NDR2 Kinase Regulates Microglial Metabolic Adaptation and Inflammatory Response: Critical Role in Glucose-Dependent Functional Plasticity
Abstract
1. Introduction
2. Results
2.1. NDR Kinases Are Expressed by Microglial Cells
2.2. NDR2 Protein Expression Is Upregulated in Microglial Cells Exposed to HG
2.3. CRISPR-Cas 9 Induced a Downregulation of the Ndr2 Gene in BV-2 Cells
2.4. High Glucose and Ndr2 Downregulation Effects on Cell Viability and Metabolism
2.5. Ndr2 Downregulation Affects the Metabolism of Microglial Cells
2.6. High Glucose and Ndr2 Downregulation Affect Phagocytic Efficiency
2.7. High Glucose and Ndr2 Downregulation Decrease BV-2 Migration
2.8. Ndr2 Downregulation and Exposure to HG or LPS Upregulate the Expression of IL-17a and TNF
3. Discussion
4. Materials and Methods
4.1. Animal Care
4.2. Mouse Retinal Microglial Cell Culture
4.3. Human iPSC-Derived Microglial Cell Culture
4.4. BV-2 Cell Culture
4.5. High-Glucose Assay
4.6. Plasmids, BV-2 Transfection and Clonal Selection
4.7. Ndr2/Stk38l CRISPR BV-2 Cells Validation
4.8. Quantitative RT-qPCR
4.9. SDS-PAGE and Western Blot
4.10. Alamar Blue Assay
4.11. Immunocytochemistry
4.12. Microscopy and Imaging/Quantification
4.13. Phagocytic Activity Assay
4.14. Boyden Chamber Assay
4.15. Proliferation Assay (EdU)
4.16. Flow Cytometry
4.17. Seahorse Analysis
4.18. Mouse Cytokine Antibody Array
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 7-AAD | 7-aminoactinomycin D |
| ADP | adenosine diphosphate |
| ATP | adenosine triphosphate |
| AV | annexin V |
| CM | cell medium |
| CT | control |
| DEGs | differentially expressed genes |
| DR | diabetic retinopathy |
| EdU | 5-ethynyl-2′-deoxyuridine |
| erd | canine early retinal degeneration disease |
| G-CSF | granulocyte colony-stimulating factor |
| GFAP | glial fibrillary acidic protein |
| GM-CSF | granulocyte-macrophage colony-stimulating factor |
| HG | high glucose |
| IBA1 | ionized calcium binding adapter protein 1 |
| IFN | interferons |
| IL-6 | interleukin-6 |
| IL-10 | interleukin-10 |
| IL-17a | interleukin-17 a |
| Indels | insertion/deletion after non-homologous end-joining repair events |
| iPSC | induced pluripotent stem cells |
| LPS | lipopolysaccharide |
| MAPK | mitogen-activated protein kinase |
| MCP | murine monocyte chemoattractant protein |
| NDR | nuclear dbf2-related |
| NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
| NG | normal glucose |
| NHEJ | non-homologous end-joining repair events |
| OCR | oxygen consumption rate |
| qRT-PCR | quantitative reverse transcription PCR |
| RANTES | regulated upon activation, normal T cell expressed and presumably secreted |
| ROS | reactive oxygen species |
| SCF | stem cell factor |
| SDS | sodium dodecyl sulfate |
| SEM | standard error of the mean |
| sTNFRI | soluble tumor necrosis factor receptor I |
| TNF | tumor necrosis factor |
| TPO | thrombopoietin |
| VEGF | vascular endothelial growth factor |
| WT | wild type |
References
- American Academy of Ophthalmology: Protecting Sight. Empowering Lives—American Academy of Ophthalmology. Available online: https://www.aao.org/ (accessed on 27 August 2025).
