Antibiotics for Rheumatologic Diseases: A Critical Review
Abstract
1. Introduction
2. Infection and Autoimmunity
3. Immunomodulatory Effects of Antibiotics
3.1. Macrolides
3.2. Tetracyclines
3.3. Fluoroquinolones
3.4. Sulfasalazine
3.5. Other Antibiotics
4. Clinical Applications in Rheumatologic Diseases
4.1. Lyme Disease and Arthritis
4.2. Whipple’s Disease
4.3. Rheumatic Fever
4.4. Spondyloarthropathies
4.5. Rheumatoid Arthritis (RA)
4.6. Systemic Lupus Erythematosus (SLE)
4.7. Granulomatosis with Polyangiitis
4.8. Other Rheumatologic Diseases
5. Limitations of Use
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANCA | antineutrophil cytoplasmic antibody |
| CMTs | chemically modified tetracyclines |
| DMARDs | disease-modifying anti-rheumatic drugs |
| ESR | erythrocyte sedimentation rate |
| GPA | granulomatosis with polyangiitis |
| HBV | hepatitis B virus |
| HCV | hepatitis C virus |
| IBD | inflammatory bowel disease |
| KPC | Klebsiella pneumoniae carbapenemase |
| MBL | metallo-β-lactamases |
| MMP | matrix metallo-proteinase |
| MRSA | methicillin-resistant Staphylococcus aureus |
| NF-κB | nuclear factor-kappa B |
| PAMPs | pathogen-associated molecular patterns |
| PAS | periodic acid-Schiff |
| PSC | primary sclerosing cholangitis |
| RA | rheumatoid arthritis |
| SLE | systemic lupus erythematosus |
| TLRs | Toll-like receptors |
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008, 58, 15–25. [Google Scholar] [CrossRef]
- Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; et al. The global burden of rheumatoid arthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1316–1322. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R.V. Systemic lupus erythematosus. Lancet 2007, 369, 587–596. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038, Erratum in: Lancet 2016, 388, 1984. [Google Scholar] [CrossRef]
- Dai, X.; Fan, Y.; Zhao, X. Systemic lupus erythematosus: Updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct. Target. Ther. 2025, 10, 102. [Google Scholar] [CrossRef]
- Deka, D. Pathogenesis and Current Treatment Strategies in Rheumatoid Arthritis: A Systematic Review Article. Ann. Afr. Med. 2025, 24, 532–539. [Google Scholar] [CrossRef]
- Heutz, J.W.; Toes, R.E.M.; van der Helm-van Mil, A.H.M. Time sequence of autoimmune processes in the trajectory to rheumatoid arthritis development: What do we know? RMD Open 2025, 11, e005377. [Google Scholar] [CrossRef]
- Nieuwenhuis, E.E.; Visser, M.R.; Kavelaars, A.; Cobelens, P.M.; Fleer, A.; Harmsen, W.; Verhoef, J.; Akkermans, L.M.A.; Heijnen, C.J. Oral antibiotics as a novel therapy for arthritis: Evidence for a beneficial effect of intestinal Escherichia coli. Arthritis Rheum. 2000, 43, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.C.; Mazure, R.M.; Vazquez, H.; Niveloni, S.; Smecuol, E.; Pedreira, S.; Maurino, E. Whipple’s disease. Clin. Gastroenterol. Hepatol. 2004, 2, 849–860. [Google Scholar] [CrossRef]
- Berende, A.; Ter Hofstede, H.J.M.; Vos, F.J.; Vogelaar, M.L.; van Middendorp, H.; Evers, A.W.; Kessels, R.P.; Kullberg, B.J. Effect of prolonged antibiotic treatment on cognition in patients with Lyme borreliosis. Neurology 2019, 92, e1447–e1455. [Google Scholar] [CrossRef]
- Wright, W.F.; Riedel, D.J.; Talwani, R.; Gilliam, B.L. Diagnosis and management of Lyme disease. Am. Fam. Physician 2012, 85, 1086–1093. [Google Scholar]
- Sigal, L.H. Antibiotics for the treatment of rheumatologic syndromes. Rheum. Dis. Clin. N. Am. 1999, 25, 861–881, viii. [Google Scholar] [CrossRef] [PubMed]
- Rosman, Y.; Lidar, M.; Shoenfeld, Y. Antibiotic therapy in autoimmune disorders. Clin. Pract. 2014, 11, 91. [Google Scholar] [CrossRef]
- Roca Mora, M.M.; Cunha, L.M.; Godoi, A.; Donadon, I.; Clemente, M.; Marcolin, P.; Valenzuela, A.; Wormser, G.P. Shorter versus longer duration of antimicrobial therapy for early Lyme disease: A systematic review and meta-analysis. Diagn. Microbiol. Infect. Dis. 2024, 109, 116215. [Google Scholar] [CrossRef]
- Falagas, M.E.; Manta, K.G.; Betsi, G.I.; Pappas, G. Infection-related morbidity and mortality in patients with connective tissue diseases: A systematic review. Clin. Rheumatol. 2007, 26, 663–670. [Google Scholar] [CrossRef]
- Alshammari, A.D.; Aldhafeeri, M.M.; Aldhafeeri, A.M.; Alanzi, M.A.; Almutairi, M.B.; Alrasheedi, J.A.; Alsurur, T.A.; Alshammri, A.D. The type of infections and the use of antibiotics among patients with rheumatoid arthritis: A review. J. Fam. Med. Prim Care 2025, 14, 8–14. [Google Scholar] [CrossRef]
