Molecular Identification and Biogenic Amine Production Capacity of Enterococcus faecalis Strains Isolated from Raw Milk
Abstract
1. Introduction
2. Results and Discussion
2.1. Genotypic Similarity of E. faecalis Strains Based on ERIC-PCR Analysis
2.2. Production of Biogenic Amines Among Enterococcus faecalis Strains
2.3. Presence of Genes Associated with the Accumulation of Biogenic Amines Among Selected Strains
2.4. Limitations and Future Work
3. Materials and Methods
3.1. Selected Strains Used in This Study
3.1.1. PCR Identification
3.1.2. MALDI-TOF MS Identification
3.2. Genotyping of Strains Using ERIC-PCR
3.3. Screening of Biogenic Amine Production
3.4. Detection of the Genes Related to the Production of Biogenic Amines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohrer, B.M. Review: Nutrient Density and Nutritional Value of Meat Products and Non-Meat Foods High in Protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jacxsens, L.; Membré, J.-M.; Nauta, M.; Peterz, M. Relevance of Microbial Finished Product Testing in Food Safety Management. Food Control 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Barlow, S.M.; Boobis, A.R.; Bridges, J.; Cockburn, A.; Dekant, W.; Hepburn, P.; Houben, G.F.; König, J.; Nauta, M.J.; Schuermans, J. The Role of Hazard- and Risk-Based Approaches in Ensuring Food Safety. Trends Food Sci. Technol. 2015, 46, 176–188. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Peng, Q.; Han, Y. Biogenic Amines in Wine: A Review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- Özogul, F.; Kacar, Ç.; Hamed, I. Inhibition Effects of Carvacrol on Biogenic Amines Formation by Common Food-Borne Pathogens in Histidine Decarboxylase Broth. LWT 2015, 64, 50–55. [Google Scholar] [CrossRef]
- Cunha, S.C.; Lopes, R.; Fernandes, J.O. Biogenic Amines in Liqueurs: Influence of Processing and Composition. J. Food Compos. Anal. 2017, 56, 147–155. [Google Scholar] [CrossRef]
- Kalač, P. Health Effects and Occurrence of Dietary Polyamines: A Review for the Period 2005–Mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Akyol, O.; Tessier, K.; Akyol, S. Accuracy and Uniformity of the Nomenclature of Biogenic Amines and Polyamines in Metabolomics Studies: A Preliminary Study. BMB 2021, 49, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Dala-Paula, B.M.; Custódio, F.B.; Gloria, M.B. Health Concerns Associated with Biogenic Amines in Food and Interaction with Amine Oxidase Drugs. Curr. Opin. Food Sci. 2023, 54, 101090. [Google Scholar] [CrossRef]
- Del Rio, B.; Fernandez, M.; Redruello, B.; Ladero, V.; Alvarez, M.A. New Insights into the Toxicological Effects of Dietary Biogenic Amines. Food Chem. 2024, 435, 137558. [Google Scholar] [CrossRef]
- Jeon, A.R.; Lee, J.H.; Mah, J.-H. Biogenic Amine Formation and Bacterial Contribution in Cheonggukjang, a Korean Traditional Fermented Soybean Food. LWT 2018, 92, 282–289. [Google Scholar] [CrossRef]
- Hu, M.; Dong, J.; Tan, G.; Li, X.; Zheng, Z.; Li, M. Metagenomic Insights into the Bacteria Responsible for Producing Biogenic Amines in Sufu. Food Microbiol. 2021, 98, 103762. [Google Scholar] [CrossRef]
- Kim, K.H.; Chun, B.H.; Kim, J.; Jeon, C.O. Identification of Biogenic Amine-Producing Microbes during Fermentation of Ganjang, a Korean Traditional Soy Sauce, through Metagenomic and Metatranscriptomic Analyses. Food Control 2021, 121, 107681. [Google Scholar] [CrossRef]
- Ladero, V.; Martín, M.C.; Redruello, B.; Mayo, B.; Flórez, A.B.; Fernández, M.; Alvarez, M.A. Genetic and Functional Analysis of Biogenic Amine Production Capacity among Starter and Non-Starter Lactic Acid Bacteria Isolated from Artisanal Cheeses. Eur. Food Res. Technol. 2015, 241, 377–383. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Domínguez, R. Role of Autochthonous Starter Cultures in the Reduction of Biogenic Amines in Traditional Meat Products. Curr. Opin. Food Sci. 2017, 14, 61–65. [Google Scholar] [CrossRef]