- Cabrera, A.P.; Monickaraj, F.; Rangasamy, S.; Hobbs, S.; McGuire, P.; Das, A. Do Genomic Factors Play a Role in Diabetic Retinopathy? J. Clin. Med. 2020, 9, 216. [Google Scholar] [CrossRef]
- Santiago, A.R.; Boia, R.; Aires, I.D.; Ambrósio, A.F.; Fernandes, R. Sweet Stress: Coping with Vascular Dysfunction in Diabetic Retinopathy. Front. Physiol. 2018, 9, 820. [Google Scholar] [CrossRef]
- Altmann, C.; Schmidt, M.H. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int. J. Mol. Sci. 2018, 19, 110. [Google Scholar] [CrossRef]
- Rashid, K.; Akhtar-Schaefer, I.; Langmann, T. Microglia in retinal degeneration. Front. Immunol. 2019, 10, 474669. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Liu, T.; Mao, Y.; Peng, B. Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neurosci. Bull. 2023, 39, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Wang, X.; Liu, C.; Zhang, H.-L. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front. Cell. Neurosci. 2019, 13, 514. [Google Scholar] [CrossRef]
- Lee, E.; Chang, Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer’s Disease. Cells 2025, 14, 168. [Google Scholar] [CrossRef]
- Martín-Loro, F.; Cano-Cano, F.; Ortega, M.J.; Cuevas, B.; Gómez-Jaramillo, L.; González-Montelongo, M.d.C.; Freisenhausen, J.C.; Lara-Barea, A.; Campos-Caro, A.; Zubía, E.; et al. Arylphthalide Delays Diabetic Retinopathy via Immunomodulating the Early Inflammatory Response in an Animal Model of Type 1 Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 8440. [Google Scholar] [CrossRef]
- Lee, D.; Kim, S.J.; Lee, J. Novel Therapeutic Approaches for Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration. Vision 2025, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Hergovich, A. The Roles of NDR Protein Kinases in Hippo Signalling. Genes 2016, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Hergovich, A.; Stegert, M.R.; Schmitz, D.; Hemmings, B.A. NDR kinases regulate essential cell processes from yeast to humans. Nat. Rev. Mol. Cell Biol. 2006, 7, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Hergovich, A. Regulation and functions of mammalian LATS/NDR kinases: Looking beyond canonical Hippo signalling. Cell Biosci. 2013, 3, 32. [Google Scholar] [CrossRef]
- Sharif, A.A.; Hergovich, A. The NDR/LATS protein kinases in immunology and cancer biology. Semin. Cancer Biol. 2018, 48, 104–114. [Google Scholar] [CrossRef]
- Ardestani, A.; Lupse, B.; Maedler, K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol. Metab. 2018, 29, 492–509. [Google Scholar] [CrossRef]
- Ye, X.; Ong, N.; An, H.; Zheng, Y. The Emerging Roles of NDR1/2 in Infection and Inflammation. Front. Immunol. 2020, 11, 534. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, L.; Ling, L.; Meng, X.; Chu, F.; Zhang, S.; Zhou, F. The Crosstalk Between Hippo-YAP Pathway and Innate Immunity. Front. Immunol. 2020, 11, 323. [Google Scholar] [CrossRef]
- Hong, L.; Li, X.; Zhou, D.; Geng, J.; Chen, L. Role of Hippo signaling in regulating immunity. Cell. Mol. Immunol. 2018, 15, 1003–1009. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Yang, G.; Han, J.; Zhu, L.; Li, L.; Zhang, S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis. 2021, 12, 1–14. Available online: https://www.nature.com/articles/s41419-021-03395-3 (accessed on 3 June 2023). [CrossRef]
- Mia, M.M.; Singh, M.K. Emerging roles of the Hippo signaling pathway in modulating immune response and inflammation-driven tissue repair and remodeling. FEBS J. 2022, 289, 4061–4081. [Google Scholar] [CrossRef] [PubMed]
