The Role of Angiogenetic Factors in Preeclampsia
Abstract
1. Introduction
1.1. Definition of Preeclampsia
1.2. Risk Factors of Preeclampsia
2. Pathogenesis of Preeclampsia
3. Angiogenic Factors and Their Receptors
4. Role of sFlt-1/PlGf Ratio in Preeclampsia
Placental Biomarkers in the Prediction and Pathogenesis of Preeclampsia
5. First-Trimester Screening for PE
6. Clinical and Economic Impact of sFlt-1/PlGf Ratio Testing: Pharmacoeconomic Justification
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aye, I.L.M.H.; Tong, S.; Charnock-Jones, D.S.; Smith, G.C.S. The human placenta and its role in reproductive outcomes revisited. Physiol. Rev. 2025, 105, 2305–2376. [Google Scholar] [CrossRef] [PubMed]
- Solt, I.; Cohen, S.M.; Admati, I.; Beharier, O.; Dominsky, O.; Yagel, S. Placenta at single-cell resolution in early and late preeclampsia: Insights and clinical implications. Am. J. Obstet. Gynecol. 2025, 232, S176–S189. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Khedagi, A.M.; Bello, N.A. Hypertensive Disorders of Pregnancy. Cardiol. Clin. 2021, 39, 77–90. [Google Scholar] [CrossRef]
- Hogan, M.C.; Foreman, K.J.; Naghavi, M.; Ahn, S.Y.; Wangm, M.; Makela, S.M.; Lopez, A.D.; Lozano, R.; Murray, C.J. Maternal mortality for 181 countries, 1980–2008: A systematic analysis of progress towards Millennium Development Goal 5. Lancet 2010, 375, 1609–1623. [Google Scholar] [CrossRef]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Kuklina, E.V.; Ayala, C.; Callaghan, W.M. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet. Gynecol. 2009, 113, 1299–1306. [Google Scholar] [CrossRef]
- Inversetti, A.; Pivato, C.A.; Cristodoro, M.; Latini, A.C.; Condorelli, G.; Di Simone, N.; Stefanini, G. Update on long-term cardiovascular risk after pre-eclampsia: A systematic review and meta-analysis. Eur. Heart J. Qual. Care Clin. Outcomes 2024, 10, 4–13. [Google Scholar] [CrossRef] [PubMed]
- ACOG Practice Bulletin. Obs. Gynecol. 2020, 135, e237–e260.
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 743: Low-dose aspirin use during pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Hypertension in Pregnancy: Diagnosis and Management. 25 June 2019. Available online: www.nice.org.uk/guidance/ng133 (accessed on 17 April 2023).
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022, 226, S1071–S1097.e2. [Google Scholar] [CrossRef] [PubMed]
- Meazaw, M.W.; Chojenta, C.; Muluneh, M.D.; Loxton, D. Systematic and meta-analysis of factors associated with preeclampsia and eclampsia in sub-Saharan Africa. PLoS ONE 2020, 15, e0237600. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.; Grande, E.D.; Roberts, T.; Kerr, M.; Northcott, C.; Johnson, T.; Sleep, J.; Ryder, C. Factors associated with preeclampsia and the hypertensive disorders of pregnancy amongst Indigenous women of Canada, Australia, New Zealand, and the United States: A systematic review and meta-analysis. Curr. Hypertens. Rep. 2025, 27, 10. [Google Scholar] [CrossRef] [PubMed]
- Jim, B.; Karumanchi, S.A. Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Semin. Nephrol. 2017, 37, 386–397. [Google Scholar] [CrossRef]
- Stepan, H.; Galindo, A.; Hund, M.; Schlembach, D.; Sillman, J.; Surbek, D.; Vatish, M. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet. Gynecol. 2023, 61, 168–180. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- Palei, A.C.; Spradley, F.T.; Warrington, J.P.; George, E.M.; Granger, J.P. Pathophysiology of hypertension in pre-eclampsia: A lesson in integrative physiology. Acta Physiol. 2013, 208, 224–233. [Google Scholar] [CrossRef]
