Evaluation of Salivary GAPDH as a Predictor Biomarker for Periodontitis
Abstract
1. Introduction
2. Results
2.1. Protein Band Analysis and GAPDH Identification by LC-MS/MS
2.2. Salivary GAPDH Quantification and Validation
2.3. GAPDH Identification in Our Previous Proteomic Studies
2.4. Interaction Networks
3. Discussion
3.1. Final Remarks
3.2. Limitations and Future Directions
4. Materials and Methods
4.1. Materials
4.2. Enrollment of Study Participants
4.3. Saliva Collection and Salivary Protein Extraction and Quantification
4.4. Protein Separation by SDS-PAGE and LC-MS/MS Analysis
4.5. Salivary GAPDH Quantification by ELISA
4.6. GAPDH Interaction Networks
4.7. Statistics and Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| 2-DE | Two-dimensional gel electrophoresis |
| DTT | Dithiothreitol |
| ECM | Extracellular matrix |
| EEF1A1 | Eukaryotic translation elongation factor 1 alpha 1 |
| ELISA | Enzyme-linked immunosorbent assay |
| emPAI | Exponentially modified protein abundance index |
| ENOA | Alpha enolase |
| FN1 | Fibronectin 1 |
| GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
| GCF | Gingival crevicular fluid |
| HPA | Human Protein Atlas database |
| LC-MS/MS | Liquid chromatography–mass spectrometry |
| PD | Periodontitis |
| PGAM1 | Phosphoglycerate mutase 1 |
| PKM2 | Pyruvate kinase |
| PRDX1 | Peroxiredoxin 1 |
| PRDX2 | Peroxiredoxin 2 |
| SOD2 | Superoxide dismutase, mitochondrial |
| TPI1 | Triosephosphate isomerase |
| TSCM | Tooth-surface-collected material |
| TXN | Thioredoxin |
References
- Martin, W.F.; Rüdiger, C. Physiology, phylogeny, early evolution, and GAPDH. Protoplasma 2017, 254, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- White, M.R.; Khan, M.M.; Deredge, D.; Ross, C.R.; Quintyn, R.; Zucconi, B.E.; Wysocki, V.H.; Wintrode, P.L.; Wilson, G.M.; Garcin, E.D. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J. Biol. Chem. 2015, 290, 1770–1785, Erratum in J. Biol. Chem. 2015, 290, 4129. [Google Scholar] [CrossRef] [PubMed]
- Garcin, E.D. GAPDH as a model non-canonical AU-rich RNA binding protein. Semin. Cell Dev. Biol. 2019, 86, 162–173. [Google Scholar] [CrossRef] [PubMed]
- White, M.R.; Garcin, E.D. D-Glyceraldehyde-3-Phosphate dehydrogenase structure and function. Subcell. Biochem. 2017, 83, 413–453. [Google Scholar] [CrossRef]
- Jenkins, J.L.; Tanner, J.J. High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase. Acta Cryst. 2006, D62, 290–301. [Google Scholar] [CrossRef]
- Ferreira-da-Silva, F.; Pereira, P.J.B.; Gales, L.; Roessle, M.; Svewrgun, D.I.; Moradas-Ferreira, P.; Damas, A.M. The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures. J. Biol. Chem. 2006, 281, 33433–33440. [Google Scholar] [CrossRef]
- Tristan, C.; Shahani, N.; Sedlak, T.W.; Sawa, A. The diverse functions of GAPDH: Views from different subcellular compartments. Cell Signal. 2011, 23, 317–323. [Google Scholar] [CrossRef]
- Kim, J.W.; Dang, C.V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 2005, 30, 142–150. [Google Scholar] [CrossRef]
- Sirover, M.A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control. Biochim. Biophys. Acta 2011, 1810, 741–751. [Google Scholar] [CrossRef]
- Chuang, D.M.; Ishitani, R. A role for GAPDH in apoptosis and neurodegeneration. Nat. Med. 1996, 2, 609–610. [Google Scholar] [CrossRef]
