Disrupted Cervicovaginal Microbiota: Its Role in Chlamydia trachomatis Genital Infection and Associated Reproductive Outcomes
Abstract
1. Introduction
2. The Role of Cervicovaginal Microbiota in Female Reproductive Tract Health
2.1. Vaginal Dysbiosis
2.2. Interplay Between Vaginal Microbiota, Host Immunometabolism, and CT Infection
2.2.1. CT Infection Clearance
2.2.2. Cervicovaginal Dysbiosis, Infection Risks and Reproductive Outcomes
3. Therapeutic Strategies and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohseni, M.; Sung, S.; Takov, V. Chlamydia; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- European Centre for Disease Prevention and Control. STI Cases Continue to Rise Across Europe; ECDC: Stockholm, Sweden, 2025; Available online: https://www.ecdc.europa.eu/en/news-events/sti-cases-continue-rise-across-europe (accessed on 23 May 2025).
- European Centre for Disease Prevention and Control. Chlamydia. In ECDC. Annual Epidemiological Report for 2023; ECDC: Stockholm, Sweden, 2025; Available online: https://www.ecdc.europa.eu/en/publications-data/chlamydia-annual-epidemiological-report-2023 (accessed on 23 May 2025).
- Centers for Disease Control and Prevention. Sexually Transmitted Infections Surveillance; CDC: Atlanta, GA, USA, 2023. Available online: https://www.cdc.gov/sti-statistics/annual/index.html (accessed on 23 May 2025).
- Centers for Disease Control and Prevention. National Overview of STIs in 2023; CDC: Atlanta, GA, USA, 2023. Available online: https://www.cdc.gov/sti-statistics/media/pdfs/2025/09/2023_STI_Surveillance_Report_FINAL_508.pdf (accessed on 23 May 2025).
- White, J.A.; Dukers-Muijrers, N.H.; Hoebe, C.J.; Kenyon, C.R.; Dc Ross, J.; Unemo, M. 2025 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2025, 36, 434–449. [Google Scholar] [CrossRef]
- Rodrigues, R.; Marques, L.; Vieira-Baptista, P.; Sousa, C.; Vale, N. Therapeutic Options for Chlamydia trachomatis Infection: Present and Future. Antibiotics 2022, 11, 1634. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030; WHO: Geneva, Switzerland, 2022; Available online: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/strategies/global-health-sector-strategies (accessed on 23 May 2025).
- Rodrigues, R.; Sousa, C.; Vale, N. Chlamydia trachomatis as a Current Health Problem: Challenges and Opportunities. Diagnostics 2022, 12, 1795. [Google Scholar] [CrossRef]
- Kumar, S.; Chesson, H.W.; Spicknall, I.H.; Kreisel, K.M.; Gift, T.L. The Estimated Lifetime Medical Cost of Chlamydia, Gonorrhea, and Trichomoniasis in the United States, 2018. Sex. Transm. Dis. 2021, 48, 238–246. [Google Scholar] [CrossRef]
- Michalow, J.; Hall, L.; Rowley, J.; Anderson, R.L.; Hayre, Q.; Chico, R.M.; Edun, O.; Knight, J.; Kuchukhidze, S.; Majaya, E.; et al. Prevalence of chlamydia, gonorrhoea, and trichomoniasis among male and female general populations in sub-Saharan Africa from 2000-2024: A systematic review and meta-regression analysis. medRxiv 2024, 83, 2024.12.16.24319070. [Google Scholar] [CrossRef]
- Romoren, M.; Hussein, F.; Steen, T.W.; Velauthapillai, M.; Sundby, J.; Hjortdahl, P.; Kristiansen, I.S. Costs and health consequences of chlamydia management strategies among pregnant women in sub-Saharan Africa. Sex. Transm. Infect. 2007, 83, 558–566. [Google Scholar] [CrossRef]
- Rodrigues, R.; Sousa, C.; Vale, N. Deciphering the Puzzle: Literature Insights on Chlamydia trachomatis-Mediated Tumorigenesis, Paving the Way for Future Research. Microorganisms 2024, 12, 1126. [Google Scholar] [CrossRef]
- Rodrigues, R.; Sousa, C.; Barros, A.; Vale, N. Chlamydia trachomatis: From Urogenital Infections to the Pathway of Infertility. Genes 2025, 16, 205. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Turzanski Fortner, R.; Lehtinen, M.; Idahl, A. Chlamydia trachomatis, Pelvic Inflammatory Disease, and Epithelial Ovarian Cancer. J. Infect. Dis. 2021, 224, S121–S127. [Google Scholar] [CrossRef] [PubMed]