- Ladero, V.; Fernández, M.; Calles-Enríquez, M.; Sánchez-Llana, E.; Cañedo, E.; Martín, M.C.; Alvarez, M.A. Is the Production of the Biogenic Amines Tyramine and Putrescine a Species-Level Trait in Enterococci? Food Microbiol. 2012, 30, 132–138. [Google Scholar] [CrossRef]
- Graham, K.; Stack, H.; Rea, R. Safety, Beneficial and Technological Properties of Enterococci for Use in Functional Food Applications—A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.; Manso, J.A.; Figueiredo, A.C.; Antunes, L.; Cruz, R.; Manadas, B.; Bur, D.; Pereira, P.J.B.; Faro, C.; Simões, I. Functional and Structural Characterization of Synthetic Cardosin B-Derived Rennet. Appl. Microbiol. Biotechnol. 2017, 101, 6951–6968. [Google Scholar] [CrossRef]
- Nami, Y.; Vaseghi Bakhshayesh, R.; Mohammadzadeh Jalaly, H.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products. Front. Microbiol. 2019, 10, 300. [Google Scholar] [CrossRef]
- Montanari, C.; Barbieri, F.; Lorenzini, S.; Gottardi, D.; Šimat, V.; Özogul, F.; Gardini, F.; Tabanelli, G. Survival, Growth, and Biogenic Amine Production of Enterococcus faecium FC12 in Response to Extracts and Essential Oils of Rubus Fruticosus and Juniperus Oxycedrus. Front. Nutr. 2023, 9, 1092172. [Google Scholar] [CrossRef]
- Suárez, C.; Espariz, M.; Blancato, V.S.; Magni, C. Expression of the Agmatine Deiminase Pathway in Enterococcus faecalis Is Activated by the AguR Regulator and Repressed by CcpA and PTSMan Systems. PLoS ONE 2013, 8, e76170. [Google Scholar] [CrossRef]
- Landete, J.M.; Arena, M.E.; Pardo, I.; Manca de Nadara, M.C.; Ferrer, S. The Role of Two Families of Bacterial Enzymes in Putrescine Synthesis from Agmatine via Agmatine Deiminase. Int. Microbiol. 2010, 13, 169–177. [Google Scholar] [CrossRef]
- Perez, M.; Ladero, V.; Del Rio, B.; Redruello, B.; De Jong, A.; Kuipers, O.; Kok, J.; Martin, M.C.; Fernandez, M.; Alvarez, M.A. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis. Front. Microbiol. 2017, 8, 2107. [Google Scholar] [CrossRef]
- Nalazek-Rudnicka, K.; Wasik, A. Development and Validation of an LC–MS/MS Method for the Determination of Biogenic Amines in Wines and Beers. Monatsh. Chem. 2017, 148, 1685–1696. [Google Scholar] [CrossRef]
- Dapkevicius, M.D.L.E.; Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Malcata, F.X. Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021, 10, 821. [Google Scholar] [CrossRef]
- Hanzelová, Z.; Dudriková, E.; Lovayová, V.; Výrostková, J.; Regecová, I.; Zigo, F.; Bartáková, K. Occurrence of Enterococci in the Process of Artisanal Cheesemaking and Their Antimicrobial Resistance. Life 2024, 14, 890. [Google Scholar] [CrossRef]
- Sarantinopoulos, P.; Andrighetto, C.; Georgalaki, M.D.; Rea, M.C.; Lombardi, A.; Cogan, T.M.; Kalantzopoulos, G.; Tsakalidou, E. Biochemical Properties of Enterococci Relevant to Their Technological Performance. Int. Dairy J. 2001, 11, 621–647. [Google Scholar] [CrossRef]
- Nasiri, M.; Hanifian, S. Enterococcus faecalis and Enterococcus faecium in Pasteurized Milk: Prevalence, Genotyping, and Characterization of Virulence Traits. LWT 2022, 153, 112452. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Processing Contaminants: Biogenic Amines. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; pp. 381–391. ISBN 978-0-12-378613-5. [Google Scholar]
- Commission Regulation (EC) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs 2005. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32005R2073 (accessed on 16 March 2025).
