Identification of microRNA-Related Target Genes for the Development of Otic Organoids
Abstract
1. Introduction
2. Results
2.1. Generation of Inner Ear Organoids from Cochlear Duct Cells
2.2. Isolation of EVs from Proliferation and Differentiation-Stage Organoids
2.3. Differential Expression of EV miRNAs and Target Gene Networks in Inner Ear Organoid Development
2.4. Cell-Type-Specific Expression Dynamics of Key Regulatory Genes During Inner Ear Development
| Database: Accession ID | Number of Samples | Description | |
|---|---|---|---|
| Bulk RNA-Seq Datasets for Differential Expression Analysis | GEO: GSE132635 [23] | n = 18 | This dataset comprises RNA-sequencing data from mouse cochlear organoids at various stages of differentiation. Lgr5-positive cochlear progenitors were harvested from newborn mice, cultured in Matrigel, and sampled at four timepoints during differentiation (D0, D2, D4, and D10). In parallel, native cochlear cells were isolated from transgenic mice expressing fluorescent markers for hair cells (Atoh1-GFP), supporting cells (Lgr5-GFP), and progenitor cells (Sox2-GFP). All samples were sequenced on an Illumina NextSeq 500 platform with single-end 75bp reads. The dataset includes 18 samples in total, with biological duplicates for each condition, allowing for comparison between native cell populations and organoid samples across the differentiation timeline. |
| GEO: GSE243581 [24] | n = 8 | This dataset contains RNA-sequencing data from mouse cochlear organoids specifically focused on metabolic changes during differentiation. Cochlear sensory epithelia were isolated from P3 mice and cultured as explants with various small molecule treatments. The study compared proliferating organoids (day 10) with differentiated organoids (day 18) to identify changes in oxidoreductase expression and metabolic pathways. All samples were sequenced on the Illumina NovaSeq 6000 platform. The dataset includes 8 samples in total: 4 biological replicates of proliferation-stage organoids (day 10) and 4 biological replicates of differentiation-stage organoids (day 18). This dataset provides a direct comparison between early (proliferation) and late (differentiation) stages of cochlear development. | |
| Single-Cell and Developmental Expression Datasets | gEAR: Kelly [25] GEO: GSE137299 | n = 11 | This single-cell RNA-sequencing dataset encompasses a developmental timeline spanning embryonic day 14 (E14) through postnatal day 7 (P7) in wild-type mice, with a total of 11 samples distributed across these timepoints. |
| gEAR: Hertzano [26] GEO: GSE64543 | n = 18 | This dataset comprises expression data from distinct cell populations isolated from newborn (P0) Atoh1-GFP transgenic mice. The study isolated three distinct cell types from both cochlear and vestibular tissues: hair cells, epithelial non-sensory cells (supporting cells), and non-epithelial cells. The dataset includes a total of 18 samples with comprehensive biological replication: three biological replicates for each of the three cell types, from both cochlear and vestibular tissues. | |
| gEAR: He [27] GEO: GSE111347 | n = 12 | This dataset provides detailed transcriptomic profiles of specific cell types isolated from the adult mouse cochlea, with a particular focus on supporting cells. RNA was extracted from four distinct cell populations: two types of supporting cells (Deiters’ cells and pillar cells) and two types of sensory cells (Inner Hair Cells and Outer Hair Cells). The cells were collected from adult CBA/J mice using the suction pipette technique, with 1000 cells collected for each biological replicate of pillar and Deiters’ cells. The experimental design included comprehensive replication: three biological replicates for Deiters’ cells and pillar cells (each with two technical repeats), two biological replicates for Inner Hair Cells, and three biological replicates for Outer Hair Cells (each with two technical repeats). All samples were sequenced on the Illumina HiSeq 2500 platform. The dataset includes a total of 12 samples, covering Deiters’ cells (samples 1–6) and pillar cells (samples 1–6). | |