- Morhason-Bello, I.; Kim, K.; Bello, Y.; Zheng, Y.; Oyerinde, S.; Idowu, O.C.; Pavón, M.Á.; Baisley, K.; Wang, J.; Fowotade, A.; et al. Assessment of Relative Contributions of Lifestyle, Behavioral and Biological Risk Factors for Cervical Human Papillomavirus Infections in Female Sex Workers. Viruses 2025, 17, 485. [Google Scholar] [CrossRef] [PubMed]
- Usyk, M.; Carlson, L.; Schlecht, N.F.; Sollecito, C.C.; Grassi, E.; Wiek, F.; Viswanathan, S.; Strickler, H.D.; Nucci-Sack, A.; Diaz, A.; et al. Cervicovaginal microbiome and natural history of Chlamydia trachomatis in adolescents and young women. Cell 2025, 188, 1051–1061.e1012. [Google Scholar] [CrossRef]
- Hand, E.; Hood-Pishchany, I.; Darville, T.; O’Connell, C.M. Influence of cervicovaginal microbiota on Chlamydia trachomatis infection dynamics. Microb. Cell 2025, 12, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.; Filardo, S.; Simonelli, I.; Pasqualetti, P.; Sessa, R. Cervicovaginal Microbiota Composition in Chlamydia trachomatis Infection: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 9554. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef] [PubMed]
- Diop, K.; Dufour, J.-C.; Levasseur, A.; Fenollar, F. Exhaustive repertoire of human vaginal microbiota. Hum. Microbiome J. 2019, 11, 100051. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Auriemma, R.S.; Scairati, R.; Del Vecchio, G.; Liccardi, A.; Verde, N.; Pirchio, R.; Pivonello, R.; Ercolini, D.; Colao, A. The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life. Front. Cell. Infect. Microbiol. 2021, 11, 686167. [Google Scholar] [CrossRef]
- Qin, L.; Sun, T.; Li, X.; Zhao, S.; Liu, Z.; Zhang, C.; Jin, C.; Xu, Y.; Gao, X.; Cao, Y.; et al. Population-level analyses identify host and environmental variables influencing the vaginal microbiome. Signal Transduct. Target. Ther. 2025, 10, 64. [Google Scholar] [CrossRef]
- Chee, W.J.Y.; Chew, S.Y.; Than, L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Factories 2020, 19, 203. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Ala-Jaakkola, R.; Laitila, A.; Maukonen, J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Front. Microbiol. 2022, 13, 819958. [Google Scholar] [CrossRef]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Delgado-Diaz, D.J.; Jesaveluk, B.; Hayward, J.A.; Tyssen, D.; Alisoltani, A.; Potgieter, M.; Bell, L.; Ross, E.; Iranzadeh, A.; Allali, I.; et al. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. Microbiome 2022, 10, 141. [Google Scholar] [CrossRef]
- Aldunate, M.; Srbinovski, D.; Hearps, A.C.; Latham, C.F.; Ramsland, P.A.; Gugasyan, R.; Cone, R.A.; Tachedjian, G. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015, 6, 164. [Google Scholar] [CrossRef]
- Delgado-Diaz, D.J.; Tyssen, D.; Hayward, J.A.; Gugasyan, R.; Hearps, A.C.; Tachedjian, G. Distinct Immune Responses Elicited From Cervicovaginal Epithelial Cells by Lactic Acid and Short Chain Fatty Acids Associated With Optimal and Non-optimal Vaginal Microbiota. Front. Cell. Infect. Microbiol. 2019, 9, 446. [Google Scholar] [CrossRef]
- Vagios, S.; Mitchell, C.M. Mutual Preservation: A Review of Interactions Between Cervicovaginal Mucus and Microbiota. Front. Cell. Infect. Microbiol. 2021, 11, 676114. [Google Scholar] [CrossRef] [PubMed]
- Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018, 9, 376. [Google Scholar] [CrossRef]
- Heczko, P.B.; Giemza, M.; Ponikiewska, W.; Strus, M. Importance of Lactobacilli for Human Health. Microorganisms 2024, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Condori-Catachura, S.; Ahannach, S.; Ticlla, M.; Kenfack, J.; Livo, E.; Anukam, K.C.; Pinedo-Cancino, V.; Collado, M.C.; Dominguez-Bello, M.G.; Miller, C.; et al. Diversity in women and their vaginal microbiota. Trends Microbiol. 2025, 24, 2024.11.26.625070. [Google Scholar] [CrossRef]