- George, M.D.; Hsu, J.Y.; Hennessy, S.; Chen, L.; Xie, F.; Curtis, J.R.; Baker, J.F. Risk of Serious Infection with Low-dose Glucocorticoids in Patients With Rheumatoid Arthritis: An Instrumental Variable Analysis. Epidemiology 2022, 33, 65–74. [Google Scholar] [CrossRef]
- Rafailidis, P.I.; Kakisi, O.K.; Vardakas, K.; Falagas, M.E. Infectious complications of monoclonal antibodies used in cancer therapy: A systematic review of the evidence from randomized controlled trials. Cancer 2007, 109, 2182–2189. [Google Scholar] [CrossRef]
- Sharma, C.; Keen, H. Ten-year retrospective review of the incidence of serious infections in patients on biologic disease modifying agents for rheumatoid arthritis in three tertiary hospitals in Western Australia. Intern Med. J. 2019, 49, 519–525. [Google Scholar] [CrossRef]
- Tsiodras, S.; Falagas, M.E. Clinical assessment and medical treatment of spine infections. Clin. Orthop. 2006, 444, 38–50. [Google Scholar] [CrossRef]
- Abdulaziz, S.; Almoallim, H.; Ibrahim, A.; Samannodi, M.; Shabrawishi, M.; Meeralam, Y.; Abdulmajeed, G.; Banjar, G.; Qutub, W.; Dowaikh, H. Poncet’s disease (reactive arthritis associated with tuberculosis): Retrospective case series and review of literature. Clin. Rheumatol. 2012, 31, 1521–1528. [Google Scholar] [CrossRef]
- Falagas, M.E.; Voidonikola, P.T.; Angelousi, A.G. Tuberculosis in patients with systemic rheumatic or pulmonary diseases treated with glucocorticosteroids and the preventive role of isoniazid: A review of the available evidence. Int. J. Antimicrob. Agents 2007, 30, 477–486. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vergidis, P.I. Narrative review: Diseases that masquerade as infectious cellulitis. Ann. Intern Med. 2005, 142, 47–55. [Google Scholar] [CrossRef]
- Rosmarakis, E.S.; Kapaskelis, A.M.; Kasiakou, S.K.; Falagas, M.E. Case report: Wegener’s granulomatosis presents as pulmonary infection. Am. Fam. Physician 2005, 71, 1062–1064. [Google Scholar]
- Vardakas, K.Z.; Kalimeris, G.D.; Triarides, N.A.; Falagas, M.E. An update on adverse drug reactions related to β-lactam antibiotics. Expert Opin. Drug Saf. 2018, 17, 499–508. [Google Scholar] [CrossRef]
- Kumar, P.; Bhakuni, D.S.; Khanna, G.; Batra, S.; Sharma, V.K.; Rastogi, S. Chlamydia trachomatis-induced reactive arthritis in India: Frequency and clinical presentation. Sex. Transm. Infect. 2017, 93, 233. [Google Scholar] [CrossRef]
- Desclaux, A.; Mehsen-Cetre, N.; Peuchant, O.; Touati, A.; Cazanave, C. Reactive arthritis associated with Chlamydia trachomatis genovar L2b proctitis. Med. Mal. Infect. 2017, 47, 177–178. [Google Scholar] [CrossRef]
- Zeidler, H.; Hudson, A.P. Causality of Chlamydiae in Arthritis and Spondyloarthritis: A Plea for Increased Translational Research. Curr. Rheumatol. Rep. 2016, 18, 9. [Google Scholar] [CrossRef]
- Pogreba-Brown, K.; Austhof, E.; Tang, X.; Trejo, M.J.; Owusu-Dommey, A.; Boyd, K.; Armstrong, A.; Schaefer, K.; Bazaco, M.C.; Batz, M.; et al. Enteric Pathogens and Reactive Arthritis: Systematic Review and Meta-Analyses of Pathogen-Associated Reactive Arthritis. Foodborne Pathog. Dis. 2021, 18, 627–639. [Google Scholar] [CrossRef]
- Ajene, A.N.; Fischer Walker, C.L.; Black, R.E. Enteric pathogens and reactive arthritis: A systematic review of Campylobacter, salmonella and Shigella-associated reactive arthritis. J. Health Popul. Nutr. 2013, 31, 299–307. [Google Scholar] [CrossRef]
- Muruganandam, A.; Migliorini, F.; Jeyaraman, N.; Vaishya, R.; Balaji, S.; Ramasubramanian, S.; Maffulli, N.; Jeyaraman, M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med. Sci. 2024, 12, 72. [Google Scholar] [CrossRef]
- Kalil, J.; Guilherme, L. Rheumatic Fever: A Model of Autoimmune Disease due to Molecular Mimicry between Human and Pathogen Proteins. Crit. Rev. Immunol. 2020, 40, 419–422. [Google Scholar] [CrossRef]
- Munir, A.; Khan, S.; Saleem, A.; Nusrat, H.; Khan, S.A.; Sayyed, H.; Khalid, A.; Javed, B.; Hidayat, F. The Role of Epstein-Barr Virus Molecular Mimicry in Various Autoimmune Diseases. Scand. J. Immunol. 2025, 101, e70016. [Google Scholar] [CrossRef]
- Favoino, E.; Prete, M.; Catacchio, G.; Conteduca, G.; Perosa, F. CD20-Mimotope Peptides: A Model to Define the Molecular Basis of Epitope Spreading. Int. J. Mol. Sci. 2019, 20, 1920. [Google Scholar] [CrossRef]
- Li, B.; Selmi, C.; Tang, R.; Gershwin, M.E.; Ma, X. The microbiome and autoimmunity: A paradigm from the gut-liver axis. Cell Mol. Immunol. 2018, 15, 595–609. [Google Scholar] [CrossRef]
