]
- Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boermeester, M.A.; van Santvoort, H.C.; Besselink, M.G. Acute pancreatitis. Lancet 2020, 396, 726–734, Erratum in Lancet 2021, 398, 1686. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.H.; Griwan, M.S. A comparison of APACHE II, BISAP, Ranson’s score and modified CTSI in predicting the severity of acute pancreatitis based on the 2012 revised Atlanta Classification. Gastroenterol. Rep. 2018, 6, 127–131. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, T.N.; Chung, H.H.; Kim, K.H. Comparison of scoring systems in predicting the severity of acute pancreatitis. World J. Gastroenterol. 2015, 21, 2387–2394. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Lehmann-Werman, R.; Neiman, D.; Zemmour, H.; Moss, J.; Magenheim, J.; Vaknin-Dembinsky, A.; Rubertsson, S.; Nellgård, B.; Blennow, K.; Zetterberg, H.; et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl. Acad. Sci. USA 2016, 113, E1826–E1834. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ding, Y.-X.; Qu, Y.-X.; Cao, F.; Li, F. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, and management. Ann. Transl. Med. 2021, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; de la Iglesia-García, D.; Baston-Rey, I.; Calviño-Suarez, C.; Lariño-Noia, J.; Iglesias-Garcia, J.; Shi, N.; Zhang, X.; Cai, W.; Deng, L.; et al. Exocrine Pancreatic Insufficiency Following Acute Pancreatitis: Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2019, 64, 1985–2005. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Arechederra, M.; Daian, F.; Yim, A.; Bazai, S.K.; Richelme, S.; Dono, R.; Saurin, A.J.; Habermann, B.H.; Maina, F. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 2018, 9, 3164, Erratum in Nat. Commun. 2018, 9, 3976. [Google Scholar] [CrossRef] [PubMed]
- Bayarsaihan, D. Epigenetic mechanisms in inflammation. J. Dent. Res. 2011, 90, 9–17. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 14, 1141–1163. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Drewes, A.M.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin. Epigenetics 2016, 8, S56–S57. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Stubbe, B.E.; Madsen, P.H.; Johansen, J.S.; Jensen, B.V.; Hansen, C.P.; Johansen, M.N.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation as a diagnostic marker for pancreatic ductal adenocarcinoma—An external validation study. Pancreatology 2021, 21, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Nanjo, S.; Rehnberg, E.; Iida, N.; Takeshima, H.; Ando, T.; Maekita, T.; Sugiyama, T.; Ushijima, T. Distinct DNA methylation targets by aging and chronic inflammation: A pilot study using gastric mucosa infected with Helicobacter pylori. Clin. Epigenetics 2019, 11, 191. [Google Scholar] [CrossRef]
- Karatzas, P.S.; Mantzaris, G.J.; Safioleas, M.; Gazouli, M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine 2014, 93, e309. [Google Scholar] [CrossRef]
- Brancaccio, M.; Natale, F.; Falco, G.; Angrisano, T. Cell-free dna methylation: The new frontiers of pancreatic cancer biomarkers’ discovery. Genes 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Liggett, T.; Melnikov, A.; Yi, Q.L.; Replogle, C.; Brand, R.; Kaul, K.; Talamonti, M.; Abrams, R.A.; Levenson, V. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 2010, 116, 1674–1680. [Google Scholar] [CrossRef]