- Dong, W.; Wang, S.; Wang, X.; Xu, G.; Liu, Q.; Li, Z.; Lv, N.; Pan, Y.; Xiong, Q.; Liu, D.; et al. Characteristics of Vaginal Microbiota of Women of Reproductive Age with Infections. Microorganisms 2024, 12, 1030. [Google Scholar] [CrossRef]
- Amabebe, E.; Anumba, D.O.C. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Ravel, J. The vaginal microbiota, host defence and reproductive physiology. J. Physiol. 2017, 595, 451–463. [Google Scholar] [CrossRef]
- Mirmonsef, P.; Hotton, A.L.; Gilbert, D.; Gioia, C.J.; Maric, D.; Hope, T.J.; Landay, A.L.; Spear, G.T. Glycogen Levels in Undiluted Genital Fluid and Their Relationship to Vaginal pH, Estrogen, and Progesterone. PLoS ONE 2016, 11, e0153553. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, N.; Singhal, N.; Kaur, R.; Manektala, U. Vaginal microflora in postmenopausal women on hormone replacement therapy. Indian J. Pathol. Microbiol. 2006, 49, 457–461. [Google Scholar] [PubMed]
- Bradfield Strydom, M.; Khan, S.; Walpola, R.L.; Ware, R.S.; Tiralongo, E. Interplay of the microbiome and antifungal therapy in recurrent vulvovaginal candidiasis (RVVC): A narrative review. J. Med. Microbiol. 2023, 72, 001751. [Google Scholar] [CrossRef]
- Pedro, N.A.; Mira, N.P. A molecular view on the interference established between vaginal Lactobacilli and pathogenic Candida species: Challenges and opportunities for the development of new therapies. Microbiol. Res. 2024, 281, 127628. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.; Hemmerling, A.; Miller, S.; Huibner, S.; Kulikova, M.; Liu, R.; Crawford, E.; Castañeda Gloria, R.; Coburn, B.; Cohen Craig, R.; et al. Vaginal fungi are associated with treatment-induced shifts in the vaginal microbiota and with a distinct genital immune profile. Microbiol. Spectr. 2024, 12, e03501–e03523. [Google Scholar] [CrossRef] [PubMed]
- Saraf, V.S.; Sheikh, S.A.; Ahmad, A.; Gillevet, P.M.; Bokhari, H.; Javed, S. Vaginal microbiome: Normalcy vs dysbiosis. Arch. Microbiol. 2021, 203, 3793–3802. [Google Scholar] [CrossRef]
- Qingqing, B.; Jie, Z.; Songben, Q.; Juan, C.; Lei, Z.; Mu, X. Cervicovaginal microbiota dysbiosis correlates with HPV persistent infection. Microb. Pathog. 2021, 152, 104617. [Google Scholar] [CrossRef]
- McKinnon, L.R.; Achilles, S.L.; Bradshaw, C.S.; Burgener, A.; Crucitti, T.; Fredricks, D.N.; Jaspan, H.B.; Kaul, R.; Kaushic, C.; Klatt, N.; et al. The Evolving Facets of Bacterial Vaginosis: Implications for HIV Transmission. AIDS Res. Hum. Retroviruses 2019, 35, 219–228. [Google Scholar] [CrossRef]
- France, M.; Alizadeh, M.; Brown, S.; Ma, B.; Ravel, J. Towards a deeper understanding of the vaginal microbiota. Nat. Microbiol. 2022, 7, 367–378. [Google Scholar] [CrossRef]
- Tsamir-Rimon, M.; Borenstein, E. A manifold-based framework for studying the dynamics of the vaginal microbiome. npj Biofilms Microbiomes 2023, 9, 102. [Google Scholar] [CrossRef]
- Ma, B.; Forney, L.J.; Ravel, J. Vaginal microbiome: Rethinking health and disease. Annu. Rev. Microbiol. 2012, 66, 371–389. [Google Scholar] [CrossRef] [PubMed]
- France, M.T.; Ma, B.; Gajer, P.; Brown, S.; Humphrys, M.S.; Holm, J.B.; Waetjen, L.E.; Brotman, R.M.; Ravel, J. VALENCIA: A nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 2020, 8, 166. [Google Scholar] [CrossRef]
- Valeriano, V.D.; Lahtinen, E.; Hwang, I.-C.; Zhang, Y.; Du, J.; Schuppe-Koistinen, I. Vaginal dysbiosis and the potential of vaginal microbiome-directed therapeutics. Front. Microbiomes 2024, 3, 1363089. [Google Scholar] [CrossRef]
- Borgdorff, H.; Gautam, R.; Armstrong, S.D.; Xia, D.; Ndayisaba, G.F.; van Teijlingen, N.H.; Geijtenbeek, T.B.; Wastling, J.M.; van de Wijgert, J.H. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunol. 2016, 9, 621–633. [Google Scholar] [CrossRef]