- Berry, M.D.; Boulton, A.A. Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J. Neurosci. Res. 2000, 60, 150–154. [Google Scholar] [CrossRef]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.; Talukdar, S.; Chaubey, G.K.; Dilawari, R.; Modanwal, R.; Chaudhary, S.; Patidar, A.; Boradia, V.M.; Kumbhar, P.; Raje, C.I.; et al. Regulation of macrophage cell surface GAPDH alters LL-37 internalization and downstream effects in the cell. J. Innate Immun. 2023, 15, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Sirover, M.A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem. 2005, 95, 45–52. [Google Scholar] [CrossRef]
- Kosova, A.A.; Khodyreva, S.N.; Lavrik, O.I. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair. Biochemistry 2017, 82, 643–654. [Google Scholar] [CrossRef]
- Sirover, M.A. Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int. J. Biochem. Cell Biol. 2014, 57, 20–26. [Google Scholar] [CrossRef]
- Schneider, M.; Knuesting, J.; Birkholz, O.; Heinisch, J.J.; Scheibe, R. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 2018, 18, 184. [Google Scholar] [CrossRef]
- Hara, M.R.; Cascio, M.B.; Sawa, A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 2006, 1762, 502–509. [Google Scholar] [CrossRef]
- Sirover, M.A. Subcellular dynamics of multifunctional protein regulation: Mechanisms of GAPDH intracellular translocation. J. Cell. Biochem. 2012, 113, 2193–2200. [Google Scholar] [CrossRef]
- Sirover, M.A. The role of posttranslational modification in moonlighting glyceraldehyde-3-phosphate dehydrogenase structure and function. Amino Acids 2021, 53, 507–515. [Google Scholar] [CrossRef]
- Colell, A.; Green, D.R.; Ricci, J.E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009, 16, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Yuan, S.; Hu, Y.; Zhang, H.; Wu, W.; Zeng, Z.; Yang, J.; Yun, J.; Xu, R.; Huang, P. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-Bromopyruvate Propyl Ester. Bioenerg. Biomembr. 2012, 44, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhang, F.; Hong, C.Q.; Giuliano, A.E.; Cui, X.J.; Zhou, G.J.; Zhang, G.J.; Cui, Y.K. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol. Med. 2015, 12, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Mandic, R.; Agaimy, A.; Pinto-Quintero, D.; Roth, K.; Teymoortash, A.; Schwarzbach, H.; Stoehr, C.G.; Rodepeter, F.R.; Stuck, B.A.; Bette, M. Aberrant expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in warthin tumors. Cancers 2020, 12, 1112. [Google Scholar] [CrossRef]
- Berry, M.D. Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J. Psychiatry Neurosci. 2004, 29, 337–345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerszon, J.; Rodacka, A. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation. Ageing Res. Rev. 2018, 48, 21–31. [Google Scholar] [CrossRef]
- Butera, G.; Mullappilly, N.; Masetto, F.; Palmieri, M.; Scupoli, M.T.; Pacchiana, R.; Donadelli, M. Regulation of autophagy by nuclear GAPDH and its aggregates in cancer and neurodegenerative disorders. Int. J. Mol. Sci. 2019, 20, 2062. [Google Scholar] [CrossRef]
- Schmalhausen, E.V.; Medvedeva, M.V.; Muronetz, V.I. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer’s disease. Arch. Biochem. Biophys. 2024, 758, 110065. [Google Scholar] [CrossRef]
