Extracellular Vesicles from Poor-Outcome Intracerebral Hemorrhage Patients Reveal Limited Reparative Potential in a Preclinical Model
Abstract
1. Introduction
2. Results
2.1. Characterization of Extracellular Vesicles
2.2. No Significant Differences Were Observed in the Lesion Volume Between Groups
2.3. Circulating EVs Derived from Patients with Poor-Outcomes Following ICH Did Not Improve Functional Recovery After Intracerebral Hemorrhage in Rats
2.4. Lack of Effect of EVs from Patients with Poor Outcome on Histological Markers of Brain Damage and Repair
3. Discussion
4. Material and Methods
4.1. Ethics Statement
4.2. Treatment Preparation
4.3. Extracellular Vesicles Isolation and Characterization
4.4. Preclinical Study
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ICH | Intracerebral hemorrhage | 
| EVs | Extracellular vesicles | 
| TEM | Transmission electron microscopy | 
| NTA | Nanoparticle tracking analysis | 
| SD | Standard deviation | 
| BH | Benjamini–Hochberg | 
| FDR | False discovery rates | 
| LMM | Linear mixed model | 
References
- Krishnamurthi, R.V.; Feigin, V.L.; Forouzanfar, M.H.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.M.; Truelsen, T.; et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 2013, 1, e259–e281. [Google Scholar] [CrossRef] [PubMed]
 - Yang, G.; Fan, X.; Mazhar, M.; Yang, S.; Xu, H.; Dechsupa, N.; Wang, L. Mesenchymal Stem Cell Application and Its Therapeutic Mechanisms in Intracerebral Hemorrhage. Front. Cell. Neurosci. 2022, 16, 898497. [Google Scholar] [CrossRef]
 - Hermann, D.M.; Peruzzotti-Jametti, L.; Giebel, B.; Pluchino, S. Extracellular vesicles set the stage for brain plasticity and recovery by multimodal signalling. Brain 2024, 147, 372–389. [Google Scholar] [CrossRef]
 - Son, J.P.; Kim, E.H.; Shin, E.K.; Kim, D.H.; Sung, J.H.; Oh, M.J.; Cha, J.M.; Chopp, M.; Bang, O.Y. Mesenchymal Stem Cell-Extracellular Vesicle Therapy for Stroke: Scalable Production and Imaging Biomarker Studies. Stem Cells Transl. Med. 2023, 12, 459–473. [Google Scholar] [CrossRef]
 - Kim, E.H.; Son, J.P.; Oh, G.S.; Park, S.; Hong, E.; Lee, K.S.; Chopp, M.; Bang, O.Y. Clinical Scale MSC-Derived Extracellular Vesicles Enhance Poststroke Neuroplasticity in Rodents and Non-Human Primates. J. Extracell. Vesicles 2025, 14, e70110, Erratum in: J. Extracell. Vesicles 2025, 14, e70135. [Google Scholar] [CrossRef]
 - Sun, Y.; Wan, G.; Bao, X. Extracellular Vesicles as a Potential Therapy for Stroke. Int. J. Mol. Sci. 2025, 26, 3130. [Google Scholar] [CrossRef]
 - Laso-García, F.; Casado-Fernández, L.; Piniella, D.; Gómez-de Frutos, M.C.; Arizaga-Echebarria, J.K.; Pérez-Mato, M.; Alonso-López, E.; Otero-Ortega, L.; Bravo, S.B.; Chantada-Vázquez, M.D.P.; et al. Circulating extracellular vesicles promote recovery in a preclinical model of intracerebral hemorrhage. Mol. Ther. Nucleic Acids 2023, 32, 247–262. [Google Scholar] [CrossRef]
 - Ding, Z.; Greenberg, Z.F.; Serafim, M.F.; Ali, S.; Jamieson, J.C.; Traktuev, D.O.; March, K.; He, M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. Extracell. Vesicle 2024, 3, 100034. [Google Scholar] [CrossRef] [PubMed]
 - Vaka, R.; Parent, S.; Risha, Y.; Khan, S.; Courtman, D.; Stewart, D.J.; Davis, D.R. Extracellular vesicle microRNA and protein cargo profiling in three clinical-grade stem cell products reveals key functional pathways. Mol. Ther. Nucleic Acids 2023, 32, 80–93. [Google Scholar] [CrossRef] [PubMed]
 - Casado-Fernández, L.; Laso-García, F.; Piniella, D.; Gómez-de Frutos, M.C.; Otero-Ortega, L.; Bravo, S.B.; Fuentes-Gimeno, B.; Docando, F.; Alonso-López, E.; Ruiz-Ares, G.; et al. The proteomic signature of circulating extracellular vesicles following intracerebral hemorrhage: Novel insights into mechanisms underlying recovery. Neurobiol. Dis. 2024, 201, 106665. [Google Scholar] [CrossRef]