- Wang, Y.; Noël-Romas, L.; Perner, M.; Knodel, S.; Molatlhegi, R.; Hoger, S.; Birse, K.; Zuend, C.F.; McKinnon, L.R.; Burgener, A.D. Non-Lactobacillus-Dominant and Polymicrobial Vaginal Microbiomes Are More Common in Younger South African Women and Predictive of Increased Risk of Human Immunodeficiency Virus Acquisition. Clin. Infect. Dis. 2023, 76, 1372–1381. [Google Scholar] [CrossRef]
- Ziklo, N.; Vidgen, M.E.; Taing, K.; Huston, W.M.; Timms, P. Dysbiosis of the Vaginal Microbiota and Higher Vaginal Kynurenine/Tryptophan Ratio Reveals an Association with Chlamydia trachomatis Genital Infections. Front. Cell. Infect. Microbiol. 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Gudnadottir, U.; Debelius, J.W.; Du, J.; Hugerth, L.W.; Danielsson, H.; Schuppe-Koistinen, I.; Fransson, E.; Brusselaers, N. The vaginal microbiome and the risk of preterm birth: A systematic review and network meta-analysis. Sci. Rep. 2022, 12, 7926. [Google Scholar] [CrossRef]
- Venneri, M.A.; Franceschini, E.; Sciarra, F.; Rosato, E.; D’Ettorre, G.; Lenzi, A. Human genital tracts microbiota: Dysbiosis crucial for infertility. J. Endocrinol. Invest. 2022, 45, 1151–1160. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Z.; Chen, T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front. Microbiol. 2021, 12, 643422. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Lee, H.K. Host and Microbiome Interplay Shapes the Vaginal Microenvironment. Front. Immunol. 2022, 13, 919728. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Rodriguez-Garcia, M.; Patel, M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 2015, 15, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Nunn, K.L.; Forney, L.J. Unraveling the Dynamics of the Human Vaginal Microbiome. Yale J. Biol. Med. 2016, 89, 331–337. [Google Scholar] [PubMed]
- Dong, M.; Dong, Y.; Bai, J.; Li, H.; Ma, X.; Li, B.; Wang, C.; Li, H.; Qi, W.; Wang, Y.; et al. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front. Cell. Infect. Microbiol. 2023, 13, 1124591. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Gootenberg, D.B.; Mitchell, C.M.; Kwon, D.S. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe 2018, 23, 159–168. [Google Scholar] [CrossRef]
- Jury, B.; Fleming, C.; Huston, W.M.; Luu, L.D.W. Molecular pathogenesis of Chlamydia trachomatis. Front. Cell. Infect. Microbiol. 2023, 13, 1281823. [Google Scholar] [CrossRef]
- Linton, C.; Wesolowski, J.; Lobley, A.; Yamaji, T.; Hanada, K.; Paumet, F. Specialized contact sites regulate the fusion of chlamydial inclusion membranes. Nat. Commun. 2024, 15, 9250. [Google Scholar] [CrossRef]
- Lyu, H.; Tang, H.; Feng, Y.; Hu, S.; Wang, Y.; Zhou, L.; Huang, S.; Li, J.; Zhu, H.; He, X.; et al. Incidence and spontaneous clearance of gonorrhea and chlamydia infections among men who have sex with men: A prospective cohort study in Zhuhai, China. Front. Public Health 2024, 12, 1348686. [Google Scholar] [CrossRef]
- Jordan, S.J.; Wilson, L.; Ren, J.; Gupta, K.; Barnes, S.; Geisler, W.M. Natural Clearance of Chlamydia trachomatis Infection Is Associated With Distinct Differences in Cervicovaginal Metabolites. J. Infect. Dis. 2023, 228, 1119–1126. [Google Scholar] [CrossRef]
- Klasner, C.; Macintyre, A.N.; Brown, S.E.; Bavoil, P.; Ghanem, K.G.; Nylander, E.; Ravel, J.; Tuddenham, S.; Brotman, R.M. A Narrative Review on Spontaneous Clearance of Urogenital Chlamydia trachomatis: Host, Microbiome, and Pathogen-Related Factors. Sex. Transm. Dis. 2024, 51, 112–117. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Fang, C.; Li, Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front. Immunol. 2024, 15, 1289644. [Google Scholar] [CrossRef]
- Diallo, A.; Overman, G.; Sah, P.; Liechti, G.W. Recognition of Chlamydia trachomatis by Toll-like receptor 9 is altered during persistence. Infect. Immun. 2024, 92, e0006324. [Google Scholar] [CrossRef]