- Brosens, I.; Robertson, W.B.; Dixon, H.G. The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 1967, 93, 569–579. [Google Scholar] [CrossRef]
- Brosens, I.; Pijnenborg, R.; Vercruysse, L.; Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011, 204, 193–201. [Google Scholar] [CrossRef]
- Taylor, R.N.; Grimwood, J.; Taylor, R.S.; McMaster, M.T.; Fisher, S.J.; North, R.A. Longitudinal serum concentrations of placental growth factor: Evidence for abnormal placental angiogenesis in pathologic pregnancies. Am. J. Obstet. Gynecol. 2003, 188, 177–182. [Google Scholar] [CrossRef]
- Bao, P.; Kodra, A.; Tomic-Canic, M.; Golinko, M.S.; Ehrlich, H.P.; Brem, H. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 2009, 153, 347–358. [Google Scholar] [CrossRef]
- Ntellas, P.; Mavroeidis, L.; Gkoura, S.; Gazouli, I.; Amylidi, A.L.; Papadaki, A.; Zarkavelis, G.; Mauri, D.; Karpathiou, G.; Kolettas, E.; et al. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers 2020, 12, 3145. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef] [PubMed]
- Boudria, A.; Abou, F.C.; Jia, T.; Gout, S.; Keramidas, M.; Didier, C.; Lemaître, N.; Manet, S.; Coll, J.L.; Toffart, A.C.; et al. VEGF165b, a splice variant of VEGF-A, promotes lung tumor progression and escape from anti-angiogenic therapies through a β1 integrin/VEGFR autocrine loop. Oncogene 2019, 38, 1050–1066, Correction in Oncogene 2023, 42, 2471–2472. https://doi.org/10.1038/s41388-023-02764-w. [Google Scholar] [CrossRef] [PubMed]
- Woolard, J.; Bevan, H.S.; Harper, S.J.; Bates, D.O. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation 2009, 16, 572–592. [Google Scholar] [CrossRef]
- Zhou, Y.; Damsky, C.H.; Fisher, S. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Investig. 1997, 99, 2152–2164. [Google Scholar] [CrossRef]
- Brosens, I.; Renaer, M. On the pathogenesis of placental infarcts in pre-eclampsia. J. Obstet. Gynaecol. Br. Commonw. 1972, 79, 794–799. [Google Scholar] [CrossRef]
- De Wolf, F.; Robertson, W.B.; Brosens, I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am. J. Obstet. Gynecol. 1975, 123, 164–174. [Google Scholar] [CrossRef]
- Huang, Q.T.; Wang, S.S.; Zhang, M.; Huang, L.P.; Tian, J.W.; Yu, Y.H.; Wang, Z.J.; Zhong, M. Advanced oxidation protein products enhances soluble Fms-like tyrosine kinase 1 expression in trophoblasts: A possible link between oxidative stress and preeclampsia. Placenta 2013, 34, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, J.E.; Walsh, S.W. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens. Pregnancy 2002, 21, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Chaiworapongsa, T. Preeclampsia: A link between trophoblast dysregulation and an antiangiogenic state. J. Clin. Investig. 2013, 123, 2775–2777. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, A.; Brandon, H.M.; Daftary, A.; Ness, R.; Conrad, K.P. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta 2004, 25, 763–769. [Google Scholar] [CrossRef]
- Caniggia, I.; Mostachfi, H.; Winter, J.; Gassmann, M.; Lye, S.J.; Kuliszewski, M.; Post, M. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J. Clin. Investig. 2000, 105, 577–587. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112, Correction in Circ. Res. 2020, 126, e8. https://doi.org/10.1161/RES.0000000000000315. [Google Scholar] [CrossRef]
- Romero, R.; Nien, J.K.; Espinoza, J.; Todem, D.; Fu, W.; Chung, H.; Kusanovic, J.P.; Gotsch, F.; Erez, O.; Mazaki-Tovi, S.; et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J. Matern. Fetal Neonatal Med. 2008, 21, 9–23. [Google Scholar] [CrossRef]