- Lazarev, V.F.; Guzhova, I.V.; Margulis, B.A. Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics 2020, 12, 416. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Afzali, H.; Graves, D.T. An update on periodontal inflammation and bone loss. Front. Immunol. 2024, 15, 1385436. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Nayak, N.; Karmakar, S.; Chopra, A.; Arangaraju, R. Evolutionary history of periodontitis and the oral microbiota—Lessons for the future. Curr. Oral Health Rep. 2024, 11, 117, Erratum in Curr. Oral Health Rep. 2024, 11, 105–116. [Google Scholar] [CrossRef]
- Trindade, D.; Carvalho, R.; Machado, V.; Chambrone, L.; Mendes, J.J.; Botelho, J. Prevalence of periodontitis in dentate people between 2011 and 2020: A systematic review and meta-analysis of epidemiological studies. J. Clin. Periodontol. 2023, 50, 604–626. [Google Scholar] [CrossRef] [PubMed]
- Dolinska, E.; Wisniewski, P.; Pietruska, M. Periodontal molecular diagnostics: State of knowledge and future prospects for clinical applications. Int. J. Mol. Sci. 2024, 25, 12624. [Google Scholar] [CrossRef] [PubMed]
- Kallianta, M.; Pappa, E.; Vastardis, H.; Rahiotis, C. Applications of mass spectrometry in dentistry. Biomedicines 2023, 11, 286. [Google Scholar] [CrossRef]
- Gupta, A.; Govila, V.; Saini, A. Proteomics—The research frontier in periodontics. J. Oral Biol. Craniofac. Res. 2015, 5, 46–52. [Google Scholar] [CrossRef]
- Kurshid, Z.; Zohaib, S.; Najeeb, S.; Zafar, M.S.; Rehman, R.; Rehman, I.R. Advances of proteomic sciences in dentistry. Int. J. Mol. Sci. 2016, 17, 728. [Google Scholar] [CrossRef]
- Bellei, E.; Monari, E.; Bertoldi, C.; Bergamini, S. Proteomic comparison between periodontal pocket tissue and other oral samples in severe periodontitis: The meeting of prospective biomarkers. Science 2024, 6, 57. [Google Scholar] [CrossRef]
- Castagnola, M.; Scarano, E.; Passali, G.C.; Messana, I.; Cabras, T.; Iavarone, F.; Di Cintio, G.; Fiorita, A.; De Corso, E.; Paludetti, G. Salivary biomarkers and proteomics: Future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital. 2017, 37, 94–101. [Google Scholar] [CrossRef]
- Shin, M.S.; Kim, Y.G.; Shin, Y.J.; Ko, B.J.; Kim, S.; Kim, H.D. Deep sequencing salivary proteins for periodontitis using proteomics. Clin. Oral Investig. 2019, 23, 3571–3580. [Google Scholar] [CrossRef]
- Scarano, E.; Fiorita, A.; Picciotti, P.M.; Passali, G.C.; Calò, L.; Cabras, T.; Inzitari, R.; Fanali, C.; Messana, I.; Castagnola, M.; et al. Proteomics of saliva: Personal experience. Acta Otorhinolaryngol. Ital. 2010, 30, 125–130. [Google Scholar] [PubMed] [PubMed Central]
- Bellei, E.; Bergamini, S.; Monari, E.; Fantoni, L.I.; Cuoghi, A.; Ozben, T.; Tomasi, A. High-abundance proteins depletion for serum proteomic analysis: Concomitant removal of non-targeted proteins. Amino Acids 2011, 40, 145–156. [Google Scholar] [CrossRef]
- Malathi, N.; Mythili, S.; Vasanthi, H.R. Salivary diagnostics: A brief review. ISRN Dent. 2014, 2014, 158786. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, M.; Zhu, J.; Zhang, H.; Duan, Z.; Wang, S.; Liao, Z.; Liu, W. Developments in diagnostic applications of saliva in human organ diseases. Med. Nov. Technol. Devices 2022, 13, 100115. [Google Scholar] [CrossRef]
- Parra-Meder, Á.; Costa, R.; López-Jarana, P.; Ríos-Carrasco, B.; Relvas, M.; Salazar, F. Inflammatory mediators in the oral fluids and blood samples of type 1 diabetic patients, according to periodontal status—A systematic review. Int. J. Mol. Sci. 2025, 26, 2552. [Google Scholar] [CrossRef] [PubMed]