- Vasilevsky, S.; Greub, G.; Nardelli-Haefliger, D.; Baud, D. Genital Chlamydia trachomatis: Understanding the roles of innate and adaptive immunity in vaccine research. Clin. Microbiol. Rev. 2014, 27, 346–370. [Google Scholar] [CrossRef]
- Dockterman, J.; Coers, J. Immunopathogenesis of genital Chlamydia infection: Insights from mouse models. Pathog. Dis. 2021, 79, ftab012. [Google Scholar] [CrossRef]
- Riffaud Camille, M.; Rucks Elizabeth, A.; Ouellette Scot, P. Tryptophan Availability during Persistence of Chlamydia trachomatis Directly Impacts Expression of Chlamydial Cell Division Proteins. Infect. Immun. 2023, 91, e00513–e00522. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Yuan, H.; Chen, H. The role of tryptophan in Chlamydia trachomatis persistence. Front. Cell. Infect. Microbiol. 2022, 12, 931653. [Google Scholar] [CrossRef]
- Hatch, N.D.; Ouellette, S.P. Inhibition of tRNA Synthetases Induces Persistence in Chlamydia. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef]
- Jordan, S.J.; Olson, K.M.; Barnes, S.; Wilson, L.S.; Berryhill, T.F.; Bakshi, R.; Brown, L.T.; Press, C.G.; Geisler, W.M. Lower Levels of Cervicovaginal Tryptophan Are Associated With Natural Clearance of Chlamydia in Women. J. Infect. Dis. 2017, 215, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.; Pogson, C.I.; Jones, M.L.; Pearce, J.H. Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect. Immun. 2000, 68, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Mandel, C.G.; Sanchez, S.E.; Monahan, C.C.; Phuklia, W.; Omsland, A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front. Cell. Infect. Microbiol. 2024, 14, 1284701. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sun, Y.; Muramatsu, M.K.; Toh, E.; Nelson, D.E. A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion. Infect. Immun. 2023, 91, e0048322. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Boskey, E.R.; Telsch, K.M.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect. Immun. 1999, 67, 5170–5175. [Google Scholar] [CrossRef] [PubMed]
- Zalambani, C.; Rizzardi, N.; Marziali, G.; Foschi, C.; Morselli, S.; Djusse, M.E.; Naldi, M.; Fato, R.; Calonghi, N.; Marangoni, A. Role of D(−)-Lactic Acid in Prevention of Chlamydia trachomatis Infection in an In Vitro Model of HeLa Cells. Pathogens 2023, 12, 883. [Google Scholar] [CrossRef]
- Chen, H.; Min, S.; Wang, L.; Zhao, L.; Luo, F.; Lei, W.; Wen, Y.; Luo, L.; Zhou, Q.; Peng, L.; et al. Lactobacillus Modulates Chlamydia Infectivity and Genital Tract Pathology in vitro and in vivo. Front. Microbiol. 2022, 13, 877223. [Google Scholar] [CrossRef] [PubMed]
- Mastromarino, P.; Di Pietro, M.; Schiavoni, G.; Nardis, C.; Gentile, M.; Sessa, R. Effects of vaginal lactobacilli in Chlamydia trachomatis infection. Int. J. Med. Microbiol. 2014, 304, 654–661. [Google Scholar] [CrossRef]
- Tamarelle, J.; de Barbeyrac, B.; Le Hen, I.; Thiébaut, A.; Bébéar, C.; Ravel, J.; Delarocque-Astagneau, E. Vaginal microbiota composition and association with prevalent Chlamydia trachomatis infection: A cross-sectional study of young women attending a STI clinic in France. Sex. Transm. Infect. 2018, 94, 616–618. [Google Scholar] [CrossRef]
- Aiyar, A.; Quayle, A.J.; Buckner, L.R.; Sherchand, S.P.; Chang, T.L.; Zea, A.H.; Martin, D.H.; Belland, R.J. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: Role of vaginal co-infections. Front. Cell. Infect. Microbiol. 2014, 4, 72. [Google Scholar] [CrossRef]
- Reitano, J.R.; Coers, J. Restriction and evasion: A review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog. Dis. 2024, 82, ftae019. [Google Scholar] [CrossRef]
- Kaiser Julienne, C.; Heinrichs David, E. Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018, 9. [Google Scholar] [CrossRef]
- Jeong, S.; Tollison, T.S.; Brochu, H.; Chou, H.; Huntress, I.; Yount, K.S.; Zheng, X.; Darville, T.; O’Connell, C.M.; Peng, X. Cervicovaginal microbial features predict Chlamydia trachomatis spread to the upper genital tract of infected women. bioRxiv 2025, 93, e00057-25. [Google Scholar] [CrossRef]