- Rojas, M.; Acosta-Ampudia, Y.; Heuer, L.S.; Zang, W.; Monsalve, D.M.; Ramírez-Santana, C.; Anaya, J.-M.; Ridgway, W.M.; A Ansari, A.; Gershwin, M.E. Antigen-specific T cells and autoimmunity. J. Autoimmun. 2024, 148, 103303. [Google Scholar] [CrossRef]
- Petitdemange, C.; Funderburg, N.; Zaunders, J.; Corbeau, P. Editorial: Infectious Agent-Induced Chronic Immune Activation: Causes, Phenotypes, and Consequences. Front. Immunol. 2021, 12, 740556. [Google Scholar] [CrossRef]
- Ebringer, A.; Rashid, T.; Wilson, C. Rheumatoid arthritis, Proteus, anti-CCP antibodies and Karl Popper. Autoimmun. Rev. 2010, 9, 216–223. [Google Scholar] [CrossRef]
- Ciccia, F.; Bombardieri, M.; Rizzo, A.; Principato, A.; Giardina, A.R.; Raiata, F.; Peralta, S.; Ferrante, A.; Drago, S.; Cottone, M.; et al. Over-expression of paneth cell-derived anti-microbial peptides in the gut of patients with ankylosing spondylitis and subclinical intestinal inflammation. Rheumatology 2010, 49, 2076–2083. [Google Scholar] [CrossRef]
- Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit. Rev. Food Sci. Nutr. 2022, 62, 1427–1452. [Google Scholar] [CrossRef]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Hamilton-Miller, J.M. Immunopharmacology of antibiotics: Direct and indirect immunomodulation of defence mechanisms. J. Chemother. 2001, 13, 107–111. [Google Scholar] [CrossRef]
- Gautam, M.; Sethi, S.; Nadkarni, N.J. Jarisch-Herxheimer reaction. Indian J. Sex. Transm. Dis. AIDS 2023, 44, 79–81. [Google Scholar] [CrossRef]
- Zimmermann, P.; Ziesenitz, V.C.; Curtis, N.; Ritz, N. The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front. Immunol. 2018, 9, 302. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Papanas, N.; Kioumis, I.; Chatzaki, E.; Maltezos, E.; Zarogoulidis, K. Macrolides: From in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol. 2012, 68, 479–503. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Longobardo, A.; Brealey, D.; Down, J.; Satta, G.; Singer, M.; Arulkumaran, N. Beneficial ex vivo immunomodulatory and clinical effects of clarithromycin in COVID-19. J. Infect. Chemother. 2022, 28, 948–954. [Google Scholar] [CrossRef]
- Federici, T.J. The non-antibiotic properties of tetracyclines: Clinical potential in ophthalmic disease. Pharmacol. Res. 2011, 64, 614–623. [Google Scholar] [CrossRef]
- Bryant, A.E.; Stevens, D.L. Investigating the immunomodulatory activities of omadacycline. J. Antimicrob. Chemother. 2022, 78, 78–83. [Google Scholar] [CrossRef]
- Venditto, V.J.; Haydar, D.; Abdel-Latif, A.; Gensel, J.C.; Anstead, M.I.; Pitts, M.G.; Creameans, J.; Kopper, T.J.; Peng, C.; Feola, D.J. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front. Immunol. 2021, 12, 574425. [Google Scholar] [CrossRef]
- Terpstra, L.C.; Altenburg, J.; Doodeman, H.J.; Piñeros, Y.S.S.; Lutter, R.; Heijerman, H.G.M.; Boersma, W.G. The effect of azithromycin on sputum inflammatory markers in bronchiectasis. BMC Pulm. Med. 2023, 23, 151. [Google Scholar] [CrossRef]
- Cramer, C.L.; Patterson, A.; Alchakaki, A.; Soubani, A.O. Immunomodulatory indications of azithromycin in respiratory disease: A concise review for the clinician. Postgrad. Med. 2017, 129, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Wong, C.K.; Chan, M.C.W.; Yeung, E.S.; Tam, W.W.; Tsang, O.T.; Choi, K.-W.; Chan, P.K.; Kwok, A.; Lui, G.C.; et al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: A randomized controlled trial. Antiviral Res. 2017, 144, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.; Hodge, G.; Brozyna, S.; Jersmann, H.; Holmes, M.; Reynolds, P.N. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur. Respir. J. 2006, 28, 486–495. [Google Scholar] [CrossRef]
- Kudo, S. Diffuse pan-bronchiolitis and newly discovered macrolide actions. J. Jpn. Soc. Intern Med. 2004, 93, 1775–1786. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, L.; Song, G.; Zhang, R.; Li, S.; Shi, H.; Zhang, H.; Li, Y.; Pan, J.; Wang, L.; et al. Azithromycin alleviates the severity of rheumatoid arthritis by targeting the unfolded protein response component of glucose-regulated protein 78 (GRP78). Br. J. Pharmacol. 2022, 179, 1201–1219. [Google Scholar] [CrossRef]
- Sanders, M.; Beringer, P. Immunomodulatory activity of omadacycline in vitro and in a murine model of acute lung injury. mSphere 2024, 9, e0067124. [Google Scholar] [CrossRef]