- Monari, E.; Cuoghi, A.; Bellei, E.; Bergamini, S.; Lucchi, A.; Tomasi, A.; Cortellini, P.; Zaffe, D.; Bertoldi, C. Analysis of protein expression in periodontal pocket tissue: A preliminary study. Proteome Sci. 2015, 13, 33. [Google Scholar] [CrossRef]
- Bellei, E.; Bertoldi, C.; Monari, E.; Bergamini, S. Proteomics disclose the potential of gingival crevicular fluid (GCF) as source of biomarkers for severe periodontitis. Materials 2022, 15, 2161. [Google Scholar] [CrossRef]
- Bergamini, S.; Bellei, E.; Generali, L.; Tomasi, A.; Bertoldi, C. A proteomic analysis of discolored tooth surfaces after the use of 0.12% Chlorhexidine (CHX) mouthwash and CHX provided with an anti-discoloration system (ADS). Materials 2021, 14, 4338. [Google Scholar] [CrossRef]
- Papale, F.; Santonocito, S.; Polizzi, A.; Lo Giudice, A.; Capodiferro, S.; Favia, G.; Isola, G. The new era of salivaomics in dentistry: Frontiers and facts in the early diagnosis and prevention of oral diseases and cancer. Metabolites 2022, 12, 638. [Google Scholar] [CrossRef]
- Nonaka, T.; Wong, D.T.W. Saliva diagnostics. Salivaomics, saliva exosomics, and saliva liquid biopsy. J. Am. Dent. Assoc. 2023, 154, 696–704. [Google Scholar] [CrossRef]
- Zhang, L.; Henson, B.S.; Camargo, P.M.; Wong, D.T. The clinical value of salivary biomarkers for periodontal disease. Periodontol. 2000 2009, 51, 25–37. [Google Scholar] [CrossRef]
- Campanati, A.; Martina, E.; Diotallevi, F.; Radi, G.; Marani, A.; Sartini, D.; Emanuelli, M.; Kontochristopoulos, G.; Rigopoulos, D.; Gregoriou, S.; et al. Saliva proteomics as fluid signature of inflammatory and immune-mediated skin diseases. Int. J. Mol. Sci. 2021, 22, 7018. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.; Ruvantha Pinto, A.; Li, H.; Li, L.; Wang, L.; Simpson, R.; Liu, J.P. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc. Natl. Acad. Sci. USA 2012, 109, 13308–13313. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhou, T.; Yang, W.L.; Liu, J.; Shao, L.Q. Programmed cell death in periodontitis: Recent advances and future perspectives. Oral Dis. 2017, 23, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Listyarifah, D.; Al-Samadi, A.; Salem, A.; Syaify, A.; Salo, T.; Tervahartiala, T.; Grenier, D.; Nordström, D.C.; Sorsa, T.; Ainola, M. Infection and apoptosis associated with inflammation in periodontitis: An immunohistologic study. Oral Dis. 2017, 23, 1144–1154. [Google Scholar] [CrossRef]
- Gamonal, J.; Bascones, A.; Acevedo, A.; Blanco, E.; Silva, A. Apoptosis in chronic adult periodontitis analyzed by in situ DNA breaks, electron microscopy, and immunohistochemistry. J. Periodontol. 2001, 72, 517–525. [Google Scholar] [CrossRef]
- Nakajima, H.; Itakura, M.; Kubo, T.; Kaneshlge, A.; Harada, N.; Izawa, T.; Azuma, Y.T.; Kuwaamura, M.; Yamajl, R.; Takeuchi, T. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. J. Biol. Chem. 2017, 292, 4727–4742. [Google Scholar] [CrossRef]
- Hildebrandt, T.; Knuesting, J.; Berndt, C.; Morgan, B.; Scheibe, R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 2015, 396, 523–537. [Google Scholar] [CrossRef]