- Levenson, V.V. DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn. 2010, 10, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Tost, J. Follow the trace of death: Methylation analysis of cell-free DNA for clinical applications in non-cancerous diseases. Epigenomics 2016, 8, 1169–1172. [Google Scholar] [CrossRef]
- Shapiro, B.; Chakrabarty, M.; Cohn, E.M.; Leon, S.A. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 1983, 51, 2116–2120. [Google Scholar] [CrossRef]
- Gornik, I.; Wagner, J.; Gašparović, V.; Lauc, G.; Gornik, O. Free serum DNA is an early predictor of severity in acute pancreatitis. Clin. Biochem. 2009, 42, 38–43. [Google Scholar] [CrossRef]
- Bagul, A.; Pushpakom, S.; Boylan, J.; Newman, W.; Siriwardena, A.K. Quantitative analysis of plasma DNA in severe acute pancreatitis. J. Pancreas 2006, 7, 602–607. [Google Scholar]
- Henriksen, S.D.; Madsen, P.H.; Krarup, H.; Thorlacius-Ussing, O. DNA hypermethylation as a blood-based marker for pancreatic cancer: A literature review. Pancreas 2015, 44, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Kirkegård, J.; Cronin-Fenton, D.; Heide-Jørgensen, U.; Mortensen, F.V. Acute Pancreatitis and Pancreatic Cancer Risk: A Nationwide Matched-Cohort Study in Denmark. Gastroenterology 2018, 154, 1729–1736. [Google Scholar] [CrossRef]
- Sadr-Azodi, O.; Oskarsson, V.; Discacciati, A.; Videhult, P.; Askling, J.; Ekbom, A. Pancreatic Cancer Following Acute Pancreatitis: A Population-based Matched Cohort Study. Am. J. Gastroenterol. 2018, 113, 1711–1719. [Google Scholar] [CrossRef]
- Sun, H.W.; Dai, S.J.; Kong, H.R.; Fan, J.X.; Yang, F.Y.; Dai, J.Q.; Jin, Y.-P.; Yu, G.-Z.; Chen, B.-C.; Shi, K.-Q. Accurate prediction of acute pancreatitis severity based on genome-wide cell free DNA methylation profiles. Clin. Epigenetics 2021, 13, 223. [Google Scholar] [CrossRef]
- Tenner, S.; Vege, S.S.; Sheth, S.G.; Sauer, B.; Yang, A.; Conwell, D.L.; Yadlapati, R.H.; Gardner, T.B. American College of Gastroenterology Guidelines: Management of Acute Pancreatitis. Am. J. Gastroenterol. 2024, 119, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.-N.; Song, Z.-Z.; He, X.-N.; Hong, J.-M. Evaluation of scoring systems and hematological parameters in the severity stratification of early-phase acute pancreatitis. World J. Gastroenterol. 2025, 31, 105236. [Google Scholar] [CrossRef]
- Karim, T.; Jain, A.; Kumar, V.; Kumar, R.; Kumar, L.; Patel, M. Clinical and severity profile of acute pancreatitis in a hospital for low socioeconomic strata. Indian J. Endocrinol. Metab. 2020, 24, 416. [Google Scholar] [CrossRef]
- Janeckova, L.; Pospichalova, V.; Fafilek, B.; Vojtechova, M.; Tureckova, J.; Dobes, J.; Dubuissez, M.; Leprince, D.; Baloghova, N.; Horazna, M.; et al. HIC1 Tumor Suppressor Loss Potentiates TLR2/NF-κB Signaling and Promotes Tissue Damage–Associated Tumorigenesis. Mol. Cancer Res. 2015, 13, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Szczepny, A.; Carey, K.; McKenzie, L.; Jayasekara, W.S.N.; Rossello, F.; Gonzalez-Rajal, A.; McCaw, A.S.; Popovski, D.; Wang, D.; Sadler, A.J.; et al. The tumor suppressor Hic1 maintains chromosomal stability independent of Tp53. Oncogene 2018, 37, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Jung, H.; Tan, A.; Song, Y.; Moon, S.; Shaker, M.R.; Sun, W.; Lee, J.; Ryu, H.; Lim, H.K.; et al. Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer’s disease. Sci. Rep. 2021, 11, 20075. [Google Scholar] [CrossRef]
- Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Investig. 2006, 116, 561–570. [Google Scholar] [CrossRef]
- Herman, J.G.; Baylin, S.B. Mechanisms of disease Gene Silencing in Cancer in Association with Promoter Hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M. Molecular Origins of Cancer Epigenetics in Cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef]
- Matthaios, D.; Balgkouranidou, I.; Karayiannakis, A.; Bolanaki, H.; Xenidis, N.; Amarantidis, K.; Chelis, L.; Romanidis, K.; Chatzaki, A.; Lianidou, E.; et al. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer. Oncol. Lett. 2016, 12, 748–756. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Yuan, Y.; Dong, C.; Yang, M. APC Promoter Methylation in Gastrointestinal Cancer. Front. Oncol. 2021, 11, 653222. [Google Scholar] [CrossRef]
- Ueki, T.; Toyota, M.; Sohn, T.; Yeo, C.J.; Issa, J.P.; Hruban, R.H.; Goggins, M. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000, 60, 1835–1839. [Google Scholar] [PubMed]
- Werner, H.; Bruchim, I. IGF-1 and BRCA1 signalling pathways in familial cancer. Lancet Oncol. 2012, 13, e537–e544. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.J.; Chiu, T.-J.; Lin, Y.C.; Weng, C.-C.; Weng, Y.-T.; Hsiao, C.-C.; Cheng, K.-H. Inactivation of APC Induces CD34 Upregulation to Promote Epithelial-Mesenchymal Transition and Cancer Stem Cell Traits in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 4473. [Google Scholar] [CrossRef]
- Kuo, T.-L.; Weng, C.-C.; Kuo, K.-K.; Chen, C.-Y.; Wu, D.-C.; Hung, W.-C.; Cheng, K.-H. APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene 2016, 35, 2223–2234. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Thorlacius-Ussing, O. Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. Epigenomes 2021, 5, 8. [Google Scholar] [CrossRef]
- Tan, S.Y.X.; Zhang, J.; Tee, W.W. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front. Cell Dev. Biol. 2022, 10, 931493. [Google Scholar] [CrossRef]
- Pedersen, I.S.; Krarup, H.B.; Thorlacius-Ussing, O.; Madsen, P.H. High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol. BMC Mol. Biol. 2012, 13, 12. [Google Scholar] [CrossRef]
- Mouliere, F.; Rosenfeld, N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc. Natl. Acad. Sci. USA 2015, 112, 3178–3179. [Google Scholar] [CrossRef] [PubMed]



| Acute Pancreatitis | Controls | ||||
|---|---|---|---|---|---|
| n | Mean (SD) or % | n | Mean (SD) or % | p-Value | |
| Age | 61 | 56 (17) | 70 | 48.2 (12.9) | <0.01 * |
| Sex | |||||
| Male | 33 | 54.1% | 30 | 42.9% | 0.20 ** |
| Female | 28 | 45.9% | 40 | 57.1% | |
| Mortality | 12 | 19.7% | |||
| BMI | 45 | 26.4 (4.9) | |||
| Smoking | |||||
| Non-smoker | 23 | 37.7% | |||
| History of smoking | 12 | 19.7% | |||
| Currently smoking | 24 | 39.3% | |||
| Unknown | 2 | 3.3 | |||
| Alcohol consumption | |||||
| Within recommendations | 43 | 70.5% | |||
| Previous overconsumption | 2 | 3.3% | |||
| Overconsumption | 15 | 24.6% | |||
| Unknown | 1 | 1.6 | |||
| Type of AP | |||||
| Interstitial edematous pancreatitis | 21 | 33.9% | |||
| Necrotizing pancreatitis | 2 | 3.2% | |||
| Comorbidities | 22 | 36.1% | |||
| T1DM | 1 | 1.6% | |||
| Alzheimer’s disease | 2 | 3.3% | |||
| Depression | 1 | 1.6% | |||
| Stroke | 7 | 11.5% | |||
| Cancer pre-inclusion | 7 | 11.5% | |||