- Escorcia Mora, P.; Valbuena, D.; Diez-Juan, A. The Role of the Gut Microbiota in Female Reproductive and Gynecological Health: Insights into Endometrial Signaling Pathways. Life 2025, 15, 762. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhu, M.; Ge, L.; Liu, X.; Su, K.; Chen, Z.; Zhao, W. The Interplay Between Cervicovaginal Microbial Dysbiosis and Cervicovaginal Immunity. Front. Immunol. 2022, 13, 857299. [Google Scholar] [CrossRef] [PubMed]
- Mendz, G.L. The Vaginal Microbiome during Pregnancy in Health and Disease. Appl. Microbiol. 2023, 3, 1302–1338. [Google Scholar] [CrossRef]
- Biagioli, V.; Matera, M.; Ramenghi, L.A.; Falsaperla, R.; Striano, P. Microbiome and Pregnancy Dysbiosis: A Narrative Review on Offspring Health. Nutrients 2025, 17, 1033. [Google Scholar] [CrossRef]
- Gerede, A.; Nikolettos, K.; Vavoulidis, E.; Margioula-Siarkou, C.; Petousis, S.; Giourga, M.; Fotinopoulos, P.; Salagianni, M.; Stavros, S.; Dinas, K.; et al. Vaginal Microbiome and Pregnancy Complications: A Review. J. Clin. Med. 2024, 13, 3875. [Google Scholar] [CrossRef] [PubMed]
- Cocomazzi, G.; De Stefani, S.; Del Pup, L.; Palini, S.; Buccheri, M.; Primiterra, M.; Sciannamè, N.; Faioli, R.; Maglione, A.; Baldini, G.M.; et al. The Impact of the Female Genital Microbiota on the Outcome of Assisted Reproduction Treatments. Microorganisms 2023, 11, 1443. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. The vaginal microbiome and preterm birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef]
- Mitra, A.; MacIntyre, D.A.; Marchesi, J.R.; Lee, Y.S.; Bennett, P.R.; Kyrgiou, M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef]
- Frąszczak, K.; Barczyński, B.; Kondracka, A. Does Lactobacillus Exert a Protective Effect on the Development of Cervical and Endometrial Cancer in Women? Cancers 2022, 14, 4909. [Google Scholar] [CrossRef] [PubMed]
- Gillet, E.; Meys, J.F.; Verstraelen, H.; Bosire, C.; De Sutter, P.; Temmerman, M.; Broeck, D.V. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: A meta-analysis. BMC Infect. Dis. 2011, 11, 10. [Google Scholar] [CrossRef]
- Xu, J.; Peng, J.J.; Yang, W.; Fu, K.; Zhang, Y. Vaginal microbiomes and ovarian cancer: A review. Am. J. Cancer Res. 2020, 10, 743–756. [Google Scholar]
- Nené, N.R.; Reisel, D.; Leimbach, A.; Franchi, D.; Jones, A.; Evans, I.; Knapp, S.; Ryan, A.; Ghazali, S.; Timms, J.F.; et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: A case-control study. Lancet Oncol. 2019, 20, 1171–1182, Erratum in: Lancet Oncol. 2019, 20, e468. https://doi.org/10.1016/S1470-2045(19)30525-X. Erratum in: Lancet Oncol. 2019, 20, e559.. [Google Scholar] [CrossRef]
- Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Alwine, J.C.; Coukos, G.; Robertson, E.S. The ovarian cancer oncobiome. Oncotarget 2017, 8, 36225–36245. [Google Scholar] [CrossRef]
- Sipos, A.; Ujlaki, G.; Mikó, E.; Maka, E.; Szabó, J.; Uray, K.; Krasznai, Z.; Bai, P. The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol. Med. 2021, 27, 33. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Yang, T.-H.; Ou, Y.-C.; Lin, H. The role of probiotics in women’s health: An update narrative review. Taiwan. J. Obstet. Gynecol. 2024, 63, 29–36. [Google Scholar] [CrossRef]
- Santacroce, L.; Palmirotta, R.; Bottalico, L.; Charitos, I.A.; Colella, M.; Topi, S.; Jirillo, E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life 2023, 13, 1531. [Google Scholar] [CrossRef] [PubMed]
- Nardini, P.; Ñahui Palomino, R.A.; Parolin, C.; Laghi, L.; Foschi, C.; Cevenini, R.; Vitali, B.; Marangoni, A. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci. Rep. 2016, 6, 29024. [Google Scholar] [CrossRef] [PubMed]
- Tuniyazi, M.; Zhang, N. Possible Therapeutic Mechanisms and Future Perspectives of Vaginal Microbiota Transplantation. Microorganisms 2023, 11, 1427. [Google Scholar] [CrossRef]