 - Laso-García, F.; Piniella, D.; Gómez-de Frutos, M.C.; Casado-Fernández, L.; Pérez-Mato, M.; Alonso-López, E.; Otero-Ortega, L.; Bravo, S.B.; Chantada-Vázquez, M.D.P.; Trilla-Fuertes, L.; et al. Protein content of blood-derived extracellular vesicles: An approach to the pathophysiology of cerebral hemorrhage. Front. Cell Neurosci. 2023, 16, 1058546. [Google Scholar] [CrossRef]
 - Willis, G.R.; Kourembanas, S.; Mitsialis, S.A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front. Cardiovasc. Med. 2017, 4, 63. [Google Scholar] [CrossRef]
 - Williams, A.; Branscome, H.; Kashanchi, F.; Batrakova, E.V. Targeting of Extracellular Vesicle-Based Therapeutics to the Brain. Cells 2025, 14, 548. [Google Scholar] [CrossRef] [PubMed]
 - Song, J.; Zhou, D.; Cui, L.; Wu, C.; Jia, L.; Wang, M.; Li, J.; Ya, J.; Ji, X.; Meng, R. Advancing stroke therapy: Innovative approaches with stem cell-derived extracellular vesicles. Cell Commun. Signal. 2024, 22, 369. [Google Scholar] [CrossRef]
 - Putthanbut, N.; Lee, J.Y.; Borlongan, C.V. Extracellular vesicle therapy in neurological disorders. J. Biomed. Sci. 2024, 31, 85. [Google Scholar] [CrossRef]
 - Xiong, Y.; Song, J.; Huang, X.; Pan, Z.; Goldbrunner, R.; Stavrinou, L.; Lin, S.; Hu, W.; Zheng, F.; Stavrinou, P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front. Neurosci. 2022, 16, 899887. [Google Scholar] [CrossRef]
 - Lombardi, M.; Parolisi, R.; Scaroni, F.; Bonfanti, E.; Gualerzi, A.; Gabrielli, M.; Kerlero de Rosbo, N.; Uccelli, A.; Giussani, P.; Viani, P.; et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: Astrocyte involvement in remyelination failure. Acta Neuropathol. 2019, 138, 987–1012. [Google Scholar] [CrossRef]
 - Hirsch, Y.; Geraghty, J.R.; Reiter, C.R.; Katz, E.A.; Little, C.F.; Tobin, M.K.; Testai, F.D. Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Transl. Stroke Res. 2023, 14, 146–159. [Google Scholar] [CrossRef]
 - Ye, Z.; Hu, J.; Xu, H.; Sun, B.; Jin, Y.; Zhang, Y.; Zhang, J. Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ. Inflammation 2021, 44, 1035–1048, Erratum in Inflammation 2023, 46, 779. [Google Scholar] [CrossRef] [PubMed]
 - Sprincl, V.; Romanyuk, N. miRNA in blood-brain barrier repair: Role of extracellular vesicles in stroke recovery. Front. Cell. Neurosci. 2025, 19, 1503193. [Google Scholar] [CrossRef] [PubMed]
 - Nakazaki, M.; Morita, T.; Lankford, K.L.; Askenase, P.W.; Kocsis, J.D. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell. Vesicles 2021, 10, e12137. [Google Scholar] [CrossRef] [PubMed]
 - Suresh, P.S.; Zhang, Q. Comprehensive Comparison of Methods for Isolation of Extracellular Vesicles from Human Plasma. J. Proteome Res. 2025, 24, 2956–2967. [Google Scholar] [CrossRef]
 - Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H.; STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar] [CrossRef]
 - Lapchak, P.A.; Zhang, J.H.; Noble-Haeusslein, L.J. RIGOR guidelines: Escalating STAIR and STEPS for effective translational Research. Transl. Stroke Res. 2013, 4, 279–285. [Google Scholar] [CrossRef]
 - The Hemorrhagic Stroke Academia Industry HEADS Roundtable Participants. Basic and translational Research in intracerebral hemorrhage: Limitations, priorities, and recommendations. Stroke 2018, 49, 1308–1314. [Google Scholar] [CrossRef]
 - Naik, N.N.; Vadloori, B.; Poosala, S.; Srivastava, P.; Coecke, S.; Smith, A.; Akhtar, A.; Roper, C.; Radhakrishnan, S.; Bhyravbhatla, B.; et al. Advances in animal models and cutting-edge research in alternatives: Proceedings of the third international conference on 3Rs research and progress, Vishakhapatnam, 2022. Altern. Lab. Anim. 2023, 51, 263–288. [Google Scholar] [CrossRef]
 - Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