- Bertoldi, C.; Bellei, E.; Pellacani, C.; Ferrari, D.; Lucchi, A.; Cuoghi, A.; Bergamini, S.; Cortellini, P.; Tomasi, A.; Zaffe, D.; et al. Non-bacterial protein expression in periodontal pockets by proteome analysis. J. Clin. Periodontol. 2013, 40, 573–582. [Google Scholar] [CrossRef]
- Kainulainen, V.; Korhonen, T.K. Dancing to another tune-adhesive moonlighting proteins in bacteria. Biology 2014, 3, 178–204. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Nagano, K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. Jpn. Dent. Sci. Rev. 2021, 57, 190–200. [Google Scholar] [CrossRef]
- Satala, D.; Bednarek, A.; Kozik, A.; Rapala-Kozik, M.; Karkowska-Kuleta, J. The recruitment and activation of plasminogen by bacteria—The involvement in chronic infection development. Int. J. Mol. Sci. 2023, 24, 10436. [Google Scholar] [CrossRef]
- Perez-Casal, J.; Potter, A.A. Glyceraldehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases. Vaccine 2016, 34, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Wagener, J.; Schneider, J.J.; Baxmann, S.; Kalbacher, H.; Borelli, C.; Nuding, S.; Küchler, R.; Wehkamp, J.; Kaeser, M.D.; Mailänder-Sanchez, D.; et al. A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J. Investig. Dermatol. 2013, 133, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, X.; Pham, T.H.; Feuerbacher, L.A.; Lubos, M.L.; Huang, M.; Olsen, R.; Mushegian, A.; Slawson, C.; Hardwidge, P.R. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 2013, 13, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Thul, P.J.; Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018, 27, 233–244. [Google Scholar] [CrossRef]
- Bergamini, S.; Bellei, E.; Selleri, V.; Salvatori, R.; Micheloni, G.; Nasi, M.; Pinti, M.; Bertoldi, C. The impact of non-surgical periodontal therapy on the salivary proteome: A pilot study. Int. J. Dent. 2025, 2025, 6655743. [Google Scholar] [CrossRef]
- Rezende, T.M.B.; Lima, S.M.F.; Petriz, B.A.; Silva, O.N.; Freire, M.S.; Franco, O.L. Dentistry proteomics: From laboratory development to clinical practice. J. Cell. Physiol. 2013, 228, 2271–2284. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef]
- Bertoldi, C.; Monari, E.; Cortellini, P.; Generali, L.; Lucchi, A.; Spinato, S.; Zaffe, D. Clinical and histological reaction of periodontal tissues to subgingival resin composite restorations. Clin. Oral Investig. 2020, 24, 1001–1011. [Google Scholar] [CrossRef]
- Jessie, K.; Hashim, O.H.; Rahim, Z.H.A. Protein precipitation method for salivary proteins and rehydration buffer for two-dimensional electrophoresis. Biotechnology 2008, 7, 686–693. [Google Scholar] [CrossRef]
- Bellei, E.; Rustichelli, C.; Bergamini, S.; Monari, E.; Baraldi, C.; Lo Castro, F.; Tomasi, A.; Ferrari, A. Proteomic serum profile in menstrual-related and post menopause migraine. J. Pharm. Biomed. Anal. 2020, 184, 113165. [Google Scholar] [CrossRef]




| Sample Type | Entry Name (a) | Acc. No.(b) | Mass (c) | emPAI (d) | Match. (e) | Seq. (f) | Score (g) | Cov. (h) |
|---|---|---|---|---|---|---|---|---|
| Heathy controls | G3P_HUMAN | P04406 | 36201 | 94.87 | 103 | 23 | 2774 | 68% |
| PD patients | G3P_HUMAN | P04406 | 36201 | 140.76 | 147 | 24 | 4023 | 67% |
| Ref. No. | Authors (Year of Publication) | Type of Oral Sample (a) | Protein Separation Method (b) | Type of Mass Spectrometer (c) | Type of Protein Database (d) |
|---|---|---|---|---|---|
| [45] | Monari et al. (2015) | Periodontal pocket tissue | 2-DE | Nano LC-ESI-Q-ToF | UniProt |