- Van Hoogdalem, E.; Smith, K.L.; Hartstra, J.; Constant, J. Rethinking, Reducing, and Refining the Classical Oral Tyramine Challenge Test of Monoamine Oxidase (MAO) Inhibitors. Clin. Transl. Sci. 2023, 16, 2058–2069. [Google Scholar] [CrossRef]
- Özogul, Y.; Özogul, F. Chapter 1. Biogenic Amines Formation, Toxicity, Regulations in Food. In Food Chemistry, Function and Analysis; Saad, B., Tofalo, R., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 1–17. ISBN 978-1-78801-436-6. [Google Scholar]
- Sadighara, P.; Aghebat-Bekheir, S.; Shafaroodi, H.; Basaran, B.; Sadighara, M. Tyramine, a Biogenic Agent in Cheese: Amount and Factors Affecting Its Formation, a Systematic Review. Food Prod. Process. Nutr. 2024, 6, 30. [Google Scholar] [CrossRef]
- Perez, M.; Calles-Enríquez, M.; Del Rio, B.; Redruello, B.; De Jong, A.; Kuipers, O.P.; Kok, J.; Martin, M.C.; Ladero, V.; Fernandez, M.; et al. Construction and Characterization of a Double Mutant of Enterococcus faecalis That Does Not Produce Biogenic Amines. Sci. Rep. 2019, 9, 16881. [Google Scholar] [CrossRef]
- Jiménez, E.; Ladero, V.; Chico, I.; Maldonado-Barragán, A.; López, M.; Martín, V.; Fernández, L.; Fernández, M.; Álvarez, M.A.; Torres, C.; et al. Antibiotic Resistance, Virulence Determinants and Production of Biogenic Amines among Enterococci from Ovine, Feline, Canine, Porcine and Human Milk. BMC Microbiol. 2013, 13, 288. [Google Scholar] [CrossRef]
- Bargossi, E.; Tabanelli, G.; Montanari, C.; Gatto, V.; Chinnici, F.; Gardini, F.; Torriani, S. Growth, Biogenic Amine Production and tyrDC Transcription of Enterococcus faecalis in Synthetic Medium Containing Defined Amino Acid Concentrations. J. Appl. Microbiol. 2017, 122, 1078–1091. [Google Scholar] [CrossRef]
- Amuasi, G.R.; Dsani, E.; Owusu-Nyantakyi, C.; Owusu, F.A.; Mohktar, Q.; Nilsson, P.; Adu, B.; Hendriksen, R.S.; Egyir, B. Enterococcus Species: Insights into Antimicrobial Resistance and Whole-Genome Features of Isolates Recovered from Livestock and Raw Meat in Ghana. Front. Microbiol. 2023, 14, 1254896. [Google Scholar] [CrossRef]
- Yerlikaya, O.; Akbulut, N. Potential Use of Probiotic Enterococcus faecium and Enterococcus durans Strains in Izmir Tulum Cheese as Adjunct Culture. J. Food Sci. Technol. 2019, 56, 2175–2185. [Google Scholar] [CrossRef]
- Silvetti, T.; Morandi, S.; Brasca, M. Does Enterococcus faecalis from Traditional Raw Milk Cheeses Serve as a Reservoir of Antibiotic Resistance and Pathogenic Traits? FPD 2019, 16, fpd.2018.2542. [Google Scholar] [CrossRef]
- Klementová, L.; Purevdorj, K.; Butor, I.; Jančová, P.; Bábková, D.; Buňka, F.; Buňková, L. Reduction of Histamine, Putrescine and Cadaverine by the Bacteria Lacticaseibacillus casei Depending on Selected Factors in the Real Condition of the Dairy Product. Food Microbiol. 2024, 117, 104391. [Google Scholar] [CrossRef]
- Suzzi, G. Biogenic Amines in Dry Fermented Sausages: A Review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Inoğlu, Z.N.; Tuncer, Y. Safety Assessment of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Turkish Tulum Cheese. J. Food Saf. 2013, 33, 369–377. [Google Scholar] [CrossRef]