 - Gómez-de Frutos, M.C.; García-Suárez, I.; Laso-García, F.; Diekhorst, L.; Otero-Ortega, L.; Alonso de Leciñana, M.; Fuentes, B.; Gutiérrez-Fernández, M.; Díez-Tejedor, E.; Ruíz-Ares, G. B-Mode Ultrasound, a Reliable Tool for Monitoring Experimental Intracerebral Hemorrhage. Front. Neurol. 2021, 12, 771402. [Google Scholar] [CrossRef] [PubMed]
 




| Time | Placebo (n = 8)  | Treatment (n = 8)  | p | ||
|---|---|---|---|---|---|
| ICH volume | US (mm3 [mean ± SD])  | 24 h | 43.09 ± 13.14 | 36.02 ± 15.08 | 0.502 | 
| 72 h | 34.86 ± 10.12 | 26.27 ± 7.27 | 0.221 | ||
| 28 d | 9.50 ± 8.49 | 9.05 ± 7.44 | 0.910 | 
| Time | Placebo (n = 8)  | Treatment (n = 8)  | p | ||
|---|---|---|---|---|---|
| Functional evaluation | Rogers (score [mean ± SD])  | Baseline | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.000 | 
| 24 h | 4.25 ± 0.89 | 3.75 ± 0.46 | 0.372 | ||
| 72 h | 3.88 ± 0.99 | 3.50 ± 0.53 | 0.537 | ||
| 7 d | 3.75 ± 1.04 | 3.13 ± 0.35 | 0.372 | ||
| 14 d | 3.50 ± 1.07 | 3.13 ± 0.35 | 0.537 | ||
| 28 d | 3.13 ± 0.35 | 2.63 ± 1.06 | 0.372 | ||
| Tapered Beam Walking (% [mean ± SD])  | Baseline | 22.91 ± 9.32 | 16.98 ± 10.42 | 0.751 | |
| 24 h | 86.99 ± 25.84 | 92.52 ± 13.86 | 0.959 | ||
| 72 h | 62.97 ± 30.58 | 58.45 ± 30.70 | 0.959 | ||
| 7 d | 48.45 ± 31.85 | 66.98 ± 22.86 | 0.751 | ||
| 14 d | 48.95 ± 27.41 | 48.03 ± 21.78 | 0.959 | ||
| 28 d | 47.19 ± 23.33 | 41.86 ± 18.53 | 0.959 | 
| Placebo (n = 3–4)  | Treatment (n = 3–4)  | p | ||
|---|---|---|---|---|
| Myelin marker | MOG (ROI (A.U.) [mean ± SD])  | 3,252,835.10 ± 886,143.92 | 3,479,484.30 ± 746,306.94 | 0.521 | 
| Oligodendrocyte marker | OLIG-2 (No. of positive cells [mean ± SD])  | 86.79 ± 37.38 | 70.87 ± 31.08 | 0.054 | 
| Astrocyte marker | GFAP (ROI (A.U.) [mean ± SD])  | 70,285.12 ± 45,506.14 | 76,014.09 ± 30,480.15 | 0.646 | 
| Vascular marker | VEGF (ROI (A.U.) [mean ± SD])  | 57,867.34 ± 36,448.18 | 96,183.92 ± 70,429.66 | 0.156 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laso-García, F.; Díaz-Gamero, N.; Gallego-Ruiz, R.; Casado-Fernández, L.; Díez-Tejedor, E.; Calzado-González, Á.; Pozo-Novoa, J.; Otero-Ortega, L.; Alonso de Leciñana, M.; Gutiérrez-Fernández, M. Extracellular Vesicles from Poor-Outcome Intracerebral Hemorrhage Patients Reveal Limited Reparative Potential in a Preclinical Model. Int. J. Mol. Sci. 2025, 26, 10648. https://doi.org/10.3390/ijms262110648
Laso-García F, Díaz-Gamero N, Gallego-Ruiz R, Casado-Fernández L, Díez-Tejedor E, Calzado-González Á, Pozo-Novoa J, Otero-Ortega L, Alonso de Leciñana M, Gutiérrez-Fernández M. Extracellular Vesicles from Poor-Outcome Intracerebral Hemorrhage Patients Reveal Limited Reparative Potential in a Preclinical Model. International Journal of Molecular Sciences. 2025; 26(21):10648. https://doi.org/10.3390/ijms262110648
Chicago/Turabian StyleLaso-García, Fernando, Nerea Díaz-Gamero, Rebeca Gallego-Ruiz, Laura Casado-Fernández, Exuperio Díez-Tejedor, Ángela Calzado-González, Javier Pozo-Novoa, Laura Otero-Ortega, María Alonso de Leciñana, and María Gutiérrez-Fernández. 2025. "Extracellular Vesicles from Poor-Outcome Intracerebral Hemorrhage Patients Reveal Limited Reparative Potential in a Preclinical Model" International Journal of Molecular Sciences 26, no. 21: 10648. https://doi.org/10.3390/ijms262110648
APA StyleLaso-García, F., Díaz-Gamero, N., Gallego-Ruiz, R., Casado-Fernández, L., Díez-Tejedor, E., Calzado-González, Á., Pozo-Novoa, J., Otero-Ortega, L., Alonso de Leciñana, M., & Gutiérrez-Fernández, M. (2025). Extracellular Vesicles from Poor-Outcome Intracerebral Hemorrhage Patients Reveal Limited Reparative Potential in a Preclinical Model. International Journal of Molecular Sciences, 26(21), 10648. https://doi.org/10.3390/ijms262110648
        