- Hahn, J.N.; Kaushik, D.K.; Mishra, M.K.; Wang, J.; Silva, C.; Yong, V.W. Impact of Minocycline on Extracellular Matrix Metalloproteinase Inducer, a Factor Implicated in Multiple Sclerosis Immunopathogenesis. J. Immunol. 2016, 197, 3850–3860. [Google Scholar] [CrossRef] [PubMed]
- Szeto, G.L.; Pomerantz, J.L.; Graham, D.R.M.; Clements, J.E. Minocycline suppresses activation of nuclear factor of activated T cells 1 (NFAT1) in human CD4+ T cells. J. Biol. Chem. 2011, 286, 11275–11282. [Google Scholar] [CrossRef]
- Kloppenburg, M.; Breedveld, F.C.; Terwiel, J.P.; Mallee, C.; Dijkmans, B.A. Minocycline in active rheumatoid arthritis. A double-blind, placebo-controlled trial. Arthritis Rheum. 1994, 37, 629–636. [Google Scholar] [CrossRef]
- Tilley, B.C.; Alarcón, G.S.; Heyse, S.P.; Trentham, D.E.; Neuner, R.; Kaplan, D.A.; Clegg, D.O.; Leisen, J.C.C.; Buckley, L.; Cooper, S.M.; et al. Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann. Intern Med. 1995, 122, 81–89. [Google Scholar] [CrossRef]
- O’Dell, J.R.; Haire, C.E.; Palmer, W.; Drymalski, W.; Wees, S.; Blakely, K.; Churchill, M.; Eckhoff, P.J.; Weaver, A.; Doud, D.; et al. Treatment of early rheumatoid arthritis with minocycline or placebo: Results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 1997, 40, 842–848. [Google Scholar] [CrossRef]
- Tsivkovskii, R.; Sabet, M.; Tarazi, Z.; Griffith, D.C.; Lomovskaya, O.; Dudley, M.N. Levofloxacin reduces inflammatory cytokine levels in human bronchial epithelia cells: Implications for aerosol MP-376 (levofloxacin solution for inhalation) treatment of chronic pulmonary infections. FEMS Immunol. Med. Microbiol. 2011, 61, 141–146. [Google Scholar] [CrossRef]
- Araujo, F.; Slifer, T.; Li, S.; Kuver, A.; Fong, L.; Remington, J. Gemifloxacin inhibits cytokine secretion by lipopolysaccharide stimulated human monocytes at the post-transcriptional level. Clin. Microbiol. Infect. 2004, 10, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Immunomodulatory activities of fluoroquinolones. Infection 2005, 33 (Suppl. S2), 55–70. [Google Scholar] [CrossRef]
- Wang, M.; Wu, H.; Jiang, W.; Ren, Y.; Yuan, X.; Wang, Y.; Zhou, J.; Feng, W.; Wang, Y.; Xu, T.; et al. Differences in nature killer cell response and interference with mitochondrial DNA induced apoptosis in moxifloxacin environment. Int. Immunopharmacol. 2024, 132, 111970. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Mendes, D.; Marques, F.B. Fluoroquinolones and the risk of tendon injury: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; Brophy, J.M.; Samii, A. Oral fluoroquinolone use and risk of peripheral neuropathy: A pharmacoepidemiologic study. Neurology 2014, 83, 1261–1263. [Google Scholar] [CrossRef]
- Liaqat, A.; Barlas, A.; Barlas, T.; Khurram, H.; Liaqat, H. Ciprofloxacin-Induced Reaction Imitating a Lupus Flare: A Case Report. Cureus 2020, 12, e8327. [Google Scholar] [CrossRef]
- Jue, D.M.; Jeon, K.I.; Jeong, J.Y. Nuclear factor kappaB (NF-kappaB) pathway as a therapeutic target in rheumatoid arthritis. J. Korean Med. Sci. 1999, 14, 231–238. [Google Scholar] [CrossRef]
- Bode, C.; Diedrich, B.; Muenster, S.; Hentschel, V.; Weisheit, C.; Rommelsheim, K.; Hoeft, A.; Meyer, R.; Boehm, O.; Knuefermann, P.; et al. Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. Int. Immunopharmacol. 2014, 18, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Muenster, S.; Diedrich, B.; Jahnert, S.; Weisheit, C.; Steinhagen, F.; Boehm, O.; Hoeft, A.; Meyer, R.; Baumgarten, G. Linezolid, vancomycin and daptomycin modulate cytokine production, Toll-like receptors and phagocytosis in a human in vitro model of sepsis. J. Antibiot. 2015, 68, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xia, L.; Wang, R.; Cai, Y. Linezolid and Its Immunomodulatory Effect: In Vitro and In Vivo Evidence. Front. Pharmacol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, Y.; Huang, L.; Cao, X.; Xia, Z.; Liang, S. Daptomycin alleviates collagen-induced arthritis via suppressing inflammatory cytokines and NF-κB pathway. Int. Immunopharmacol. 2025, 144, 113648. [Google Scholar] [CrossRef]
- Kicielińska, J.; Szczygieł, A.; Rossowska, J.; Anger, N.; Kempińska, K.; Świtalska, M.; Kaszowska, M.; Wietrzyk, J.; Boratyński, J.; Pajtasz-Piasecka, E. Oral Administration of Polymyxin B Modulates the Activity of Lipooligosaccharide E. coli B against Lung Metastases in Murine Tumor Models. PLoS ONE 2016, 11, e0148156. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cai, Y.; Cao, X.; Aballay, A. Whole-animal chemical screen identifies colistin as a new immunomodulator that targets conserved pathways. mBio 2014, 5, e01235-e14. [Google Scholar] [CrossRef]