- Bargossi, E.; Tabanelli, G.; Montanari, C.; Lanciotti, R.; Gatto, V.; Gardini, F.; Torriani, S. Tyrosine Decarboxylase Activity of Enterococci Grown in Media with Different Nutritional Potential: Tyramine and 2-Phenylethylamine Accumulation and tyrDC Gene Expression. Front. Microbiol. 2015, 6, 138455. [Google Scholar] [CrossRef]
- Eom, J.S.; Seo, B.Y.; Choi, H.S. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes. J. Microbiol. Biotechnol. 2015, 25, 1519–1527. [Google Scholar] [CrossRef]
- Lucas, P.; Landete, J.; Coton, M.; Coton, E.; Lonvaud-Funel, A. The Tyrosine Decarboxylase Operon of Lactobacillus brevis IOEB 9809: Characterization and Conservation in Tyramine-Producing Bacteria. FEMS Microbiol. Lett. 2003, 229, 65–71. [Google Scholar] [CrossRef]
- Perez, M.; Calles-Enríquez, M.; Nes, I.; Martin, M.C.; Fernandez, M.; Ladero, V.; Alvarez, M.A. Tyramine Biosynthesis Is Transcriptionally Induced at Low pH and Improves the Fitness of Enterococcus faecalis in Acidic Environments. Appl. Microbiol. Biotechnol. 2015, 99, 3547–3558. [Google Scholar] [CrossRef]
- Park, Y.K.; Jin, Y.H.; Lee, J.-H.; Byun, B.Y.; Lee, J.; Jeong, K.C.; Mah, J.-H. The Role of Enterococcus faecium as a Key Producer and Fermentation Condition as an Influencing Factor in Tyramine Accumulation in Cheonggukjang. Foods 2020, 9, 915. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Du, L.; Wang, D.; Zhu, Y.; Geng, Z.; Xu, X.; Xu, W. Effect of NaCI Treatments on Tyramine Biosynthesis of Enterococcus faecalis. J. Food Prot. 2015, 78, 940–945. [Google Scholar] [CrossRef]
- Marcobal, A.; De Las Rivas, B.; Landete, J.M.; Tabera, L.; Muñoz, R. Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Crit. Rev. Food Sci. Nutr. 2012, 52, 448–467. [Google Scholar] [CrossRef]
- Fernández, M.; Linares, D.M.; Alvarez, M.A. Sequencing of the Tyrosine Decarboxylase Cluster of Lactococcus lactis IPLA 655 and the Development of a PCR Method for Detecting Tyrosine Decarboxylating Lactic Acid Bacteria. J. Food Prot. 2004, 67, 2521–2529. [Google Scholar] [CrossRef]
- Bonham, K.S.; Wolfe, B.E.; Dutton, R.J. Extensive Horizontal Gene Transfer in Cheese-Associated Bacteria. eLife 2017, 6, e22144. [Google Scholar] [CrossRef]
- Vinayamohan, P.G.; Pellissery, A.J.; Venkitanarayanan, K. Role of Horizontal Gene Transfer in the Dissemination of Antimicrobial Resistance in Food Animal Production. Curr. Opin. Food Sci. 2022, 47, 100882. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, H.; Iyer, R.; Kumar, N.; Malik, R.K. Tyramine-Producing Enterococci Are Equally Detected on Tyramine Production Medium, by Quantification of Tyramine by HPLC, or by Tdc Gene-Targeted PCR. Dairy Sci. Technol. 2009, 89, 601–611. [Google Scholar] [CrossRef]
- Kučerová, K.; Svobodová, H.; Tůma, Š.; Ondráčková, I.; Plocková, M. Production of Biogenic Amines by Enterococci. Czech J. Food Sci. 2009, 27, SII50–SII55. [Google Scholar] [CrossRef]
- Kalhotka, L.; Manga, I.; Přichystalová, J.; Hůlová, M.; Vyletělová, M.; Šustová, K. Decarboxylase Activity Test of the Genus Enterococcus Isolated from Goat Milk and Cheese. Acta Vet. Brno 2012, 81, 145–151. [Google Scholar] [CrossRef]