- Brown, S.E.; Tuddenham, S.; Shardell, M.D.; Klebanoff, M.A.; Ghanem, K.G.; Brotman, R.M. Bacterial Vaginosis and Spontaneous Clearance of Chlamydia trachomatis in the Longitudinal Study of Vaginal Flora. J. Infect. Dis. 2023, 228, 783–791. [Google Scholar] [CrossRef]
- Chen, C.; Hao, L.; Zhang, Z.; Tian, L.; Zhang, X.; Zhu, J.; Jie, Z.; Tong, X.; Xiao, L.; Zhang, T.; et al. Cervicovaginal microbiome dynamics after taking oral probiotics. J. Genet. Genom. 2021, 48, 716–726. [Google Scholar] [CrossRef]
- Pagar, R.; Deshkar, S.; Mahore, J.; Patole, V.; Deshpande, H.; Gandham, N.; Mirza, S.; Junnarkar, M.; Nawani, N. The microbial revolution: Unveiling the benefits of vaginal probiotics and prebiotics. Microbiol. Res. 2024, 286, 127787. [Google Scholar] [CrossRef]
- Morselli, S.; Ceccarani, C.; Djusse, M.E.; Laghi, L.; Camboni, T.; Consolandi, C.; Foschi, C.; Severgnini, M.; Marangoni, A. Anti-chlamydial activity of vaginal fluids: New evidence from an in vitro model. Front. Cell. Infect. Microbiol. 2024, 14, 1403782. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Durán, A.; Fuentes-López, A.; de Salazar, A.; Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Hemmerling, A.; Mitchell, C.M.; Demby, S.; Ghebremichael, M.; Elsherbini, J.; Xu, J.; Xulu, N.; Shih, J.; Dong, K.; Govender, V.; et al. Effect of the vaginal live biotherapeutic LACTIN-V (Lactobacillus crispatus CTV-05) on vaginal microbiota and genital tract inflammation among women at high risk of HIV acquisition in South Africa: A phase 2, randomised, placebo-controlled trial. Lancet Microbe 2025, 6, 101037. [Google Scholar] [CrossRef] [PubMed]
- Edwards, V.L.; Smith, S.B.; McComb, E.J.; Tamarelle, J.; Ma, B.; Humphrys, M.S.; Gajer, P.; Gwilliam, K.; Schaefer, A.M.; Lai, S.K.; et al. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. mBio 2019, 10, e01548-19. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Singh, V.; Kommagani, R. Female reproductive dysfunctions and the gut microbiota. J. Mol. Endocrinol. 2022, 69, R81–R94. [Google Scholar] [CrossRef]
- Quaranta, G.; Sanguinetti, M.; Masucci, L. Fecal Microbiota Transplantation: A Potential Tool for Treatment of Human Female Reproductive Tract Diseases. Front. Immunol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Ansari, A.; Son, D.; Hur, Y.M.; Park, S.; You, Y.A.; Kim, S.M.; Lee, G.; Kang, S.; Chung, Y.; Lim, S.; et al. Lactobacillus Probiotics Improve Vaginal Dysbiosis in Asymptomatic Women. Nutrients 2023, 15, 1862. [Google Scholar] [CrossRef]
- Romeo, M.; D’Urso, F.; Ciccarese, G.; Di Gaudio, F.; Broccolo, F. Exploring Oral and Vaginal Probiotic Solutions for Women’s Health from Puberty to Menopause: A Narrative Review. Microorganisms 2024, 12, 1614. [Google Scholar] [CrossRef]
- Vidhate, P.; Wakchoure, P.; Borole, S.; Khan, A.A. Lactobacillus as probiotics: Opportunities and challenges for potential benefits in female reproductive health. Am. J. Transl. Res. 2024, 16, 720–729. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, C.; Zhou, L.; He, Y.; Xie, R.H. The effectiveness of vaginal microbiota transplantation for vaginal dysbiosis and bacterial vaginosis: A scoping review. Arch. Gynecol. Obs. 2024, 310, 643–653. [Google Scholar] [CrossRef]
- Chen, T.; Xia, C.; Hu, H.; Wang, H.; Tan, B.; Tian, P.; Zhao, X.; Wang, L.; Han, Y.; Deng, K.-Y.; et al. Dysbiosis of the rat vagina is efficiently rescued by vaginal microbiota transplantation or probiotic combination. Int. J. Antimicrob. Agents 2021, 57, 106277. [Google Scholar] [CrossRef] [PubMed]
- Abavisani, M.; Ebadpour, N.; Khoshrou, A.; Sahebkar, A. Boosting vaccine effectiveness: The groundbreaking role of probiotics. J. Agric. Food Res. 2024, 16, 101189. [Google Scholar] [CrossRef]
- Ciabattini, A.; Olivieri, R.; Lazzeri, E.; Medaglini, D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front. Microbiol. 2019, 10, 01305. [Google Scholar] [CrossRef]