- Steere, A.C. Lyme Arthritis: A 50-Year Journey. J. Infect. Dis. 2024, 230 (Suppl. S1), S1–S10. [Google Scholar] [CrossRef]
- Steere, A.C.; Gross, D.; Meyer, A.L.; Huber, B.T. Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J. Autoimmun. 2001, 16, 263–268. [Google Scholar] [CrossRef]
- Kalish, R.A.; Kaplan, R.F.; Taylor, E.; Jones-Woodward, L.; Workman, K.; Steere, A.C. Evaluation of study patients with Lyme disease, 10-20-year follow-up. J. Infect. Dis. 2001, 183, 453–460. [Google Scholar] [CrossRef]
- Boumaza, A.; Ben Azzouz, E.; Arrindell, J.; Lepidi, H.; Mezouar, S.; Desnues, B. Whipple’s disease and Tropheryma whipplei infections: From bench to bedside. Lancet Infect. Dis. 2022, 22, e280–e291. [Google Scholar] [CrossRef]
- Biagi, F.; Biagi, G.L.; Corazza, G.R. What is the best therapy for Whipple’s disease? Our point of view. Scand. J. Gastroenterol. 2017, 52, 465–466. [Google Scholar] [CrossRef]
- Bray, J.J.; Thompson, S.; Seitler, S.; Ali, S.A.; Yiu, J.; Salehi, M.; Ahmad, M.; Pelone, F.; Gashau, H.; Shokraneh, F.; et al. Long-term antibiotic prophylaxis for prevention of rheumatic fever recurrence and progression to rheumatic heart disease. Cochrane Database Syst. Rev. 2024, 9, CD015779. [Google Scholar] [CrossRef]
- Pellegrino, R.; Timitilli, E.; Verga, M.C.; Guarino, A.; Iacono, I.D.; Scotese, I.; Tezza, G.; Dinardo, G.; Riccio, S.; Pellizzari, S.; et al. Acute pharyngitis in children and adults: Descriptive comparison of current recommendations from national and international guidelines and future perspectives. Eur. J. Pediatr. 2023, 182, 5259–5273. [Google Scholar] [CrossRef]
- Supper, I.; Gratadour, J.; François, M.; Jaafari, N.; Boussageon, R. A critical appraisal of acute sore throat guidelines using the AGREE II instrument: A scoping review. Fam. Pract. 2024, 41, 223–233. [Google Scholar] [CrossRef]
- Beaton, A.; Okello, E.; Rwebembera, J.; Grobler, A.; Engelman, D.; Alepere, J.; Canales, L.; Carapetis, J.; DeWyer, A.; Lwabi, P.; et al. Secondary Antibiotic Prophylaxis for Latent Rheumatic Heart Disease. N. Engl. J. Med. 2022, 386, 230–240. [Google Scholar] [CrossRef]
- Carter, J.D.; Gérard, H.C.; Espinoza, L.R.; Ricca, L.R.; Valeriano, J.; Snelgrove, J.; Oszust, C.; Vasey, F.B.; Hudson, A.P. Chlamydiae as etiologic agents in chronic undifferentiated spondylarthritis. Arthritis Rheum. 2009, 60, 1311–1316. [Google Scholar] [CrossRef]
- Carter, J.D.; Espinoza, L.R.; Inman, R.D.; Sneed, K.B.; Ricca, L.R.; Vasey, F.B.; Valeriano, J.; Stanich, J.A.; Oszust, C.; Gerard, H.C.; et al. Combination antibiotics as a treatment for chronic Chlamydia-induced reactive arthritis: A double-blind, placebo-controlled, prospective trial. Arthritis Rheum. 2010, 62, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.E.; Kim, J.; Inman, R.D.; Esdaile, J.M.; James, M.T. Antibiotics for treatment of reactive arthritis: A systematic review and metaanalysis. J. Rheumatol. 2013, 40, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Carlin, E.M.; Ziza, J.M.; Keat, A.; Janier, M. 2014 European Guideline on the management of sexually acquired reactive arthritis. Int. J. STD AIDS 2014, 25, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Kinashi, Y.; Hase, K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S.A.; Kim, W.U. Gut microbiota in autoimmunity: Potential for clinical applications. Arch. Pharm. Res. 2016, 39, 1565–1576. [Google Scholar] [CrossRef]
- Eastmond, C.J.; Willshaw, H.E.; Burgess, S.E.; Shinebaum, R.; Cooke, E.M.; Wright, V. Frequency of faecal Klebsiella aerogenes in patients with ankylosing spondylitis and controls with respect to individual features of the disease. Ann. Rheum. Dis. 1980, 39, 118–123. [Google Scholar] [CrossRef]
- van Kregten, E.; Huber-Bruning, O.; Vandenbroucke, J.P.; Willers, J.M. No conclusive evidence of an epidemiological relation between Klebsiella and ankylosing spondylitis. J. Rheumatol. 1991, 18, 384–388. [Google Scholar] [PubMed]
- Tani, Y.; Tiwana, H.; Hukuda, S.; Nishioka, J.; Fielder, M.; Wilson, C.; Bansal, S.; Ebringer, A. Antibodies to Klebsiella, Proteus, and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J. Rheumatol. 1997, 24, 109–114. [Google Scholar] [PubMed]