| [37] | Bellei et al. (2024) | Periodontal pocket tissue | SDS-PAGE | LC-ESI-QO-MS/MS | neXtProt |
| [46] | Bellei et al. (2022) | GCF | SDS-PAGE | LC-ESI-QO-MS/MS | neXtProt |
| [47] | Bergamini et al. (2021) | TSCM | SDS-PAGE + 2-DE | LC-ESI-QO-MS/MS | neXtProt + SwissProt |
| Gene (a) | Full Gene Name (b) | Main Function (c) |
|---|---|---|
| First-level consensus | ||
| ASS1 | Argininosuccinate synthase 1 | Amino acid metabolism |
| EGFR | Epidermal growth factor receptor | ECM organization |
| ESD | Esterase D | Mixed function (metabolism) |
| GSK3B | Glycogen synthase kinase 3 beta | Mixed function (transcription) |
| PCNA | Proliferating cell nuclear antigen | Cell proliferation |
| PGK1 | Phosphoglycerate kinase 1 | Mixed function |
| RPA2 | Replication protein A2 | Adaptive immune response |
| SAR1B | Secretion associated Ras related GTPase 1B | Protein processing |
| TK1 | Thymidine kinase 1 | Cell proliferation |
| OpenCell database | ||
| ACTR2 | Actin related protein 2 | Degranulation |
| AKAP12 | A-kinase anchoring protein 12 | Vessel development |
| ANKRD10 | Ankyrin repeat domain 10 | Non-specific (transcription) |
| ASS1 | Argininosuccinate synthase 1 | Amino acid metabolism |
| CAPZB | Capping actin protein of muscle Z-line subunit beta | Basic cellular processes |
| CPSF6 | Cleavage and polyadenylation specific factor 6 | Mixed function (transcription) |
| ERLIN2 | ER lipid raft associated 2 | Salivary secretion |
| ESD | Esterase D | Mixed function (metabolism) |
| INTS9 | Integrator complex subunit 9 | Non-specific (transcription) |
| LMNA | Lamin A/C | Innate immune response |
| MKNK2 | MAPK interacting serine/threonine kinase 2 | Cornificatio |
| SAR1B | Secretion associated Ras related GTPase 1B | Protein processing |
| IntAct database | ||
| AK3 | Adenylate kinase 3 | Basic cellular processes |
| APP | Amyloid beta precursor protein | Mixed function |
| CAMK2A | Calcium/calmodulin dependent protein kinase II α | Neuronal signaling |
| CRMP1 | Collapsin response mediator protein 1 | Neuronal signaling |
| CTNNB1 | Catenin beta 1 | Innate immune response |
| EGFR | Epidermal growth factor receptor | ECM organization |
| ERBB2 | Erb-b2 receptor tyrosine kinase 2 | Vesicular transport |
| EXOC5 | Exocyst complex component 5 | Non-specific (transcription) |
| FKBP6 | FKBP prolyl isomerase family member 6 (inactive) | Non-specific |
| FYN | FYN proto-oncogene, Src family tyrosine kinase | Immune system, transcription |
| GAPDHS | GAPDH, spermatogenic | Spermatogenesis |
| GMCL2 | Germ cell-less 2, spermatogenesis associated | Spermatogenesis |
| GSK3B | Glycogen synthase kinase 3 beta | Mixed function (transcription) |
| HTT | Huntingtin | Basic cellular processes |
| NCAPD3 | Non-SMC condensin II complex subunit D3 | Cell proliferation |
| NOS2 | Nitric oxide synthase 2 | Unknown function |
| PCNA | Proliferating cell nuclear antigen | Cell proliferation |
| PGK1 | Phosphoglycerate kinase 1 | Mixed function |
| PREP | Prolyl endopeptidase | Neuronal signaling |
| PRKACA | Protein kinase cAMP-activated catalytic subunit α | Innate immune response |
| PRUNE2 | Prune homolog 2 with BCH domain | Endocytosis |
| RPA2 | Replication protein A2 | Adaptive immune response |
| S100A8 | S100 calcium binding protein A8 | Cornification |