- White, S.M.; Murakami, S.; Yi, C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene 2019, 38, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Léger, H.; Santana, E.; Leu, N.A.; Smith, E.T.; Beltran, W.A.; Aguirre, G.D.; Luca, F.C. Ndr kinases regulate retinal interneuron proliferation and homeostasis. Sci. Rep. 2018, 8, 12544. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, O.; Kukekova, A.V.; Aguirre, G.D.; Acland, G.M. Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 2010, 96, 362–368. [Google Scholar] [CrossRef]
- Berta, Á.I.; Boesze-Battaglia, K.; Genini, S.; Goldstein, O.; O’BRien, P.J.; Szél, Á.; Acland, G.M.; Beltran, W.A.; Aguirre, G.D. Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina. PLoS ONE 2011, 6, e24074. [Google Scholar] [CrossRef]
- Gardiner, K.L.; Downs, L.; Berta-Antalics, A.I.; Santana, E.; Aguirre, G.D.; Genini, S. Photoreceptor proliferation and dysregulation of cell cycle genes in early onset inherited retinal degenerations. BMC Genom. 2016, 17, 221. [Google Scholar] [CrossRef]
- Appelbaum, T.; Santana, E.; Aguirre, G.D. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration. PLoS ONE 2017, 12, e0177224. [Google Scholar] [CrossRef]
- Santos, P.F.; Fazendeiro, B.; Luca, F.C.; Ambrósio, A.F.; Léger, H. The NDR/LATS protein kinases in neurobiology: Key regulators of cell proliferation, differentiation and migration in the ocular and central nervous system. Eur. J. Cell Biol. 2023, 102, 151333. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, H.; Yu, S.; Zhou, C.; Zhang, X.; Li, N.; Zhang, S.; Song, K.; Lu, Y.; Liu, D.; et al. Inflammation-induced mammalian target of rapamycin signaling is essential for retina regeneration. Glia 2020, 68, 111–127. [Google Scholar] [CrossRef]
- Lepiarz-Raba, I.; Gbadamosi, I.; Florea, R.; Paolicelli, R.C.; Jawaid, A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer’s disease therapeutics. Transl. Neurodegener. 2023, 12, 48. [Google Scholar] [CrossRef]
- Gheorghe, R.O.; Deftu, A.; Filippi, A.; Grosu, A.; Bica-Popi, M.; Chiritoiu, M.; Chiritoiu, G.; Munteanu, C.; Silvestro, L.; Ristoiu, V. Silencing the Cytoskeleton Protein Iba1 (Ionized Calcium Binding Adapter Protein 1) Interferes with BV2 Microglia Functioning. Cell. Mol. Neurobiol. 2020, 40, 1011–1027. [Google Scholar] [CrossRef]
- Montague, T.G.; Cruz, J.M.; Gagnon, J.A.; Church, G.M.; Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014, 42, W401–W407. [Google Scholar] [CrossRef]
- Labun, K.; Montague, T.G.; Gagnon, J.A.; Thyme, S.B.; Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016, 44, W272–W276. [Google Scholar] [CrossRef] [PubMed]
- Haeussler, M.; Schönig, K.; Eckert, H.; Eschstruth, A.; Mianné, J.; Renaud, J.-B.; Schneider-Maunoury, S.; Shkumatava, A.; Teboul, L.; Kent, J.; et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Sherkatghanad, Z.; Abdar, M.; Charlier, J.; Makarenkov, V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: A review. Briefings Bioinform. 2023, 24, bbad131. [Google Scholar] [CrossRef] [PubMed]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Zhang, T. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput. Struct. Biotechnol. J. 2019, 18, 35–44. [Google Scholar] [CrossRef]
- White, M.J.; DiCaprio, M.J.; Greenberg, D.A. Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J. Neurosci. Methods 1996, 70, 195–200. [Google Scholar] [CrossRef]