- Mäki-Ikola, O.; Leirisalo-Repo, M.; Turunen, U.; Granfors, K. Association of gut inflammation with increased serum IgA class Klebsiella antibody concentrations in patients with axial ankylosing spondylitis (AS): Implication for different aetiopathogenetic mechanisms for axial and peripheral AS? Ann. Rheum. Dis. 1997, 56, 180–183. [Google Scholar] [CrossRef]
- Ogrendik, M. Treatment of ankylosing spondylitis with moxifloxacin. South Med. J. 2007, 100, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, B.; Zheng, J.; Huang, J.; Zhao, Q.; Liu, J.; Su, Z.; Wang, M.; Cui, Z.; Wang, T.; et al. Rifaximin Alters Intestinal Microbiota and Prevents Progression of Ankylosing Spondylitis in Mice. Front. Cell Infect. Microbiol. 2019, 9, 44. [Google Scholar] [CrossRef]
- Clegg, D.O.; Reda, D.J.; Abdellatif, M. Comparison of sulfasalazine and placebo for the treatment of axial and peripheral articular manifestations of the seronegative spondylarthropathies: A Department of Veterans Affairs cooperative study. Arthritis Rheum. 1999, 42, 2325–2329. [Google Scholar] [CrossRef]
- Kerschbaumer, A.; Sepriano, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; E Pope, J.; et al. Efficacy of synthetic and biological DMARDs: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 95–106. [Google Scholar] [CrossRef]
- Riaz, M.; Rasool, G.; Yousaf, R.; Fatima, H.; Munir, N.; Ejaz, H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun. 2025, 31, 17534259251324820. [Google Scholar] [CrossRef]
- Rosenberg, V.; Chodick, G.; Xue, Z.; Faccin, F.; Amital, H. Real-World Data of Adherence and Drug Survival of Biologics in Treatment-Naïve and Treatment-experienced Adult Patients with Rheumatoid Arthritis. Adv. Ther. 2023, 40, 4504–4522. [Google Scholar] [CrossRef]
- Ho Lee, Y.; Gyu Song, G. Comparative efficacy and safety of tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib as monotherapy for active rheumatoid arthritis. J. Clin. Pharm. Ther. 2020, 45, 674–681. [Google Scholar] [CrossRef]
- Harrington, R.; Harkins, P.; Conway, R. Janus Kinase Inhibitors in Rheumatoid Arthritis: An Update on the Efficacy and Safety of Tofacitinib, Baricitinib and Upadacitinib. J. Clin. Med. 2023, 12, 6690. [Google Scholar] [CrossRef]
- Anjiki, K.; Hayashi, S.; Ikuta, K.; Suda, Y.; Kamenaga, T.; Tsubosaka, M.; Kuroda, Y.; Nkano, N.; Maeda, T.; Tsumiyama, K.; et al. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin. Rheumatol. 2024, 43, 3525–3536. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Fortin, P.R.; Pacheco-Tena, C.; Inman, R.D. Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J. Rheumatol. 2003, 30, 2112–2122. [Google Scholar] [PubMed]
- Mu, Q.; Tavella, V.J.; Kirby, J.L.; Cecere, T.E.; Chung, M.; Lee, J.; Li, S.; Ahmed, S.A.; Eden, K.; Allen, I.C.; et al. Antibiotics ameliorate lupus-like symptoms in mice. Sci. Rep. 2017, 7, 13675. [Google Scholar] [CrossRef] [PubMed]
- Margolis, D.J.; Hoffstad, O.; Bilker, W. Association or lack of association between tetracycline class antibiotics used for acne vulgaris and lupus erythematosus. Br. J. Dermatol. 2007, 157, 540–546. [Google Scholar] [CrossRef]
- Kronbichler, A.; Kerschbaum, J.; Gopaluni, S.; Tieu, J.; Alberici, F.; Jones, R.B.; Smith, R.M.; Jayne, D.R.W. Trimethoprim-sulfamethoxazole prophylaxis prevents severe/life-threatening infections following rituximab in antineutrophil cytoplasm antibody-associated vasculitis. Ann. Rheum. Dis. 2018, 77, 1440–1447. [Google Scholar] [CrossRef]
- Kronbichler, A.; Harrison, E.M.; Wagner, J. Nasal microbiome research in ANCA-associated vasculitis: Strengths, limitations, and future directions. Comput. Struct. Biotechnol. J. 2021, 19, 415–423. [Google Scholar] [CrossRef]
- Wagner, J.; Harrison, E.M.; Martinez Del Pero, M.; Blane, B.; Mayer, G.; Leierer, J.; Gopaluni, S.; Holmes, M.A.; Parkhill, J.; Peacock, S.J.; et al. The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: A pilot study. Microbiome 2019, 7, 137. [Google Scholar] [CrossRef]
- Besada, E.; Koldingsnes, W.; Nossent, J.C. Staphylococcus Aureus carriage and long-term Rituximab treatment for Granulomatosis with polyangiitis. PeerJ 2015, 3, e1051. [Google Scholar] [CrossRef] [PubMed]
- Boils, C.L.; Nasr, S.H.; Walker, P.D.; Couser, W.G.; Larsen, C.P. Update on endocarditis-associated glomerulonephritis. Kidney Int. 2015, 87, 1241–1249. [Google Scholar] [CrossRef]
- Bayer, A.S.; Theofilopoulos, A.N.; Eisenberg, R.; Dixon, F.J.; Guze, L.B. Circulating immune complexes in infective endocarditis. N. Engl. J. Med. 1976, 295, 1500–1505. [Google Scholar] [CrossRef]