| gEAR: Avraham [28] N/A | N/A | This dataset contains RNA-sequencing data from the sensory epithelia of the inner ear collected from C57Bl/6J mice at two critical developmental timepoints: embryonic day 16.5 (E16.5) and postnatal day 0 (P0) to examine both cochlear and vestibular tissues to capture developmental gene expression changes across these distinct inner ear compartments. Note that detailed information regarding the exact number of samples and specific experimental conditions is not provided in the available metadata. | |
| gEAR: Chen [29] GEO: GSE60019 | n = 18 | This dataset provides comprehensive transcriptomic profiles of hair cells and surrounding cells isolated from the developing mouse inner ear across multiple developmental stages. The experimental design spans four key developmental timepoints: embryonic day 16 (E16), postnatal day 0 (P0), postnatal day 4 (P4), and postnatal day 7 (P7). The dataset includes 18 samples in total, representing both positive (hair cells, designated with “p”) and negative (surrounding cells, designated with “n”) cell populations from cochlea (C) and utricle (U) at each developmental stage. Some conditions have additional biological replicates (e.g., P0Cp-1, P0Cp-2), enhancing the statistical robustness of the data. | |
| gEAR: Udea 2023 [30] GEO: GSE233487 | n = 5 | This dataset provides single-cell RNA-sequencing profiles of SOX2-expressing cells isolated from human inner ear organoids across a developmental time course. The experimental design captures five distinct timepoints spanning a critical window of inner ear organoid development: differentiation days 20, 30, 40, 50, and 60. |
2.5. Temporal Dynamics of Key Signaling Pathways During Human Cochlear Organoid Differentiation
3. Discussion
4. Materials and Methods
4.1. Cochlear Cell Isolation
4.2. Organoid Culture
4.3. Immunohistochemistry and Confocal Microscopy
4.4. Organoid EV Isolation and Characterization
4.5. Organoid EV-Derived Small RNA Sequencing
4.6. Bioinformatics Analysis of EV miRNAs
4.7. Validation Using Public Transcriptome Datasets
4.8. qPCR Analysis
4.9. Single-Cell RNA-seq Pathway Analysis
4.10. Phase Assignment and Cross-Dataset Comparison
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janesick, A.S.; Heller, S. Stem Cells and the Bird Cochlea—Where Is Everybody? Cold Spring Harb. Perspect. Med. 2018, 9, a033183. [Google Scholar] [CrossRef]
- Rubel, E.W.; Furrer, S.A.; Stone, J.S. A brief history of hair cell regeneration research and speculations on the future. Hear. Res. 2013, 297, 42–51. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Yang, J.; Sun, S.; Chai, R.; Chen, Z.-Y.; Li, H. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc. Natl. Acad. Sci. USA 2014, 112, 166–171. [Google Scholar] [CrossRef]
- Oshima, K.; Grimm, C.M.; Corrales, C.E.; Senn, P.; Monedero, R.M.; Géléoc, G.S.G.; Edge, A.; Holt, J.R.; Heller, S. Differential Distribution of Stem Cells in the Auditory and Vestibular Organs of the Inner Ear. J. Assoc. Res. Otolaryngol. 2006, 8, 18–31. [Google Scholar] [CrossRef]
- White, P.M.; Doetzlhofer, A.; Lee, Y.S.; Groves, A.K.; Segil, N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006, 441, 984–987. [Google Scholar] [CrossRef]
- Kubota, M.; Scheibinger, M.; Jan, T.A.; Heller, S. Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Rep. 2021, 34, 108646. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kubota, M.; Park, E.; Heller, S.; Im, G.J.; Chang, J. Analysis of miRNAs from Inner Ear Organoid-Derived Extracellular Vesicles. J. Assoc. Res. Otolaryngol. 2025, 26, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.R.; Nie, J.; Longworth-Mills, E.; Liu, X.-P.; Lee, J.; Holt, J.R.; Hashino, E. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat. Biotechnol. 2017, 35, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; O’Reilly, M.; Kirkwood, N.K.; Al-Aama, J.; Lako, M.; Kros, C.J.; Armstrong, L. Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Dis. 2018, 9, 922. [Google Scholar] [CrossRef]
- Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013, 500, 217–221. [Google Scholar] [CrossRef]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA 2016, 113, E968–E977. [Google Scholar] [CrossRef]
- Melton, C.; Judson, R.L.; Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010, 463, 621–626. [Google Scholar] [CrossRef]
- Pauli, A.; Rinn, J.L.; Schier, A.F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 2011, 12, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Baskerville, S.; Shenoy, A.; E Babiarz, J.; Baehner, L.; Blelloch, R. Embryonic stem cell–specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 2008, 40, 1478–1483. [Google Scholar] [CrossRef]
- Chadly, D.M.; Best, J.; Ran, C.; Bruska, M.; Woźniak, W.; Kempisty, B.; Schwartz, M.; LaFleur, B.; Kerns, B.J.; Kessler, J.A.; et al. Developmental profiling of microRNAs in the human embryonic inner ear. PLoS ONE 2018, 13, e0191452. [Google Scholar] [CrossRef]
- Patel, M.; Hu, B.H. MicroRNAs in inner ear biology and pathogenesis. Hear. Res. 2012, 287, 6–14. [Google Scholar] [CrossRef]
- Jiang, P.; Ma, X.; Han, S.; Ma, L.; Ai, J.; Wu, L.; Zhang, Y.; Xiao, H.; Tian, M.; Tao, W.A.; et al. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell. Mol. Life Sci. 2022, 79, 1–23. [Google Scholar] [CrossRef] [PubMed]
- McLean, W.J.; Yin, X.; Lu, L.; Lenz, D.R.; McLean, D.; Langer, R.; Karp, J.M.; Edge, A.S. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep. 2017, 18, 1917–1929. [Google Scholar] [CrossRef]
- Kubota, M.; Heller, S. Murine cochlear cell sorting and cell-type-specific organoid culture. STAR Protoc. 2021, 2, 100645. [Google Scholar] [CrossRef] [PubMed]
- Choo, O.-S.; Park, J.M.; Park, E.; Chang, J.; Lee, M.Y.; Lee, H.Y.; Moon, I.S.; Lee, K.-Y.; Song, J.-J.; Nam, E.-C.; et al. Consensus Statements on Tinnitus Assessment and Treatment Outcome Evaluation: A Delphi Study by the Korean Tinnitus Study Group. J. Korean Med. Sci. 2025, 40, e93. [Google Scholar] [CrossRef] [PubMed]
- Lenz, D.R.; Gunewardene, N.; Abdul-Aziz, D.E.; Wang, Q.; Gibson, T.M.; Edge, A.S.B. Applications of Lgr5-Positive Cochlear Progenitors (LCPs) to the Study of Hair Cell Differentiation. Front. Cell Dev. Biol. 2019, 7, 14. [Google Scholar] [CrossRef]
- Kalra, G.; Lenz, D.; Abdul-Aziz, D.; Hanna, C.; Basu, M.; Herb, B.R.; Colantuoni, C.; Milon, B.; Saxena, M.; Shetty, A.C.; et al. Cochlear organoids reveal transcriptional programs of postnatal hair cell differentiation from supporting cells. Cell Rep. 2023, 42, 113421. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, L.; Chen, Z.; He, Y.; Huang, Y.; Qiu, C.; Zhu, C.; Zhou, D.; Gan, Z.; Gao, X.; et al. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD(+) as Limiting Factors for Hair Cell Reprogramming. Adv. Sci. 2024, 11, e2308032. [Google Scholar] [CrossRef]
- Kolla, L.; Kelly, M.C.; Mann, Z.F.; Anaya-Rocha, A.; Ellis, K.; Lemons, A.; Palermo, A.T.; So, K.S.; Mays, J.C.; Orvis, J.; et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Elkon, R.; Milon, B.; Morrison, L.; Shah, M.; Vijayakumar, S.; Racherla, M.; Leitch, C.C.; Silipino, L.; Hadi, S.; Weiss-Gayet, M.; et al. RFX transcription factors are essential for hearing in mice. Nat. Commun. 2015, 6, 8549. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Giffen, K.P.; Stringham, S.T.; Li, Y.; Judge, P.D.; Beisel, K.W.; He, D.Z.Z. Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters’ Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front. Mol. Neurosci. 2018, 11, 356. [Google Scholar] [CrossRef]
- Rudnicki, A.; Isakov, O.; Ushakov, K.; Shivatzki, S.; Weiss, I.; Friedman, L.M.; Shomron, N.; Avraham, K.B. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genom. 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Scheffer, D.I.; Shen, J.; Corey, D.P.; Chen, Z.-Y. Gene Expression by Mouse Inner Ear Hair Cells during Development. J. Neurosci. 2015, 35, 6366–6380. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Nakamura, T.; Nie, J.; Solivais, A.J.; Hoffman, J.R.; Daye, B.J.; Hashino, E. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development 2023, 150, dev201071. [Google Scholar] [CrossRef]
- Großhans, H.; Johnson, T.; Reinert, K.L.; Gerstein, M.; Slack, F.J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 2005, 8, 321–330. [Google Scholar] [CrossRef]
- Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408, 86–89. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Evsen, L.; Li, X.; Zhang, S.; Razin, S.; Doetzlhofer, A. let-7 miRNAs inhibit CHD7 expression and control auditory-sensory progenitor cell behavior in the developing inner ear. Development 2020, 147, dev183384. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS Is Regulated by the let-7 MicroRNA Family. Cell 2005, 120, 635–647. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007, 21, 1025–1030. [Google Scholar] [CrossRef]
- Sampson, V.B.; Rong, N.H.; Han, J.; Yang, Q.; Aris, V.; Soteropoulos, P.; Petrelli, N.J.; Dunn, S.P.; Krueger, L.J. MicroRNA Let-7a Down-regulates MYC and Reverts MYC-Induced Growth in Burkitt Lymphoma Cells. Cancer Res. 2007, 67, 9762–9770. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.E.; Gregory, R.I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012, 22, 474–482. [Google Scholar] [CrossRef]
- Heo, I.; Joo, C.; Cho, J.; Ha, M.; Han, J.; Kim, V.N. Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA. Mol. Cell 2008, 32, 276–284. [Google Scholar] [CrossRef]
- Balzeau, J.; Menezes, M.R.; Cao, S.; Hagan, J.P. The LIN28/let-7 Pathway in Cancer. Front. Genet. 2017, 8, 31. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2013, 42, D68–D73. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.-P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2019, 48, D142–D147. [Google Scholar] [CrossRef]
- Cui, S.; Yu, S.; Huang, H.-Y.; Lin, Y.-C.; Huang, Y.; Zhang, B.; Xiao, J.; Zuo, H.; Wang, J.; Li, Z.; et al. miRTarBase 2025: Updates to the collection of experimentally validated microRNA–target interactions. Nucleic Acids Res. 2024, 53, D147–D156. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef]
- Milon, B.; Shulman, E.D.; So, K.S.; Cederroth, C.R.; Lipford, E.L.; Sperber, M.; Sellon, J.B.; Sarlus, H.; Pregernig, G.; Shuster, B.; et al. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep. 2021, 36, 109758. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Pak, K.; Chavez, E.; Ryan, A.F. TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev. Biol. 2012, 372, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Dulon, D.; Pak, K.; Mullen, L.M.; Li, Y.; Erkman, L.; Ryan, A.F. Regulation of POU4F3 gene expression in hair cells by 5′ DNA in mice. Neuroscience 2011, 197, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, L.; Zhu, M.S.; Wan, G. High-throughput screening on cochlear organoids identifies VEGFR-MEK-TGFB1 signaling promoting hair cell reprogramming. Stem Cell Rep. 2021, 16, 2257–2273. [Google Scholar] [CrossRef]
- Singh, J.; Randle, M.R.; Walters, B.J.; Cox, B.C. The transcription factor Pou4f3 is essential for the survival of postnatal and adult mouse cochlear hair cells and normal hearing. Front. Cell Neurosci. 2024, 18, 1369282. [Google Scholar] [CrossRef]
- Roccio, M.; Perny, M.; Ealy, M.; Widmer, H.R.; Heller, S.; Senn, P. Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat. Commun. 2018, 9, 4027. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Park, S.; Park, E.; Im, G.J.; Chang, J. Identification of microRNA-Related Target Genes for the Development of Otic Organoids. Int. J. Mol. Sci. 2025, 26, 10627. https://doi.org/10.3390/ijms262110627
Lee S, Park S, Park E, Im GJ, Chang J. Identification of microRNA-Related Target Genes for the Development of Otic Organoids. International Journal of Molecular Sciences. 2025; 26(21):10627. https://doi.org/10.3390/ijms262110627
Chicago/Turabian StyleLee, Sehee, Sungjin Park, Euyhyun Park, Gi Jung Im, and Jiwon Chang. 2025. "Identification of microRNA-Related Target Genes for the Development of Otic Organoids" International Journal of Molecular Sciences 26, no. 21: 10627. https://doi.org/10.3390/ijms262110627
APA StyleLee, S., Park, S., Park, E., Im, G. J., & Chang, J. (2025). Identification of microRNA-Related Target Genes for the Development of Otic Organoids. International Journal of Molecular Sciences, 26(21), 10627. https://doi.org/10.3390/ijms262110627