| SLC41A3 | Solute carrier family 41 member 3 | Non-specific (transcription) |
| SOD1 | Superoxide dismutase 1 | Amino acid metabolism |
| TBK1 | TANK binding kinase 1 | Innate immune response |
| TINF2 | TERF1 interacting nuclear factor 2 | Adaptive immune response |
| TK1 | Thymidine kinase 1 | Cell proliferation |
| TXN | Thioredoxin | Innate immune response |
| BioGRID database | ||
| ACTC1 | Actin alpha cardiac muscle 1 | Muscle contraction |
| AGO2 | Argonaute RISC catalytic component 2 | Innate immune response |
| AGR2 | Anterior gradient 2, protein disulfide isomerase | Mucin production |
| ALDOA | Aldolase, fructose-bisphosphate A | Non-specific (transcription) |
| ANLN | Anillin, actin binding protein | Myelination |
| AR | Androgen receptor | Transcription |
| ASS1 | Argininosuccinate synthase 1 | Amino acid metabolism |
| ATXN1 | Ataxin 1 | Unknown function |
| CAND1 | Cullin associated and neddylation dissociated 1 | Non-specific (transcription) |
| CAP1 | Cyclase associated actin cytoskeleton regulatory protein 1 | Innate immune response |
| CCNB1 | Cyclin B1 | Cell proliferation |
| CCT7 | Chaperonin containing TCP1 subunit 7 | Basic cellular processes |
| CDC73 | Cell division cycle 73 | Unknown function |
| CDKN1A | Cyclin dependent kinase inhibitor 1A | ECM organization |
| CHD4 | Chromodomain helicase DNA binding protein 4 | Adaptive immune response |
| CUL3 | Cullin 3 | Immune system, transcription |
| CUL4B | Cullin 4B | Transcription |
| CYLD | CYLD lysine 63 deubiquitinase | Immune system, transcription |
| DDX39B | DExD-box helicase 39B | Non-specific (transcription) |
| EEF1A1 | Eukaryotic translation elongation factor 1 alpha 1 | Non-specific |
| EEF2 | Eukaryotic translation elongation factor 2 | Non-specific |
| EGFR | Epidermal growth factor receptor | ECM organization |
| EMC2 | ER membrane protein complex subunit 2 | Mitochondrial translation |
| ENO1 | Enolase 1 | Basic cellular processes |
| ENO3 | Enolase 3 | Muscle contraction |
| ESD | Esterase D | Mixed function (metabolism) |
| ESR1 | Estrogen receptor 1 | Transcription factor |
| EWSR1 | EWS RNA binding protein 1 | Mixed function |
| FN1 | Fibronectin 1 | Muscle contraction |
| GRIA2 | Glutamate ionotropic receptor AMPA type subunit2 | Neuronal signaling |
| GSK3B | Glycogen synthase kinase 3 beta | Mixed function |
| HDAC6 | Histone deacetylase 6 | Transcription |
| HNRNPA1 | Heterogeneous nuclear ribonucleoprotein A1 | Non-specific (ribosome) |
| HNRNPD | Heterogeneous nuclear ribonucleoprotein D | Basic cellular processes |
| HNRNPDL | Heterogeneous nuclear ribonucleoprotein D like | Basic cellular processes |
| HNRNPU | Heterogeneous nuclear ribonucleoprotein U | Innate immune response |
| HSF1 | Heat shock transcription factor 1 | Basic cellular processes |
| HSP90AA1 | Heat shock protein 90 α family class A member 1 | Transcription |
| HSP90AB1 | Heat shock protein 90 α family class B member 1 | Transcription |
| HSPA1A | Heat shock protein family A (Hsp70) member 1A | Mitochondrial translation |
| HSPA8 | Heat shock protein family A (Hsp70) member 8 | Transcription |
| HSPA9 | Heat shock protein family A (Hsp70) member 9 | Transcription |
| HSPD1 | Heat shock protein family D (Hsp60) member 1 | Transcription |
| HUWE1 | WWE domain containing E3 ubiquitin protein ligase 1 | Basic cellular processes |