- Shweikeh, F.; Torres, Y.; Khan, K.; Mouchli, M.; Singh, I. Hepatitis C associated mixed cryoglobulinemia glomerulonephritis in the setting of undetectable viral load: Successful treatment with hydroxychloroquine and review of the literature. Immunol. Res. 2025, 73, 55. [Google Scholar] [CrossRef]
- Yokoyama, K.; Kino, T.; Nagata, T.; Miyayama, T.; Shibata, K.; Fukuda, H.; Yamauchi, R.; Fukunaga, A.; Umeda, K.; Takata, K.; et al. Hepatitis C Virus-associated Cryoglobulinemic Livedo Reticularis Improved with Direct-acting Antivirals. Intern Med. Tokyo Jpn. 2023, 62, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- de Faria, A.G.A.; Chaves, F.C.; Ferraz, M.L.G.; Andrade, L.E.C. Selective decrease in complement C2 hemolytic activity is a sensitive marker for cryoglobulinemia and active disease in hepatitis C patients. Dig. Liver Dis. 2021, 53, 860–865. [Google Scholar] [CrossRef]
- Ozen, S. The changing face of polyarteritis nodosa and necrotizing vasculitis. Nat. Rev. Rheumatol. 2017, 13, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Kohlhaas, K.; Brechmann, T.; Vorgerd, M. Hepatitis B associated polyarteriitis nodosa with cerebral vasculitis. Dtsch. Med. Wochenschr. 1946 2007, 132, 1748–1752. [Google Scholar] [CrossRef]
- Melenotte, C.; Protopopescu, C.; Million, M.; Edouard, S.; Carrieri, M.P.; Eldin, C.; Angelakis, E.; Djossou, F.; Bardin, N.; Fournier, P.-E.; et al. Clinical Features and Complications of Coxiella burnetii Infections from the French National Reference Center for Q Fever. JAMA Netw. Open 2018, 1, e181580. [Google Scholar] [CrossRef]
- Koh, S.S.; Li, A.; Cassarino, D.S. Leukocytoclastic vasculitis presenting in association with Coxiella burnetii (Q fever): A case report. J. Cutan. Pathol. 2018, 45, 71–73. [Google Scholar] [CrossRef]
- Hartzell, J.D.; Wood-Morris, R.N.; Martinez, L.J.; Trotta, R.F. Q fever: Epidemiology, diagnosis, and treatment. Mayo Clin. Proc. 2008, 83, 574–579. [Google Scholar] [CrossRef]
- Rafailidis, P.I.; Falagas, M.E. Addressing clinical safety of antimicrobial resistance: Personal perspectives. Expert Rev. Anti Infect. Ther. 2019, 17, 865–869. [Google Scholar] [CrossRef]
- Minarini, L.A.D.R.; de Andrade, L.N.; De Gregorio, E.; Grosso, F.; Naas, T.; Zarrilli, R.; Camargo, I.L.B.C. Editorial: Antimicrobial Resistance as a Global Public Health Problem: How Can We Address It? Front. Public Health 2020, 8, 612844. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Asimotou, C.M.; Zidrou, M.; Kontogiannis, D.S.; Filippou, C. Global Epidemiology and Antimicrobial Resistance of Klebsiella Pneumoniae Carbapenemase (KPC)-Producing Gram-Negative Clinical Isolates: A Review. Microorganisms 2025, 13, 1697. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kontogiannis, D.S.; Zidrou, M.; Filippou, C.; Tansarli, G.S. Global Epidemiology and Antimicrobial Resistance of Metallo-β-Lactamase (MBL)-Producing Acinetobacter Clinical Isolates: A Systematic Review. Pathogens 2025, 14, 557. [Google Scholar] [CrossRef]
- Mohsen, S.; Dickinson, J.A.; Somayaji, R. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Physician 2020, 66, 651–659. [Google Scholar]
- Stathopoulos, P.; Romanos, L.T.; Loutradis, C.; Falagas, M.E. Nephrotoxicity of New Antibiotics: A Systematic Review. Toxics 2025, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Anthony, W.E.; Wang, B.; Sukhum, K.V.; D’souza, A.W.; Hink, T.; Cass, C.; Seiler, S.; Reske, K.A.; Coon, C.; Dubberke, E.R.; et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 2022, 39, 110649. [Google Scholar] [CrossRef] [PubMed]
- Global Trends in Research Related to the Links Between Microbiota and Antibiotics: A Visualization Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37106254/ (accessed on 20 May 2025).
- Park, S.J.; Kim, M.; Jeong, J.; Park, Y.J.; Jeong, S.; Kim, M.; Kim, H.J.; Song, J.; Kim, S.M.; Chang, J.; et al. Association between antibiotic use and the risk of rheumatoid arthritis: A retrospective cohort study in South Korea. Rheumatology 2025, 64, 1732–1740. [Google Scholar] [CrossRef]
- Arvonen, M.; Virta, L.J.; Pokka, T.; Kröger, L.; Vähäsalo, P. Repeated exposure to antibiotics in infancy: A predisposing factor for juvenile idiopathic arthritis or a sign of this group’s greater susceptibility to infections? J. Rheumatol. 2015, 42, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Microbial Orchestra in Juvenile Idiopathic Arthritis: Sounds of Disarray?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31833578/ (accessed on 20 May 2025).