- Fernández, M.; Del Río, B.; Linares, D.M.; Martín, M.C.; Alvarez, M.A. Real-Time Polymerase Chain Reaction for Quantitative Detection of Histamine-Producing Bacteria: Use in Cheese Production. J. Dairy Sci. 2006, 89, 3763–3769. [Google Scholar] [CrossRef]
- Coton, M.; Coton, E.; Lucas, P.; Lonvaud, A. Identification of the Gene Encoding a Putative Tyrosine Decarboxylase of Carnobacterium Divergens 508. Development of Molecular Tools for the Detection of Tyramine-Producing Bacteria. Food Microbiol. 2004, 21, 125–130. [Google Scholar] [CrossRef]
- Torriani, S.; Gatto, V.; Sembeni, S.; Tofalo, R.; Suzzi, G.; Belletti, N.; Gardini, F.; Bover-Cid, S. Rapid Detection and Quantification of Tyrosine Decarboxylase Gene (Tdc) and Its Expression in Gram-Positive Bacteria Associated with Fermented Foods Using PCR-Based Methods. J. Food Prot. 2008, 71, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Bargossi, E.; Gardini, F.; Gatto, V.; Montanari, C.; Torriani, S.; Tabanelli, G. The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains. Front. Microbiol. 2015, 6, 1371. [Google Scholar] [CrossRef]
- Elsanhoty, R.M.; Ramadan, M.F. Genetic Screening of Biogenic Amines Production Capacity from Some Lactic Acid Bacteria Strains. Food Control 2016, 68, 220–228. [Google Scholar] [CrossRef]
- Landete, J.M.; De Las Rivas, B.; Marcobal, A.; Muñoz, R. Molecular Methods for the Detection of Biogenic Amine-Producing Bacteria on Foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Effects of Osmotic and High Pressure Stress on Expression of Virulence Factors among Enterococcus spp. Isolated from Food of Animal Origin. Food Microbiol. 2022, 102, 103900. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens 2022, 11, 1099. [Google Scholar] [CrossRef]
- Zakrzewski, A.J.; Zarzecka, U.; Chajęcka-Wierzchowska, W.; Zadernowska, A. A Comparison of Methods for Identifying Enterobacterales Isolates from Fish and Prawns. Pathogens 2022, 11, 410. [Google Scholar] [CrossRef]
- Zarzecka, U.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Microorganisms from Starter and Protective Cultures—Occurrence of Antibiotic Resistance and Conjugal Transfer of Tet Genes in Vitro and during Food Fermentation. LWT 2022, 153, 112490. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Zakrzewski, A.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Possibility of Transfer and Activation of “silent” Tetracycline Resistance Genes among Enterococcus faecalis under High-Pressure Processing. Food Microbiol. 2024, 120, 104481. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Holzapfel, W.H. Improved Screening Procedure for Biogenic Amine Production by Lactic Acid Bacteria. Int. J. Food Microbiol. 1999, 53, 33–41. [Google Scholar] [CrossRef]
- Barbieri, F.; Tabanelli, G.; Montanari, C.; Dall’Osso, N.; Šimat, V.; Smole Možina, S.; Baños, A.; Özogul, F.; Bassi, D.; Fontana, C.; et al. Mediterranean Spontaneously Fermented Sausages: Spotlight on Microbiological and Quality Features to Exploit Their Bacterial Biodiversity. Foods 2021, 10, 2691. [Google Scholar] [CrossRef]