- Gonzalez-Pujana, A.; Rementeria, A.; Blanco, F.J.; Igartua, M.; Pedraz, J.L.; Santos-Vizcaino, E.; Hernandez, R.M. The role of osmolarity adjusting agents in the regulation of encapsulated cell behavior to provide a safer and more predictable delivery of therapeutics. Drug Deliv. 2017, 24, 1654–1666. [Google Scholar] [CrossRef]
- Herault, O.; Colombat, P.; Domenech, J.; Degenne, M.; Bremond, J.; Sensebe, L.; Bernard, M.; Binet, C. A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population. Br. J. Haematol. 1999, 104, 530–537. [Google Scholar] [CrossRef]
- Ferreira-Silva, J.; Aires, I.D.; Boia, R.; Ambrósio, A.F.; Santiago, A.R. Activation of Adenosine A3 Receptor Inhibits Microglia Reactivity Elicited by Elevated Pressure. Int. J. Mol. Sci. 2020, 21, 7218. [Google Scholar] [CrossRef] [PubMed]
- Aires, I.D.; Boia, R.; Rodrigues-Neves, A.C.; Madeira, M.H.; Marques, C.; Ambrósio, A.F.; Santiago, A.R. Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019, 67, 896–914. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C. Boyden Chamber Assay. Methods Mol. Biol. 2005, 294, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Cho, E.-Y.; Jho, E.-H. Regulation of Hippo signaling by metabolic pathways in cancer. Biochim. et Biophys. Acta (BBA) Mol. Cell Res. 2022, 1869, 119201. [Google Scholar] [CrossRef]
- Rajesh, K.; Krishnamoorthy, J.; Gupta, J.; Kazimierczak, U.; Papadakis, A.I.; Deng, Z.; Wang, S.; Kuninaka, S.; Koromilas, A.E. The eIF2α serine 51 phosphorylation-ATF4 arm promotes HIPPO signaling and cell death under oxidative stress. Oncotarget 2016, 7, 51044–51058. [Google Scholar] [CrossRef]
- Yu, F.-X.; Guan, K.-L. The Hippo pathway: Regulators and regulations. Genes Dev. 2013, 27, 355–371. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, Q.; Wu, C.; Li, H.; Shou, J.; Yang, Y.; Gu, M.; Ma, C.; Lin, W.; Zou, Y.; et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat. Commun. 2018, 9, 2789. [Google Scholar] [CrossRef]
- Stork, O.; Zhdanov, A.; Kudersky, A.; Yoshikawa, T.; Obata, K.; Pape, H.-C. Neuronal Functions of the Novel Serine/Threonine Kinase Ndr2. J. Biol. Chem. 2004, 279, 45773–45781. [Google Scholar] [CrossRef]
- Gupta, S.; McCollum, D. Crosstalk between NDR kinase pathways coordinates cell cycle dependent actin rearrangements. Cell Div. 2011, 6, 19. [Google Scholar] [CrossRef]
- Hergovich, A.; Cornils, H.; Hemmings, B.A. Mammalian NDR protein kinases: From regulation to a role in centrosome duplication. Biochim. Biophys. Acta Proteins Proteom. 2008, 1784, 3–15. [Google Scholar] [CrossRef]
- Emoto, K. The growing role of the Hippo-NDR kinase signalling in neuronal development and disease. J. Biochem. 2011, 150, 133–141. [Google Scholar] [CrossRef]
- Du, X.; Wen, J.; Wang, Y.; Karmaus, P.W.F.; Khatamian, A.; Tan, H.; Li, Y.; Guy, C.; Nguyen, T.-L.M.; Dhungana, Y.; et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature 2018, 558, 141–145. [Google Scholar] [CrossRef]
- Baptista, F.I.; Aveleira, C.A.; Castilho, Á.F.; Ambrósio, A.F. Elevated Glucose and Interleukin-1β Differentially Affect Retinal Microglial Cell Proliferation. Mediat. Inflamm. 2017, 2017, 4316316. [Google Scholar] [CrossRef]
- Gu, X.; Ma, Y.; Liu, Y.; Wan, Q. Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc. 2021, 2, 100245. [Google Scholar] [CrossRef]
- Divakaruni, A.S.; Jastroch, M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat. Metab. 2022, 4, 978–994. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.G.; Rodríguez, J.Z.; Barreto, A.; Sanabria-Barrera, S.; Iglesias, J.; Morales, L. Impact of Acute High Glucose on Mitochondrial Function in a Model of Endothelial Cells: Role of PDGF-C. Int. J. Mol. Sci. 2023, 24, 4394. [Google Scholar] [CrossRef] [PubMed]
