Biomarkers in Stereotactic Ablative Radiotherapy: Current Evidence and Future Directions
Abstract
1. Introduction
2. Circulating Tumor DNA (ctDNA)
3. Extracellular Vesicles (EVs)
4. Imaging Biomarkers and Radiomics
5. Immune Biomarkers and Liquid Biopsies
6. The Path to Personalised Oncology
6.1. Current Landscape of Biomarker-Embedded SABR Trials
6.2. Biomarkers and Big Data: The Importance of Multiomic Integration Computational Frameworks
7. Further Challenges and Future Perspectives
7.1. Cost and Accessibility
7.2. Regulatory and Ethical Considerations
7.3. Data Integration and Multimodal Analysis
7.4. Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef]
- Tree, A.C.; Khoo, V.S.; Eeles, R.A.; Ahmed, M.; Dearnaley, D.P.; Hawkins, M.A.; Huddart, R.A.; Nutting, C.M.; Ostler, P.J.; Van As, N.J. Stereotactic Body Radiotherapy for Oligometastases. Lancet Oncol. 2013, 14, e28–e37. [Google Scholar] [CrossRef]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non–Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef]
- Parums, D.V. A Review of Circulating Tumor DNA (ctDNA) and the Liquid Biopsy in Cancer Diagnosis, Screening, and Monitoring Treatment Response. Med. Sci. Monit. 2025, 31, e949300. [Google Scholar] [CrossRef]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar]
- Dang, D.K.; Park, B.H. Circulating Tumor DNA: Current Challenges for Clinical Utility. J. Clin. Investig. 2022, 132, e154941. [Google Scholar] [CrossRef]
- Ernst, S.M.; Aldea, M.; Von Der Thüsen, J.H.; De Langen, A.J.; Smit, E.F.; Paats, M.S.; Aerts, J.G.J.V.; Mezquita, L.; Popat, S.; Besse, B.; et al. Utilizing ctDNA to Discover Mechanisms of Resistance to Targeted Therapies in Patients with Metastatic NSCLC: Towards More Informative Trials. Nat. Rev. Clin. Oncol. 2025, 22, 371–378. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid Biopsies Come of Age: Towards Implementation of Circulating Tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Kwon, Y.S.S.; Pop, L.; Stein, M.J.; Christie, A.; Manna, S.; Garant, A.; Yang, D.X.; Desai, N.B.; Brugarolas, J.; Timmerman, R.D.; et al. Circulating Tumor DNA in the Surveillance of Patients with Oligometastatic Renal Cell Carcinoma Treated with Stereotactic Ablative Radiation. J. Clin. Oncol. 2024, 42, 477. [Google Scholar] [CrossRef]
- Semenkovich, N.P.; Badiyan, S.N.; Samson, P.P.; Stowe, H.B.; Wang, Y.E.; Star, R.; Devarakonda, S.; Govindan, R.; Waqar, S.N.; Robinson, C.G.; et al. Pre-Radiotherapy ctDNA Liquid Biopsy for Risk Stratification of Oligometastatic Non-Small Cell Lung Cancer. npj Precis. Oncol. 2023, 7, 100. [Google Scholar] [CrossRef]
- Palma, D.A.; Giuliani, M.E.; Correa, R.J.M.; Schneiders, F.L.; Harrow, S.; Guckenberger, M.; Zhang, T.; Bahig, H.; Senthi, S.; Chung, P.; et al. A Randomized Phase III Trial of Stereotactic Ablative Radiotherapy for Patients with up to 10 Oligometastases and a Synchronous Primary Tumor (SABR-SYNC): Study Protocol. BMC Palliat. Care 2024, 23, 223. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Patel, R.; Schleifman, E.; Fu, S.; Shames, D.S.; Zhang, J. Analytical Evaluation of Circulating Tumor DNA Sequencing Assays. Sci. Rep. 2024, 14, 4973. [Google Scholar] [CrossRef]
- Sánchez-Herrero, E.; Serna-Blasco, R.; de Lope, L.R.; González-Rumayor, V.; Romero, A.; Provencio, M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That May Impact on ctDNA Analysis. Front. Oncol. 2022, 12, 943253. [Google Scholar] [CrossRef]
- MacManus, M.; Kirby, L.; Blyth, B.; Banks, O.; Martin, O.A.; Yeung, M.M.; Plumridge, N.; Shaw, M.; Hegi-Johnson, F.; Siva, S.; et al. Early Circulating Tumor DNA Dynamics at the Commencement of Curative-Intent Radiotherapy or Chemoradiotherapy for NSCLC—PMC. Clin. Transl. Radiat. Oncol. 2023, 43, 100682. [Google Scholar] [PubMed]