- Inic-Kanada, A.; Stojanovic, M.; Marinkovic, E.; Becker, E.; Stein, E.; Lukic, I.; Djokic, R.; Schuerer, N.; Hegemann, J.H.; Barisani-Asenbauer, T. A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS ONE 2016, 11, e0157875. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.; Hemmerling, A.; Miller, S.; Huibner, S.; Kulikova, M.; Crawford, E.; Castañeda, G.R.; Coburn, B.; Cohen, C.R.; Kaul, R. Vaginal Lactobacillus crispatus persistence following application of a live biotherapeutic product: Colonization phenotypes and genital immune impact. Microbiome 2024, 12, 110. [Google Scholar] [CrossRef] [PubMed]


| Community State Type (CST) | Dominant Bacteria | Microbiological/Clinical Features |
|---|---|---|
| CST-I | Lactobacillus crispatus | Low diversity; stable community; associated with vaginal health and low inflammation. |
| CST-II | Lactobacillus gasseri | Moderate stability; protective but less so than CST-I. |
| CST-III | Lactobacillus iners | Transitional state; associated with both health and dysbiosis; can persist in inflammatory settings. |
| CST-IV | Diverse anaerobes (Gardnerella, Atopobium, Prevotella, etc.) | High diversity; low/no Lactobacillus; associated with bacterial vaginosis and increased infection risk. |
| CST-V | Lactobacillus jensenii | Less common; associated with vaginal health. |
| Therapeutic Strategy | Examples/Agents | Mechanism/Target | Current Limitations/Challenges |
|---|---|---|---|
| Antibiotic therapy | Azithromycin; Doxycycline | Eradication of C. trachomatis | Does not restore healthy microbiota; reinfection risk. |
| Probiotic therapy | L. crispatus CTV-05 | Restoration of Lactobacillus-dominant microbiota; modulation of local immunity | Variable colonization success; strain-specific effects. |
| Prebiotic therapy | Oligosaccharides | Promote growth of beneficial Lactobacillus spp. | Limited human data. |
| Gut–vaginal axis modulation | Oral probiotics; Fecal Microbiota Transplantation | Indirect restoration of vaginal eubiosis through gut microbiota | Mechanisms not fully understood; Need for more fundamental studies. |
| Microbiota-informed precision medicine | Predictive microbial risk scores | Risk stratification based on cervicovaginal microbiome profile | Requires clinical validation. |
| Vaginal microbiota transplantation | Donor cervicovaginal fluid | Reintroduction of healthy cervicovaginal flora | Concerns regarding safety, donor screening, and ethical to be used in humans. |
| Microbiota–vaccine interaction | L. rhamnosus as mucosal adjuvant | Use of probiotics as immune adjuvants | Translational gap to clinical use. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.; Silva, A.R.; Sousa, C.; Vale, N. Disrupted Cervicovaginal Microbiota: Its Role in Chlamydia trachomatis Genital Infection and Associated Reproductive Outcomes. Int. J. Mol. Sci. 2025, 26, 10635. https://doi.org/10.3390/ijms262110635
Rodrigues R, Silva AR, Sousa C, Vale N. Disrupted Cervicovaginal Microbiota: Its Role in Chlamydia trachomatis Genital Infection and Associated Reproductive Outcomes. International Journal of Molecular Sciences. 2025; 26(21):10635. https://doi.org/10.3390/ijms262110635
Chicago/Turabian StyleRodrigues, Rafaela, Ana Rita Silva, Carlos Sousa, and Nuno Vale. 2025. "Disrupted Cervicovaginal Microbiota: Its Role in Chlamydia trachomatis Genital Infection and Associated Reproductive Outcomes" International Journal of Molecular Sciences 26, no. 21: 10635. https://doi.org/10.3390/ijms262110635
APA StyleRodrigues, R., Silva, A. R., Sousa, C., & Vale, N. (2025). Disrupted Cervicovaginal Microbiota: Its Role in Chlamydia trachomatis Genital Infection and Associated Reproductive Outcomes. International Journal of Molecular Sciences, 26(21), 10635. https://doi.org/10.3390/ijms262110635