- de Melo, J.M.L.; Laursen, J.C.; Søndergaard-Heinrich, N.; Rasmussen, I.K.B.; Hansen, C.S.; Frimodt-Møller, M.; Rossing, P.; Størling, J. Increased mitochondrial proton leak and glycolysis in peripheral blood mononuclear cells in type-1-diabetes. Heliyon 2022, 8, e12304. [Google Scholar] [CrossRef] [PubMed]
- Mylvaganam, S.; Freeman, S.A.; Grinstein, S. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 2021, 31, R619–R632. [Google Scholar] [CrossRef]
- Gyoneva, S.; Orr, A.G.; Traynelis, S.F. Differential regulation of microglial motility by ATP/ADP and adenosine. Park. Relat. Disord. 2009, 15 (Suppl. S3), S195–S199. [Google Scholar] [CrossRef]
- Bernier, L.-P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun. 2020, 11, 1559. [Google Scholar] [CrossRef]
- Jung, E.S.; Choi, H.; Mook-Jung, I. Decoding microglial immunometabolism: A new frontier in Alzheimer’s disease research. Mol. Neurodegener. 2025, 20, 37. [Google Scholar] [CrossRef]
- Orihuela, R.; A McPherson, C.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 2016, 173, 649–665. [Google Scholar] [CrossRef]
- Sadeghdoust, M.; Das, A.; Kaushik, D.K. Fueling neurodegeneration: Metabolic insights into microglia functions. J. Neuroinflammation 2024, 21, 300. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Nguyen, N.T.; Bhutia, Y.D.; Sivaprakasam, S.; Ganapathy, V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers 2024, 16, 504. [Google Scholar] [CrossRef]
- Fairley, L.H.; Lai, K.O.; Wong, J.H.; Chong, W.J.; Vincent, A.S.; D’agostino, G.; Wu, X.; Naik, R.R.; Jayaraman, A.; Langley, S.R.; et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2023, 120, 2209177120. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab. 2019, 30, 493–507.e6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Y.; Zhang, Y.; Gao, Y.; Ning, B. Metabolic reprogramming of astrocytes: Emerging roles of lactate. Neural Regen. Res. 2024, 21, 421–432. [Google Scholar] [CrossRef]
- Kinuthia, U.M.; Wolf, A.; Langmann, T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front. Immunol. 2020, 11, 564077. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.-T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation 2021, 18, 129. [Google Scholar] [CrossRef]
- Li, Y.; Long, W.; Gao, M.; Jiao, F.; Chen, Z.; Liu, M.; Yu, L. TREM2 Regulates High Glucose-Induced Microglial Inflammation via the NLRP3 Signaling Pathway. Brain Sci. 2021, 11, 896. [Google Scholar] [CrossRef]
- Kongtawelert, P.; Kaewmool, C.; Phitak, T.; Phimphilai, M.; Pothacharoen, P.; Shwe, T.H. Sesamin protects against neurotoxicity via inhibition of microglial activation under high glucose circumstances through modulating p38 and JNK signaling pathways. Sci. Rep. 2022, 12, 11296. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Schmidt, M.H.H.; Heinig, N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024, 27, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, D.; Li, N.; Gao, P.; Zhang, M.; Zhang, Y. Hippo kinase NDR2 inhibits IL-17 signaling by promoting Smurf1-mediated MEKK2 ubiquitination and degradation. Mol. Immunol. 2019, 105, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Santos, V.; A Leitão, R.; Cardoso, F.L.; Palmela, I.; Rito, M.; Barbosa, M.; A Brito, M.; A Fontes-Ribeiro, C.; Silva, A.P. The TNF-α/Nf-κB Signaling Pathway has a Key Role in Methamphetamine–Induced Blood–Brain Barrier Dysfunction. J. Cereb. Blood Flow Metab. 2015, 35, 1260–1271. [Google Scholar] [CrossRef]