- Strzępa, A.; Lobo, F.M.; Majewska-Szczepanik, M.; Szczepanik, M. Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int. Immunopharmacol. 2018, 65, 328–341. [Google Scholar] [CrossRef]
- Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev. 2010, 23, 590–615. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.M.; Ryan, M.E.; Giannobile, W.V.; Payne, J.; Sorsa, T. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv. Dent. Res. 1998, 12, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Swamy, D.N.; Sanivarapu, S.; Moogla, S.; Kapalavai, V. Chemically modified tetracyclines: The novel host modulating agents. J. Indian Soc. Periodontol. 2015, 19, 370–374. [Google Scholar] [CrossRef] [PubMed]
| Mechanism | Description | Examples |
|---|---|---|
| Direct site infection | Infection of the joint with local growth of the pathogen | Septic arthritis, tuberculous arthritis, Brucella arthritis |
| Molecular mimicry | Shared antigenic epitopes between microbes and the host lead to cross-reactivity, which triggers an autoimmune response against self-tissues | Rheumatic fever, SLE, reactive arthritis, ankylosing spondylitis |
| Epitope spreading | The immune response directed against a microbial agent may expand to include self-antigens released during tissue damage | SLE, RA, Sjögren’s disease, idiopathic inflammatory myopathies (dermatomyositis, polymyositis) |
| Bystander activation | Inflammatory cytokines released during infection may activate autoreactive lymphocytes that would otherwise remain quiescent | RA, SLE, Sjögren’s disease, juvenile idiopathic arthritis, ankylosing spondylitis |
| Chronic active infection | Chronic active infection leads to chronic inflammation and autoimmunity | Lyme disease, reactive arthritis, cryoglobulinemia-associated vasculitis, and arthritis with HCV |
| Antibiotic | Main Mechanisms of Immunomodulatory Effects |
|---|---|
| Macrolides | Reduction in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) |
| Stabilization of lysosomal membranes | |
| Suppression of the oxidative burst | |
| Reduction in neutrophil chemotaxis and adhesion | |
| Tetracyclines | Inhibition of matrix metalloproteinases |
| Reduction in T-lymphocyte activation and proliferation | |
| Reduction in pro-inflammatory cytokines | |
| Inhibition of the activation of macrophages and microglial cells | |
| Fluoroquinolones | Reduction in pro-inflammatory cytokines |
| Inhibition of the activation of NF-κB | |
| Reduction in neutrophil chemotaxis and adhesion | |
| Reduction in antibody production and T-cell proliferation | |
| Induction of apoptosis in immune cells | |
| Sulfapyridine (in sulfasalazine) | Interference with the function of B-lymphocytes |
| Reduction in pro-inflammatory cytokines | |
| Inhibition of the activation of NF-κB |
| Disease | Implicated Microorganism | Clinical Manifestations | Recommended First-Line Antibiotic Treatment |
|---|---|---|---|
| Rheumatic fever | Streptococcus pyogenes | Arthritis, carditis, skin rash, subcutaneous nodules, chorea | Penicillin for the initial treatment and prevention of recurrence |
| Whipple’s disease | Tropheryma whipplei | Polyarthritis, diarrhea, weight loss, central nervous system involvement | Initially, intravenous ceftriaxone for two weeks, then trimethoprim-sulfamethoxazole for one year * |
| Lyme arthritis | Borrelia burgdorferi | Usually, involvement of one or a few joints in late Lyme arthritis | Doxycycline or cefuroxime per os; intravenous ceftriaxone in severe cases |
| Reactive arthritis | Chlamydia trachomatis and gastrointestinal pathogens | Usually, asymmetric oligoarthritis | Doxycycline or azithromycin for Chlamydia trachomatis ** |
| Q fever vasculitis | Coxiella burnetii | Should be considered in cases of culture-negative endocarditis | Long-term doxycycline (and hydroxychloroquine) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falagas, M.E.; Stathopoulos, P.; Kontogiannis, D.S.; Tzvetanova, I.D. Antibiotics for Rheumatologic Diseases: A Critical Review. Int. J. Mol. Sci. 2025, 26, 10527. https://doi.org/10.3390/ijms262110527
Falagas ME, Stathopoulos P, Kontogiannis DS, Tzvetanova ID. Antibiotics for Rheumatologic Diseases: A Critical Review. International Journal of Molecular Sciences. 2025; 26(21):10527. https://doi.org/10.3390/ijms262110527
Chicago/Turabian StyleFalagas, Matthew E., Panagiotis Stathopoulos, Dimitrios S. Kontogiannis, and Iva D. Tzvetanova. 2025. "Antibiotics for Rheumatologic Diseases: A Critical Review" International Journal of Molecular Sciences 26, no. 21: 10527. https://doi.org/10.3390/ijms262110527
APA StyleFalagas, M. E., Stathopoulos, P., Kontogiannis, D. S., & Tzvetanova, I. D. (2025). Antibiotics for Rheumatologic Diseases: A Critical Review. International Journal of Molecular Sciences, 26(21), 10527. https://doi.org/10.3390/ijms262110527