| ISG15 | ISG15 ubiquitin like modifier | Innate immune response (salivary gland) |
| MAPK7 | Mitogen-activated protein kinase 7 | Innate immune response |
| MYC | MYC proto-oncogene, bHLH transcription factor | Basic cellular processes |
| MYOC | Myocilin | ECM organization |
| NPM1 | Nucleophosmin 1 | Non-specific (ribosome) |
| PABPN1 | Poly(A) binding protein nuclear 1 | Immunoglobulins and histones |
| PCNA | Proliferating cell nuclear antigen | Cell proliferation |
| PGAM1 | Phosphoglycerate mutase 1 | Mixed function |
| PGK1 | Phosphoglycerate kinase 1 | Mixed function |
| PKM | Pyruvate kinase M1/2 | Mixed function |
| PLD2 | Phospholipase D2 | Innate immune response |
| POU2F1 | POU class 2 homeobox 1 | Transcription |
| PRDX1 | Peroxiredoxin 1 | Basic cellular processes |
| PRDX2 | Peroxiredoxin 2 | Oxygen transport |
| PRKCI | Protein kinase C iota | Vesicular transport |
| PRKN | Parkin RBR E3 ubiquitin protein ligase | Muscle contraction |
| PSMD11 | Proteasome 26S subunit, non-ATPase 11 | Mixed function |
| PUF60 | Poly(U) binding splicing factor 60 | Mitochondrial translation |
| RPA1 | Replication protein A1 | Basic cellular processes |
| RPA2 | Replication protein A2 | Adaptive immune response |
| RPA3 | Replication protein A3 | Amino acid metabolism |
| RPL30 | Ribosomal protein L30 | Non-specific (ribosome) |
| RPS3A | Ribosomal protein S3A | Non-specific (ribosome) |
| SAR1B | Secretion associated Ras related GTPase 1B | Protein processing |
| SEC62 | SEC62 homolog, preprotein translocation factor | Protein processing |
| SERBP1 | SERPINE1 mRNA binding protein 1 | Basic cellular processes |
| SET | SET nuclear proto-oncogene | Adaptive immune response |
| SIAH1 | Siah E3 ubiquitin protein ligase 1 | Mixed functions |
| SIRT1 | Sirtuin 1 | Transcription |
| SLC2A4 | Solute carrier family 2 member 4 | Muscle contraction |
| SNCA | Synuclein alpha | Oxygen transport |
| TK1 | Thymidine kinase 1 | Cell proliferation |
| TNIP1 | TNFAIP3 interacting protein 1 | Mixed function |
| TP53 | Tumor protein p53 | Cytokine signaling |
| TPI1 | Triosephosphate isomerase 1 | Mixed function |
| TRAP1 | TNF receptor associated protein 1 | Basic cellular processes |
| TRIM25 | Tripartite motif containing 25 | Innate immune response |
| WDR5 | WD repeat domain 5 | Transcription |
| YAP1 | Yes1 associated transcriptional regulator | ECM organization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellei, E.; Bergamini, S.; Salvatori, R.; Bertoldi, C. Evaluation of Salivary GAPDH as a Predictor Biomarker for Periodontitis. Int. J. Mol. Sci. 2025, 26, 10441. https://doi.org/10.3390/ijms262110441
Bellei E, Bergamini S, Salvatori R, Bertoldi C. Evaluation of Salivary GAPDH as a Predictor Biomarker for Periodontitis. International Journal of Molecular Sciences. 2025; 26(21):10441. https://doi.org/10.3390/ijms262110441
Chicago/Turabian StyleBellei, Elisa, Stefania Bergamini, Roberta Salvatori, and Carlo Bertoldi. 2025. "Evaluation of Salivary GAPDH as a Predictor Biomarker for Periodontitis" International Journal of Molecular Sciences 26, no. 21: 10441. https://doi.org/10.3390/ijms262110441
APA StyleBellei, E., Bergamini, S., Salvatori, R., & Bertoldi, C. (2025). Evaluation of Salivary GAPDH as a Predictor Biomarker for Periodontitis. International Journal of Molecular Sciences, 26(21), 10441. https://doi.org/10.3390/ijms262110441