| Cancer post-inclusion | 8 | 13.1% | |||
| Chronic pancreatitis | 6 | 9.8% | |||
| Complications | 23 | 47.5% | |||
| Pseudocysts | 7 | 11.5% | |||
| Chronic pancreatitis | 7 | 11.5% | |||
| Stent placement surgery | 7 | 11.5% | |||
| Necrosis | 2 | 3.3% | |||
| Time | Mean Hypermethylated Genes (95% CI) | p-Values | |
|---|---|---|---|
| AP | Healthy Controls | ||
| 0 | 7.4 (6.8–8.0) | 3.3 (2.8–3.8) | p < 0.01 |
| 6 weeks | 5.3 (4.6–6.0) | p < 0.01 | |
| 6 months | 4.9 (4.2–5.7) | p < 0.01 | |
| 8 years | 3.2 (2.4–4.1) | p = 0.90 | |
| Proxy Marker | Association (ρ or OR) | p-Value |
|---|---|---|
| CRP a | ρ = 0.39 | 0.002 |
| Leukocytes a | ρ = 0.35 | 0.005 |
| Creatinine a | ρ = 0.21 | 0.101 |
| Length of admission (days) a | ρ = 0.27 | 0.038 |
| Complications b | OR = 1.07 | 0.520 |
| Proxy Marker | Genes | Hypermethylated Group, Median (IQR) | Non-Hypermethylated Group, Median (IQR) | p-Value |
|---|---|---|---|---|
| CRP (mg/L) a | APC | 173 (98–254) | 46 (15–193) | 0.008 |
| HIC1 | 293 (224–390) | 146 (48–216) | 0.034 | |
| Neurog1 | 193 (76–265) | 81 (26–145) | 0.016 | |
| RARB | 169 (70–262) | 63 (21–130) | 0.019 | |
| Leukocytes (×109/L) a | CDKN2B | 20 (12–22) | 11 (8–16) | 0.028 |
| HIC1 | 20 (17–24) | 11 (8–16) | 0.005 | |
| Creatinine (µmol/L) a | BRCA1 | 84 (68–116) | 64 (60–86) | 0.035 |
| RASSF1A | 86 (63–105) | 64 (60–82) | 0.041 | |
| Length of admission (days) a | BRCA1 | 8 (5–11) | 5 (4–7) | 0.006 |
| HIC1 | 11 (9–13) | 6 (4–8) | 0.007 | |
| RASSF1A | 7 (5–9) | 5 (4–7) | 0.018 | |
| Complications (yes/no) b | No statistically significant genes identified | |||
| Proxy Marker | Spearman Correlation ρ-Value | p-Value | Poisson Regression IRR | p-Value |
|---|---|---|---|---|
| CRP (mg/L) | 0.519 | <0.001 | 1.002 | 0.004 |
| Leukocytes (×109/L) | 0.520 | <0.001 | 1.031 | 0.005 |
| Creatinine (µmol/L) | 0.336 | 0.008 | 1.002 | 0.157 |
| Length of admission (days) | 0.463 | <0.001 | 1.008 | 0.048 |
| Complications (yes/no) | No statistically significant results | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mashat, H.; Baddoo, D.R.; Lundbye-Christensen, S.; Madsen, P.H.; Pedersen, I.S.; Krarup, H.B.; Stubbe, B.E.; Thorlacius-Ussing, O.; Henriksen, S.D. Cell-Free DNA Hypermethylation in Patients with Acute Pancreatitis. Int. J. Mol. Sci. 2025, 26, 10792. https://doi.org/10.3390/ijms262110792
Al-Mashat H, Baddoo DR, Lundbye-Christensen S, Madsen PH, Pedersen IS, Krarup HB, Stubbe BE, Thorlacius-Ussing O, Henriksen SD. Cell-Free DNA Hypermethylation in Patients with Acute Pancreatitis. International Journal of Molecular Sciences. 2025; 26(21):10792. https://doi.org/10.3390/ijms262110792
Chicago/Turabian StyleAl-Mashat, Hassan, Daniel Roger Baddoo, Søren Lundbye-Christensen, Poul Henning Madsen, Inge Søkilde Pedersen, Henrik B. Krarup, Benjamin Emil Stubbe, Ole Thorlacius-Ussing, and Stine Dam Henriksen. 2025. "Cell-Free DNA Hypermethylation in Patients with Acute Pancreatitis" International Journal of Molecular Sciences 26, no. 21: 10792. https://doi.org/10.3390/ijms262110792
APA StyleAl-Mashat, H., Baddoo, D. R., Lundbye-Christensen, S., Madsen, P. H., Pedersen, I. S., Krarup, H. B., Stubbe, B. E., Thorlacius-Ussing, O., & Henriksen, S. D. (2025). Cell-Free DNA Hypermethylation in Patients with Acute Pancreatitis. International Journal of Molecular Sciences, 26(21), 10792. https://doi.org/10.3390/ijms262110792