- Tong, Q.; Zheng, L.; Lin, L.; Li, B.; Wang, D.; Huang, C.; Li, D. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway. Respir. Res. 2006, 7, 37. [Google Scholar] [CrossRef]
- Ding, X.; Gu, R.; Zhang, M.; Ren, H.; Shu, Q.; Xu, G.; Wu, H. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol. 2018, 18, 249. [Google Scholar] [CrossRef]
- Whalley, K. Innate immune control of synapse development: Neuroimmunology. Nat. Rev. Neurosci. 2025, 26, 1. [Google Scholar] [CrossRef]
- Shukal, D.K.; Malaviya, P.B.; Sharma, T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum. Exp. Toxicol. 2022, 41, 09603271211063165. [Google Scholar] [CrossRef]
- Almalki, W.H.; Almujri, S.S. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp. Eye Res. 2024, 248, 110111. [Google Scholar] [CrossRef]
- Srejovic, J.V.; Muric, M.D.; Jakovljevic, V.L.; Srejovic, I.M.; Sreckovic, S.B.; Petrovic, N.T.; Todorovic, D.Z.; Bolevich, S.B.; Vulovic, T.S.S. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease—Interplay Between Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 11850. [Google Scholar] [CrossRef]
- Roque, R.S.; Caldwell, R.B. Isolation and culture of retinal microglia. Curr. Eye Res. 1993, 12, 285–290. [Google Scholar] [CrossRef]
- Haenseler, W.; Sansom, S.N.; Buchrieser, J.; Newey, S.E.; Moore, C.S.; Nicholls, F.J.; Chintawar, S.; Schnell, C.; Antel, J.P.; Allen, N.D.; et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Rep. 2017, 8, 1727–1742. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qu, C.; Wang, F. A novel method for co-culture with Müller cells and microglia in rat retina in vitro. Biomed. Rep. 2015, 3, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [PubMed]
- dMIQE Group; Huggett, J.F. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem. 2020, 66, 1012–1029, Erratum in: Clin. Chem. 2020, 66, 1464. https://doi.org/10.1093/clinchem/hvaa219. [Google Scholar] [CrossRef] [PubMed]
- Aires, I.D.; Ribeiro-Rodrigues, T.; Boia, R.; Catarino, S.; Girão, H.; Ambrósio, A.F.; Santiago, A.R. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia 2020, 68, 2705–2724. [Google Scholar] [CrossRef]
- Jorge, J.; Neves, J.; Alves, R.; Geraldes, C.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B. Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies. Int. J. Mol. Sci. 2023, 24, 9167. [Google Scholar] [CrossRef]
- Schumacher, T.J.; Iyer, A.V.; Rumbley, J.; Ronayne, C.T.; Mereddy, V.R. Exploring the impact of mitochondrial-targeting anthelmintic agents with GLUT1 inhibitor BAY-876 on breast cancer cell metabolism. BMC Cancer 2024, 24, 1415. [Google Scholar] [CrossRef]








| Clone | Indel Sequence | Length (bp) | FC | SEM |
|---|---|---|---|---|
| WT | ACCAGACA//TGCCAAGGCACGTGAGGAG GAGAGAGTCCTGGGCTTTGGCTGTGCCGTGA | 60 | 0.49 | |
| Clone 13 | ACCAGACA//TGCCAAGGGACATGTAAAG TTATCCGATTTTGGTTTGTGCACGGGGTGA | 59 | 0.49 | 0.04 |
| Clone 19 | ACCAGACA//TGCCAAGGGACATGTAAAA TTATCCGATTTTGGTTTGTGCACGGGGTGA | 59 | 0.24 | 0.002 |
| Clone 22 | ACCAGACA//TGCCAAGGGACATGTAAAA GTTATCTGATTTTGGTTTGTGCACGGGGATGA | 61 | 0.27 | 0.02 |
| Name | Sequence |
|---|---|
| A-Crispr plasmids | |
| sgRNA #7 | GCATCCAGTAAAAGGTTGTCTGG |
| B-Sanger sequencing | |
| Ndr2 ex7 F | 5′-GTGACATGATGACATTGCTGATG-3′ |
| Ndr2 ex8 R | 5′-CCTCACACATAACCCGCCAAGC-3′ |
| C-RT-qPCR | |
| Ndr1 ex13 F | 5′-AAGCCCACAGTGACCACAAG-3′ |
| Ndr1 ex14 R | 5′-TGTACGAAGGTATGGCCCCC-3′ |
| Ndr2 ex13 F | 5′-GTTGAGAGGTCCATCCTGCC-3′ |