- Martuscelli, M.; Crudele, M.A.; Gardini, F.; Suzzi, G. Biogenic Amine Formation and Oxidation by Staphylococcus xylosus Strains from Artisanal Fermented Sausages. Lett. Appl. Microbiol. 2000, 31, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wen, X.; Wen, Z.; Chen, S.; Wang, L.; Wei, X. Evaluation of the Biogenic Amines Formation and Degradation Abilities of Lactobacillus curvatus From Chinese Bacon. Front. Microbiol. 2018, 9, 1015. [Google Scholar] [CrossRef] [PubMed]

| No. | Strain | Biogenic Amine (mg/L) | |
|---|---|---|---|
| Tyramine | 2-Phenylethylamine | ||
| 1. | 12EN | 875.98 ± 87.56 | 109.09 ± 21.01 |
| 2. | 13EN | 808.84 ± 101.20 | 154.14 ± 14.23 |
| 3. | 15EN | 791.96 ± 94.81 | 150.18 ± 36.11 |
| 4. | 16EN | 815.19 ± 97.44 | 158.87 ± 24.36 |
| 5. | 17EN | 820.55 ± 80.03 | 153.96 ± 10.05 |
| 6. | 20EN | 1057.76 ± 112.50 | 178.54 ± 37.56 |
| 7. | 21EN | 909.52 ± 101.66 | 155.09 ± 22.80 |
| 8. | 41EN | 999.76 ± 102.60 | 169.36 ± 16.00 |
| 9. | 53EN | 984.29 ± 88.65 | 167.92 ± 13.80 |
| 10. | 54EN | 7.10 ± 3.11 | 6.68 ± 1.57 |
| 11. | 57EN | 918.20 ± 76.36 | 150.79 ± 25.98 |
| 12. | 59EN | 968.86 ± 90.88 | 104.94 ± 11.55 |
| 13. | 60EN | 1080.08 ± 103.60 | 177.06 ± 32.90 |
| 14. | 61EN | 973.37 ± 94.00 | 176.55 ± 17.45 |
| 15. | 62EN | 983.67 ± 106.70 | 175.01 ± 20.08 |
| 16. | 63EN | 10.96 ± 3.05 | 7.99 ± 2.54 |
| 17. | 64EN | 1043.06 ± 114.03 | 175.74 ± 40.60 |
| 18. | 65EN | 948.52 ± 94.33 | 163.74 ± 18.54 |
| 19. | 66EN | 984.26 ± 70.96 | 177.41 ± 20.60 |
| 20. | 67EN | 933.08 ± 85.69 | 141.18 ± 35.40 |
| 21. | 68EN | 12.00 ± 4.90 | 6.97 ± 1.15 |
| 22. | 69EN | 1022.67 ± 83.47 | 176.11 ± 30.87 |
| 23. | 70EN | 7.73 ± 1.59 | 7.36 ± 2.24 |
| 24. | 76EN | 1081.27 ± 84.97 | 186.58 ± 26.40 |
| 25. | 77EN | 1037.58 ± 104.51 | 185.44 ± 26.02 |
| 26. | 78EN | 1055.50 ± 100.60 | 166.72 ± 13.55 |
| 27. | 79EN | 942.73 ± 86.50 | 166.37 ± 21.41 |
| 28. | 80EN | 1034.40 ± 99.02 | 171.62 ± 25.10 |
| 29. | 81EN | 11.21 ± 2.50 | 8.37 ± 3.01 |
| No. | Strain | tyrS | tyrDC |
|---|---|---|---|
| 1. | 12EN | + | + |
| 2. | 13EN | + | + |
| 3. | 15EN | + | + |
| 4. | 16EN | + | + |
| 5. | 17EN | + | + |
| 6. | 20EN | + | + |
| 7. | 21EN | + | + |
| 8. | 41EN | − | + |
| 9. | 53EN | + | + |
| 10. | 54EN | + | + |
| 11. | 57EN | − | + |
| 12. | 59EN | − | + |
| 13. | 60EN | − | + |
| 14. | 61EN | + | + |
| 15. | 62EN | + | + |
| 16. | 63EN | + | + |
| 17. | 64EN | + | + |
| 18. | 65EN | + | + |
| 19. | 66EN | − | + |
| 20. | 67EN | + | + |
| 21. | 68EN | − | + |
| 22. | 69EN | + | + |
| 23. | 70EN | + | + |
| 24. | 76EN | + | + |
| 25. | 77EN | + | + |
| 26. | 78EN | − | + |
| 27. | 79EN | − | + |
| 28. | 80EN | + | + |
| 29. | 81EN | + | + |
| Enzyme | Gene | Primer Name | Sequence 5′-3′ | Expected Amplicon Size (bp) | Reference |
|---|---|---|---|---|---|
| Histidine decarboxylase | hdcA | HdC1 | TTGACCGTATCTCAGTGAGTCCAT | 174 | [59] |
| HdC2 | ACGGTCATACGAAACAATACCATC | ||||
| Tyrosine decarboxylase | tyrS | TD2 | ACATAGTCAACCATGTTGAA | 1100 | [60] |
| TD5 | CAAATGGAAGAAGAAGTAGG | ||||
| tyrDC | DEC5 | CGT TGT TGG TGT TGT TGG CAC NACNGA RGA RG | 350 | [61] | |
| DEC3 | CCG CCA GCA GAA TAT GGA AYR TAN CCC AT | ||||
| Tdc-F2 | CAA ATG GAA GAA GAA GT(A/T) GGA | 1340 | [62] | ||