- Powe, C.E.; Levine, R.J.; Karumanchi, S.A. Preeclampsia, a disease of the maternal endothelium: The role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011, 123, 2856–2869. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmed, A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ. Res. 2004, 95, 884–891. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Walsh, S.W. Eicosanoids in preeclampsia. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 223–232. [Google Scholar] [CrossRef]
- Shah, D.; Khalil, R.A. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem. Pharmacol. 2015, 95, 211–226. [Google Scholar] [CrossRef]
- Su, H.; Li, M.; Li, N.; Zhang, Y.; He, Y.; Zhang, Z.; Zhang, Y.; Gao, Q.; Xu, Z.; Tang, J. Endothelin-1 potentiated constriction in preeclampsia placental veins: Role of ETAR/ETBR/CaV1.2/CALD. Placenta 2024, 158, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, M.A.; Arefnezhad, R.; Parhizkar, F.; Hejazi, M.S.; MotavalliKhiav, F.; Mahmoodpoor, A.; Yousefi, M. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 2021, 86, e13475. [Google Scholar] [CrossRef] [PubMed]
- Aneman, I.; Pienaar, D.; Suvakov, S.; Simic, T.P.; Garovic, V.D.; McClements, L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front. Immunol. 2020, 11, 567532. [Google Scholar] [CrossRef] [PubMed]
- Regal, J.F.; Burwick, R.M.; Fleming, S.D. The Complement System and Preeclampsia. Curr. Hypertens. Rep. 2017, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nat. Rev. Nephrol. 2019, 15, 275–289, Correction in Nat. Rev. Nephrol. 2019, 15, 386. https://doi.org/10.1038/s41581-019-0156. [Google Scholar] [CrossRef]
- Youssef, L.; Miranda, J.; Blasco, M.; Paules, C.; Crovetto, F.; Palomo, M.; Torramade-Moix, S.; García-Calderó, H.; Tura-Ceide, O.; Dantas, A.P.; et al. Complement and Coagulation Cascades Activation Is the Main Pathophysiological Pathway in Early-Onset Severe Preeclampsia Revealed by Maternal Proteomics. Sci. Rep. 2021, 11, 3048. [Google Scholar] [CrossRef]
- Alpoim, P.N.; Gomes, K.B.; Godoi, L.C.; Rios, D.R.; Carvalho, M.G.; Fernandes, A.P.; Dusse, L.M. ADAMTS13, FVIII, von Willebrand Factor, ABO Blood Group Assessment in Preeclampsia. Clin. Chim. Acta 2011, 412, 2162–2166. [Google Scholar] [CrossRef]
- Venou, T.M.; Vetsiou, E.; Varelas, C.; Daniilidis, A.; Psarras, K.; Koravou, E.E.; Koutra, M.; Touloumenidou, T.; Tsolakidis, V.; Papalexandri, A.; et al. Increased Complement Activation and Decreased ADAMTS13 Activity Are Associated with Genetic Susceptibility in Patients with Preeclampsia/HELLP Syndrome Compared to Healthy Pregnancies: An Observational Case-Controlled Study. J. Pers. Med. 2024, 14, 387. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr. Res. 2005, 57, 1R–7R. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Vrachnis, N.; Kalampokas, E.; Sifakis, S.; Vitoratos, N.; Kalampokas, T.; Botsis, D.; Iliodromiti, Z. Placental growth factor (PlGF): A key to optimizing fetal growth. J. Matern. Fetal Neonatal Med. 2013, 26, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, C.; Ohkuchi, A.; Arai, F.; Takahashi, K.; Suzuki, H.; Watanabe, T.; Kario, K.; Matsubara, S.; Suzuki, M. Establishing reference values for both total soluble Fms-like tyrosine kinase 1 and free placental growth factor in pregnant women. Hypertens. Res. 2005, 28, 727–732. [Google Scholar] [CrossRef]
- Chen, D.B.; Zheng, J. Regulation of placental angiogenesis. Microcirculation 2014, 21, 15–25. [Google Scholar] [CrossRef]
- Mayhew, T.M.; Charnock-Jones, D.S.; Kaufmann, P. Aspects of Human Fetoplacental Vasculogenesis and Angiogenesis. Placenta 2004, 25, 103–113. [Google Scholar] [CrossRef]