- Stetson, D.; Ahmed, A.; Xu, X.; Nuttall, B.R.B.; Lubinski, T.J.; Johnson, J.H.; Barrett, J.C.; Dougherty, B.A. Orthogonal Comparison of Four Plasma NGS Tests With Tumor Suggests Technical Factors Are a Major Source of Assay Discordance. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Young, S.; Kennedy, T.A.C.; Carvalhana, I.; Black, M.; Baer, K.; Churchman, E.; Warner, A.; Allan, A.L.; Izaguirre-Carbonell, J.; et al. Detection of Circulating Tumor DNA After Stereotactic Ablative Radiotherapy in Patients With Unbiopsied Lung Tumors (SABR-DETECT). Clin. Lung Cancer 2024, 25, e87–e91. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J Extracell. Vesicle 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.R.; Kim, Y.; Horjeti, E.; Arafa, A.; Gunn, H.; De Bruycker, A.; Phillips, R.; Song, D.; Childs, D.S.; Sartor, O.A.; et al. PSMA+ Extracellular Vesicles Are a Biomarker for SABR in Oligorecurrent Prostate Cancer: Analysis from the STOMP-like and ORIOLE Trial Cohorts. Clin. Cancer Res. 2025, 31, 1142–1149. [Google Scholar] [CrossRef]
- De Sousa, K.P.; Rossi, I.; Abdullahi, M.; Ramirez, M.I.; Stratton, D.; Inal, J.M. Isolation and Characterization of Extracellular Vesicles and Future Directions in Diagnosis and Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1835. [Google Scholar] [CrossRef]
- Cao, Y.; Sutera, P.; Silva Mendes, W.; Yousefi, B.; Hrinivich, T.; Deek, M.; Phillips, R.; Song, D.; Kiess, A.; Cem Guler, O.; et al. Machine Learning Predicts Conventional Imaging Metastasis-Free Survival (MFS) for Oligometastatic Castration-Sensitive Prostate Cancer (omCSPC) Using Prostate-Specific Membrane Antigen (PSMA) PET Radiomics. Radiother. Oncol. 2024, 199, 110443. [Google Scholar] [CrossRef]
- Ong, W.L.; Koh, T.L.; Lim Joon, D.; Chao, M.; Farrugia, B.; Lau, E.; Khoo, V.; Lawrentschuk, N.; Bolton, D.; Foroudi, F. Prostate-specific Membrane Antigen-positron Emission Tomography/Computed Tomography (PSMA-PET/CT)-guided Stereotactic Ablative Body Radiotherapy for Oligometastatic Prostate Cancer: A Single-institution Experience and Review of the Published Literature. BJU Int. 2019, 124, 19–30. [Google Scholar] [CrossRef]
- Lubner, M.G.; Stabo, N.; Lubner, S.J.; Del Rio, A.M.; Song, C.; Halberg, R.B.; Pickhardt, P.J. CT Textural Analysis of Hepatic Metastatic Colorectal Cancer: Pre-Treatment Tumor Heterogeneity Correlates with Pathology and Clinical Outcomes. Abdom. Imaging 2015, 40, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J.W.L. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Wang, Y.; Tadimalla, S.; Rai, R.; Goodwin, J.; Foster, S.; Liney, G.; Holloway, L.; Haworth, A. Quantitative MRI: Defining Repeatability, Reproducibility and Accuracy for Prostate Cancer Imaging Biomarker Development. Magn. Reson. Imaging 2021, 77, 169–179. [Google Scholar] [CrossRef]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2021, 10, 570465. [Google Scholar] [CrossRef]
- Vučinić, D.; Petrc, A.-M.B.; Antončić, I.; Radojčić, M.K.; Lekić, M.; Couñago, F. Radiogenomics of Stereotactic Radiotherapy: Genetic Mechanisms Underlying Radiosensitivity, Resistance, and Immune Response. Genes. 2025, 16, 732. [Google Scholar] [CrossRef]
- Walshaw, R.C.; Honeychurch, J.; Illidge, T.M. Stereotactic Ablative Radiotherapy and Immunotherapy Combinations: Turning the Future into Systemic Therapy? Br. J. Radiol. 2016, 89, 20160472. [Google Scholar] [CrossRef]
- Spiotto, M.; Fu, Y.-X.; Weichselbaum, R.R. The Intersection of Radiotherapy and Immunotherapy: Mechanisms and Clinical Implications. Sci. Immunol. 2016, 1, eaag1266. [Google Scholar] [CrossRef]
- Zafra, J.; Onieva, J.L.; Oliver, J.; Garrido-Barros, M.; González-Hernández, A.; Martínez-Gálvez, B.; Román, A.; Ordóñez-Marmolejo, R.; Pérez-Ruiz, E.; Benítez, J.C.; et al. Novel Blood Biomarkers for Response Prediction and Monitoring of Stereotactic Ablative Radiotherapy and Immunotherapy in Metastatic Oligoprogressive Lung Cancer. Int. J. Mol. Sci. 2024, 25, 4533. [Google Scholar] [CrossRef]
- Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-Cell Invigoration to Tumour Burden Ratio Associated with Anti-PD-1 Response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Golden, E.B.; Formenti, S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015, 1, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, H. Next-Generation Sequencing in Liquid Biopsy: Cancer Screening and Early Detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, W.; Yang, L.; Wen, P.; Luo, Y.; Wu, C. The Emerging Role of Exosomes in Radiotherapy. Cell Commun. Signal 2022, 20, 171. [Google Scholar] [CrossRef]
- Voong, K.R.; Illei, P.B.; Presson, B.; Singh, D.; Zeng, Z.; Lanis, M.; Hales, R.K.; Hu, C.; Tran, P.T.; Georgiades, C.; et al. Ablative Radiation Alone in Stage I Lung Cancer Produces an Adaptive Systemic Immune Response: Insights from a Prospective Study. J. Immunother. Cancer 2023, 11, e007188. [Google Scholar] [CrossRef] [PubMed]
- Marciscano, A.E.; Haimovitz-Friedman, A.; Lee, P.; Tran, P.T.; Tomé, W.A.; Guha, C.; Kong, F.-M.; Sahgal, A.; El Naqa, I.; Rimner, A.; et al. Immunomodulatory Effects of Stereotactic Body Radiation Therapy: Preclinical Insights and Clinical Opportunities. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 35–52. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Correa, R.J.M.; Schneiders, F.; Haasbeek, C.J.A.; Rodrigues, G.B.; Lock, M.; Yaremko, B.P.; Bauman, G.S.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of 4–10 Oligometastatic Tumors (SABR-COMET-10): Study Protocol for a Randomized Phase III Trial. BMC Cancer 2019, 19, 816. [Google Scholar] [CrossRef]
- Linderholm, B.K.; Valachis, A.; Flote, V.G.; Poortmans, P.; Person, O.K.; Niligal-Yam, E.; O’Reilly, S.; Duane, F.; Marinko, T.; Ekholm, M.; et al. 259TiP Treatment of Oligometastatic Breast Cancer (OMBC): A Randomised Phase III Trial Comparing Stereotactic Ablative Radiotherapy (SABR) and Systemic Treatment with Systemic Treatment Alone as First-Line Treatment—TAORMINA. ESMO Open 2023, 8, 101447. [Google Scholar] [CrossRef]
- Grossman, R.; Abel, B.; Angiuoli, S.; Barrett, J.; Bassett, D.; Bramlett, K.; Blumenthal, G.; Carlsson, A.; Cortese, R.; DiGiovanna, J.; et al. Collaborating to Compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium. Clin. Pharmacol. Ther. 2017, 101, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Bayle, A.; Bonastre, J.; Chaltiel, D.; Latino, N.; Rouleau, E.; Peters, S.; Galotti, M.; Bricalli, G.; Besse, B.; Giuliani, R. ESMO Study on the Availability and Accessibility of Biomolecular Technologies in Oncology in Europe. Ann. Oncol. 2023, 34, 934–945. [Google Scholar] [CrossRef]
- Mirza, M.; Goerke, L.; Anderson, A.; Wilsdon, T. Assessing the Cost-Effectiveness of Next-Generation Sequencing as a Biomarker Testing Approach in Oncology and Policy Implications: A Literature Review. Value Health 2024, 27, 1300–1309. [Google Scholar] [CrossRef]
- Luo, H.; Ge, H.; Cui, Y.; Zhang, J.; Fan, R.; Zheng, A.; Zheng, X.; Sun, Y. Systemic Inflammation Biomarkers Predict Survival in Patients of Early Stage Non-Small Cell Lung Cancer Treated With Stereotactic Ablative Radiotherapy—A Single Center Experience. J. Cancer 2018, 9, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.; Ho, C.; Wheatley-Price, P.; Laurie, S.; Taylor, J.; Sacher, A.; Brahmer, J.; Gallinaro, L.; Ding, K.; Dancey, J. FP05.02 A Biomarker-Directed, Multi-Center Phase II Study of Molecular Response Adaptive Immuno-Chemotherapy in Lung Cancer. J. Thorac. Oncol. 2021, 16, S952. [Google Scholar] [CrossRef]
- Zander, H.; Engelbergs, J. Requirements for Regulatory Acceptance of Biomarkers. Allergo J. Int. 2024, 33, 309–312. [Google Scholar] [CrossRef]