| Ndr3 ex14 R | 5′-CTGATTCTAGACCCACGGGC-3′ |
| Ywhaz F34 | 5′-CAGCAAGCATACCAAGAAG-3′ |
| Ywhaz R35 | 5′-TCGTAATAGAACACAGAGAAGT-3′ |
| Primary Antibodies | ||||||
|---|---|---|---|---|---|---|
| Antigen | Host | Company | Reference # | ICC conc. | WB conc. | Flow cyt. |
| Ndr1/2 (E-2) | Mouse monocl. | Santa Cruz Biotech, (Dallas, TX, USA) | sc-271703. | 1/100 | 1/1000 | - |
| Ndr2 | Rabbit polycl. | St John’s lab. (London, UK) | STJ94368 | 1/100 | 1/1000 | - |
| Iba1 | Rabbit polycl. | Wako Chemicals USA (Richmond, VA, USA) | 019-19741 | 1/500 | - | - |
| GFAP | Chicken polycl. | Millipore (Burlington, MA, USA) | AV5541 | 1/100 | - | - |
| Calnexin | Goat polycl. | Sicgen (Cantanhede, Portugal) | AB0041-500 | - | 1/1000 | - |
| V450-A::IL-17a, clone N49-653 | Mouse monocl. | BD Pharmingen (Franklin Lakes, NJ, USA) | RRID:AB_ 1727539 | - | - | 1x |
| PE-A::TNFa, clone TN3-19.12 | Mouse monocl. | BioLegend (San Diego, CA, USA) | RRID:AB_315418 | - | - | 1x |
| CD11b-V500, clone M1/70 | Mouse monocl. | BD Pharmingen (Franklin Lakes, NJ, USA) | RRID:AB_398535 | |||
| P2γ12-APC, clone S16607D | Mouse monocl. | BioLegend (San Diego, CA, USA) | RRID:AB_2721468 | |||
| FITC Annexin V Apoptosis Detection Kit with 7-AAD | BioLegend, San Diego, CA, USA | 640922 | - | - | 1x | |
| Phalloidin Tritc Labeled Mixed Isomers | Sigma-Aldrich (St Louis, MO, USA) | P1951 | 1x | - | - | |
| Secondary Antibodies | ||||||
| Antigen | Host | Company | Reference # | IHC conc. | WB conc. | Fluorophore |
| anti-Mouse IgG (H+L) | Goat polycl. | ThermoFisher Sc. (Waltham, MA, USA) | A11004 | 1/500 | - | Alexa 568 |
| anti-Rabbit IgG (H+L) | Goat polycl. | Invitrogen (Waltham, MA, USA) | A11008 | 1/500 | - | Alexa 488 |
| anti-Chicken IgG (H+L) | Goat polycl. | Invitrogen (Waltham, MA, USA) | A11041 | 1/500 | - | Alexa 568 |
| StarBright Blue 700 Goat Anti-Rabbit IgG | Goat polycl. | Bio-Rad (Hercules, CA, USA) | 12004162 | - | 1/10,000 | Blue 700 |
| HRP Anti-Goat | Rabbit polycl. | Thermo Fisher Sc. (Waltham, MA, USA) | LTI 611620 | - | 1/10,000 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazendeiro, B.; Machado, I.; Rolo, A.; Rodrigues Santos, P.; Ambrósio, A.F.; Santos, P.F.; Léger, H. NDR2 Kinase Regulates Microglial Metabolic Adaptation and Inflammatory Response: Critical Role in Glucose-Dependent Functional Plasticity. Int. J. Mol. Sci. 2025, 26, 10630. https://doi.org/10.3390/ijms262110630
Fazendeiro B, Machado I, Rolo A, Rodrigues Santos P, Ambrósio AF, Santos PF, Léger H. NDR2 Kinase Regulates Microglial Metabolic Adaptation and Inflammatory Response: Critical Role in Glucose-Dependent Functional Plasticity. International Journal of Molecular Sciences. 2025; 26(21):10630. https://doi.org/10.3390/ijms262110630
Chicago/Turabian StyleFazendeiro, Beatriz, Ivo Machado, Anabela Rolo, Paulo Rodrigues Santos, António Francisco Ambrósio, Paulo F. Santos, and Hélène Léger. 2025. "NDR2 Kinase Regulates Microglial Metabolic Adaptation and Inflammatory Response: Critical Role in Glucose-Dependent Functional Plasticity" International Journal of Molecular Sciences 26, no. 21: 10630. https://doi.org/10.3390/ijms262110630
APA StyleFazendeiro, B., Machado, I., Rolo, A., Rodrigues Santos, P., Ambrósio, A. F., Santos, P. F., & Léger, H. (2025). NDR2 Kinase Regulates Microglial Metabolic Adaptation and Inflammatory Response: Critical Role in Glucose-Dependent Functional Plasticity. International Journal of Molecular Sciences, 26(21), 10630. https://doi.org/10.3390/ijms262110630