| Tdc-R2 | CC(A/G/T) GCA CG(G/T) T(C/T)C CAT TCT TC | ||||
| Ornithine decarboxylase | Odc | ODF | CATCAAGGTGGACAATATTTCCG | 500 | [63] |
| ODR | CCGTTCAACAACTTGTTTGGCA | ||||
| Lysine decarboxylase | ldc | Cad2F | CAYRTNCCNGGNCAYAA | 1185 | [64] |
| Species | Primer Name | Primer Sequence 5′-3′ | Product Size (bp) | Attachment Temperature (°C) |
|---|---|---|---|---|
| Enterococcus sp. | Ent-F | TCAACCGGGGAGGGT | 733 | 60 |
| Ent-R | ATTACTAGCGATTCCGG | |||
| E. faecalis | Fas-F | TCAAGTACAGTTAGTCTTTATTAG | 941 | 54 |
| Fas-R | ACGATTCAAAGCTAACTGAATCAGT | |||
| E. faecium | Fam-F | TTGAGGCAGACCAGATTGACG | 658 | 54 |
| Fam-R | TATGACAGCGACTCCGATTCC | |||
| E. casseliflavus | Cas-F | CGGGGAAGATGGCAGTAT | 488 | 54 |
| Cas-R | CGCAGGGACGGTGATTTT | |||
| E. gallinarum | Gal-F | GGTATCAAGGAAACCTC | 822 | 54 |
| Gal-R | CTTCCGCCATCATAGCT | |||
| E. hirae | Hi-R | TTTTGTTAGACCTCTTCCGGA | 377 | 55 |
| Hi-F | TGAATCATATTGGTATGCAGTCCG |
| Amino Acid | Biogenic Amine |
|---|---|
| Histidine | Histamine |
| Tyrosine | Tyramine |
| Ornithine | Putrescine |
| Lysine | Cadaverine |
| Phenylalanine | 2-phenylethylamine |
| Enzyme | Gene | Primer Pair | Protocol | n° Cycles | Reference |
|---|---|---|---|---|---|
| Histidine decarboxylase | hdcA | HdC1/HdC2 | Initial denaturation—94 °C, 2 min Denaturation—94 °C, 30 s Annealing—52 °C, 40 s Extension—72 °C, 30 s | 35 | [73] |
| Tyrosine decarboxylase | tyrS | TD2/TD5 | Initial denaturation—95 °C, 5 min Denaturation—95 °C, 45 s Annealing—52 °C, 30 s Extension—72 °C, 1 min | 31 | |
| tyrDC | DEC5/DEC3 | Initial denaturation—94 °C, 5 min Denaturation—94 °C, 30 s 1; 90 °C, 30 s 2 Annealing—47 °C, 90 s 1; 50 °C, 1 min 2 Extension—72 °C, 1.5 min 1; 72 °C, 1 min 2 Final extension—72 °C, 7 min | 5 1; 30 2 | [61] | |
| Tdc-F2/Tdc-R2 | |||||
| Ornithine decarboxylase | Odc | ODF/ODR | Initial denaturation—95 °C, 5 min Denaturation—95 °C, 45 s Annealing—52 °C, 30 s Extension—72 °C, 1 min | 31 | [73] |
| Lysine decarboxylase | ldc | Cad2F/Cad2R | Initial denaturation—94 °C, 2 min Denaturation—94 °C, 30 s Annealing—52 °C, 30 s Extension—72 °C, 1 min 30 s | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Barbieri, F. Molecular Identification and Biogenic Amine Production Capacity of Enterococcus faecalis Strains Isolated from Raw Milk. Int. J. Mol. Sci. 2025, 26, 10480. https://doi.org/10.3390/ijms262110480
Wiśniewski P, Barbieri F. Molecular Identification and Biogenic Amine Production Capacity of Enterococcus faecalis Strains Isolated from Raw Milk. International Journal of Molecular Sciences. 2025; 26(21):10480. https://doi.org/10.3390/ijms262110480
Chicago/Turabian StyleWiśniewski, Patryk, and Federica Barbieri. 2025. "Molecular Identification and Biogenic Amine Production Capacity of Enterococcus faecalis Strains Isolated from Raw Milk" International Journal of Molecular Sciences 26, no. 21: 10480. https://doi.org/10.3390/ijms262110480
APA StyleWiśniewski, P., & Barbieri, F. (2025). Molecular Identification and Biogenic Amine Production Capacity of Enterococcus faecalis Strains Isolated from Raw Milk. International Journal of Molecular Sciences, 26(21), 10480. https://doi.org/10.3390/ijms262110480