- Liang, Z.; Xue, C.; Chen, Q.; Li, M.; Li, G.; Feng, H.; Liu, Y.; Liu, X.; Ma, S. Screening of Prognostic Biomarkers for Stereotactic Body Radiation Therapy in Primary Liver Cancer. Dose Response 2022, 20, 15593258221097589. [Google Scholar] [CrossRef]
- Ayoub, C.; Appari, L.; Pereyra, M.; Farina, J.M.; Chao, C.J.; Scalia, I.G.; Mahmoud, A.K.; Abbas, M.T.; Baba, N.A.; Jeong, J.; et al. Multimodal Fusion Artificial Intelligence Model to Predict Risk for MACE and Myocarditis in Cancer Patients Receiving Immune Checkpoint Inhibitor Therapy—ScienceDirect. Advances 2025, 4, 101435. [Google Scholar] [CrossRef] [PubMed]
| Biomarker (Class) | Biological Rationale/Mechanism | Disease Context and SABR Setting | Study Type and Size | Performance | Clinical Implication | Source |
|---|---|---|---|---|---|---|
| Tumour-informed ctDNA (Signatera™) | Plasma ctDNA reflects residual disease burden and clonal evolution after ablative therapy. | Oligometastatic renal cell carcinoma; post-SABR surveillance. | Prospective registry (meeting abstract). | Detectable post-SABR ctDNA associated with radiographic progression; sensitivity 64.7%, specificity 100%, PPV 100%, NPV 80.6%. | Early post-SABR ctDNA positivity flags high relapse risk and candidates for early systemic therapy. | Kwon et al., 2024 [9] |
| Pre-radiotherapy ctDNA (VAF/mutational burden/detectability) | Pre-RT ctDNA indicates occult micrometastatic disease beyond conventional imaging. | Oligometastatic NSCLC; before local consolidative RT/SABR. | Multi-institutional cohort; 1487 total; 309 with pre-RT ctDNA. | Undetectable pre-RT ctDNA associated with longer PFS/OS; higher VAF and ctDNA mutational burden inversely associated with PFS/OS. | Helps distinguish true oligometastatic disease likely to benefit from SABR from biologically polymetastatic disease needing systemic therapy. | Semenkovich et al., 2023 [10] |
| Serial cfDNA/ctDNA in biomarker-embedded trial (SABR-SYNC) | ctDNA kinetics as a non-invasive read-out of tumour burden and response. | Pan-cancer oligometastatic with synchronous primary; SABR-SYNC. | Phase III RCT protocol with translational endpoints. | Protocol specifies serial cfDNA/ctDNA collection; exploratory correlations with outcomes pre-planned. | Prospective platform to qualify ctDNA as a decision tool around SABR. | Palma et al., 2024 [11] |
| PSMA-positive extracellular vesicles (EVs) | Tumour-derived PSMA+ EVs index occult tumour burden and metastatic potential. | Oligometastatic/oligorecurrent CSPC; SABR (ORIOLE and STOMP-like cohorts). | Correlative analyses within two randomised cohorts. | Low baseline PSMA+ EVs stable longer bPFS (26.1 vs. 15.0 mo; p = 0.005) and rPFS (36.0 vs. 25.0 mo; p = 0.003); predictive of SABR benefit in ORIOLE. | Prognostic and predictive biomarker to select men most likely to derive durable benefit from SABR. | Andrews et al., 2025 [18] |
| PSMA PET/CT-directed lesion selection (imaging biomarker) | PSMA-avid lesions improve target delineation and identify oligometastatic biology. | Oligometastatic prostate cancer; SABR. | Prospective phase II; n = 20. | 12-month LPFS 93%; ADT-free survival 70%; PSA decline in 60%. | Decision-enabling imaging biomarker for SABR planning and surveillance. | Ong et al., 2019 [21] |
| PSMA-PET radiomics (features ± clinical) | Textural/heterogeneity features capture tumour phenotype and peri-tumoural biology. | Oligometastatic castration-sensitive prostate cancer (omCSPC). | Retrospective multi-institutional; n = 117; external validation. | Predictive accuracy for 2-yr MFS ≈ 80%; AUC ~ 0.82 internal; external AUC 0.77–0.80. | Candidate prognostic model to risk-stratify men for SABR and tailor surveillance. | Cao et al., 2024 [20] |
| CT texture radiomics (entropy, MPP, SD) | Imaging heterogeneity correlates with tumour grade and survival. | Colorectal cancer liver metastases (contextual to ablative strategies). | Retrospective; n = 77. | Coarse-texture entropy associated with improved OS (HR 0.65; 95% CI 0.44–0.95; p = 0.03). | Radiomics can refine prognosis and potentially SABR candidacy/dose-painting strategies. | Lubner et al., 2016 [22] |
| Head and neck radiomic classifiers | Multi-feature CT radiomics non-invasively stratifies prognosis. | Head and neck cancer (methodological anchor for SABR radiomics). | Two cohorts; n = 101 and n = 95. | Moderate discrimination; AUC ~ 0.61–0.67 across algorithms; stability analyses reported. | Feasibility of robust radiomics pipelines applicable to SABR cohorts. | Parmar et al., 2015 [23] |
| Peripheral immune profiling during ICI-SABR (cfDNA, PBMC phenotypes, EV-small RNAs) | SABR+ICI modulates systemic immunity; cfDNA and PBMC phenotypes track response. | Oligoprogressive NSCLC/melanoma on ICI + SABR. | Prospective observational; n = 27; serial blood sampling. | ORR 63% (CR 26%); responders: cfDNA decline and rise in CD8+PD-L1+; non-responders: rise in CD8+PD-1+; 27 small RNAs differentially expressed. | Early liquid-biopsy signals may predict benefit and inform adaptation of SABR-ICI. | Zafra et al., 2024 [30] |
| T-cell invigoration to tumour-burden ratio | Pharmacodynamic biomarker of checkpoint response; potentially amplified by SABR antigen release. | Metastatic melanoma on anti-PD-1 (mechanistic anchor for SABR-IO combinations). | Prospective immune-monitoring study. | Ki-67 upregulation in PD-1+CD8+ at ~3 weeks (p < 0.0001); invigoration:burden ratio correlated with response (p < 0.01). | Framework to interpret SABR-induced immune priming and monitor responders. | Huang et al., 2017 [31] |
| TCR repertoire dynamics/neoantigen-specific expansion | SABR can expand tumour-reactive clones and increase CD8+ infiltration. | Stage I NSCLC treated with SABR. | Translational paired-sample study. | Post-SABR increase in CD8+ infiltration and expansion of tumour-reactive TCR clonotypes. | Supports SABR as an immune-priming modality; rationale for biomarker-guided IO combinations. | Voong et al., 2023 [35] |
| Inflammatory indices (NLR, PLR, LMR) | Systemic inflammation reflects host–tumour interaction and radio-resistance. | Early-stage NSCLC undergoing SABR. | Single-centre retrospective; n = 63. | NLR ≤ 2.06, PLR ≤ 199.6, LMR > 4.0 associated with improved OS; PLR and LMR independent prognosticators. | Low-cost, accessible markers that stratify SABR outcomes; hypothesis-generating for prospective validation. | Luo et al., 2018 [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metawe, M.; Mikropoulos, C.; Al-Sattar, H.; Sood, I.; Jaafari, A.M.; Galante, J.R.; Adeleke, S. Biomarkers in Stereotactic Ablative Radiotherapy: Current Evidence and Future Directions. Int. J. Mol. Sci. 2025, 26, 10640. https://doi.org/10.3390/ijms262110640
Metawe M, Mikropoulos C, Al-Sattar H, Sood I, Jaafari AM, Galante JR, Adeleke S. Biomarkers in Stereotactic Ablative Radiotherapy: Current Evidence and Future Directions. International Journal of Molecular Sciences. 2025; 26(21):10640. https://doi.org/10.3390/ijms262110640
Chicago/Turabian StyleMetawe, Mohamed, Christos Mikropoulos, Hasan Al-Sattar, Inesh Sood, Amir Mashia Jaafari, Joao R. Galante, and Sola Adeleke. 2025. "Biomarkers in Stereotactic Ablative Radiotherapy: Current Evidence and Future Directions" International Journal of Molecular Sciences 26, no. 21: 10640. https://doi.org/10.3390/ijms262110640
APA StyleMetawe, M., Mikropoulos, C., Al-Sattar, H., Sood, I., Jaafari, A. M., Galante, J. R., & Adeleke, S. (2025). Biomarkers in Stereotactic Ablative Radiotherapy: Current Evidence and Future Directions. International Journal of Molecular Sciences, 26(21), 10640. https://doi.org/10.3390/ijms262110640