- Zhao, H.; Wong, R.J.; Stevenson, D.K. The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int. J. Mol. Sci. 2021, 22, 9675. [Google Scholar] [CrossRef]
- Dijmărescu, A.L.; Boldeanu, L.; Radu, M.; Rotaru, I.; Siminel, M.A.; Manolea, M.M.; Vrabie, S.C.; Novac, M.B.; Boldeanu, M.V.; Tănase, F. The potential value of diagnostic and predictive serum biomarkers for preeclampsia. Rom. J. Morphol. Embryol. 2021, 62, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Basak, T.; Ain, R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res. Ther. 2022, 13, 189. [Google Scholar] [CrossRef]
- De Falco, S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Tsiakkas, A.; Duvdevani, N.; Wright, A.; Wright, D.; Nicolaides, K.H. Serum placental growth factor in the three trimesters of pregnancy: Effects of maternal characteristics and medical history. Ultrasound Obstet. Gynecol. 2015, 45, 591–598. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.; Duckworth, S.; Seed, P.T.; Griffin, M.; Myers, J.; Mackillop, L.; Simpson, N.; Waugh, J.; Anumba, D.; Kenny, L.C.; et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: A prospective multicenter study. Circulation 2013, 128, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Tomkiewicz, J.; Darmochwał-Kolarz, D. A Biomarkers for Early Prediction and Management of Preeclampsia: A Comprehensive Review. Med. Sci. Monit. 2024, 30, e944104. [Google Scholar] [CrossRef] [PubMed]
- KaradzovOrlic, N.; Joksić, I. Preeclampsia pathogenesis and prediction—Where are we now: The focus on the role of galectins and miRNAs. Hypertens. Pregnancy 2025, 44, 2470626. [Google Scholar]
- Creswell, L.; O’Gorman, N.; Palmer, K.R.; da Silva Costa, F.; Rolnik, D.L. Perspectives on the Use of Placental Growth Factor (PlGF) in the Prediction and Diagnosis of Pre-Eclampsia: Recent Insights and Future Steps. Int. J. Womens Health 2023, 15, 255–271. [Google Scholar] [CrossRef]
- Hastie, R.; Brownfoot, F.C.; Pritchard, N.; Hannan, N.J.; Cannon, P.; Nguyen, V.; Palmer, K.; Beard, S.; Tong, S.; Kaitu’u-Lino, T.J. EGFR (Epidermal Growth Factor Receptor) Signaling and the Mitochondria Regulate sFlt-1 (Soluble FMS-Like Tyrosine Kinase-1) Secretion. Hypertension 2019, 73, 659–670. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Villar, J.; Lindheimer, M. World Health Organization systematic review of screening tests for preeclampsia. Obstet. Gynecol. 2004, 104, 1367–1391. [Google Scholar] [CrossRef]
- Tjoa, M.L.; Oudejans, C.B.; van Vugt, J.M.; Blankenstein, M.A.; van Wijk, I.J. Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction. Hypertens. Pregnancy 2004, 23, 171–189. [Google Scholar] [CrossRef]
- Velegrakis, A.; Kouvidi, E.; Fragkiadaki, P.; Sifakis, S. Predictive value of the sFlt 1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int. J. Mol. Med. 2023, 52, 89. [Google Scholar] [CrossRef] [PubMed]
- Chaiworapongsa, T.; Romero, R.; Kim, Y.M.; Kim, G.J.; Kim, M.R.; Espinoza, J.; Bujold, E.; Gonçalves, L.; Gomez, R.; Edwin, S.; et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal Neonatal Med. 2005, 17, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Ohkuchi, A.; Hirashima, C.; Matsubara, S.; Suzuki, H.; Takahashi, K.; Arai, F.; Watanabe, T.; Kario, K.; Suzuki, M. Alterations in placental growth factor levels before and after the onset of preeclampsia are more pronounced in women with early onset severe preeclampsia. Hypertens. Res. 2007, 30, 151–159. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, A.; Baviera, G.; Giordano, D.; Todarello, G.; Corrado, F.; D’anna, R. Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia. Acta Obstet. Gynecol. Scand. 2008, 87, 837–842. [Google Scholar] [CrossRef]
- Hackelöer, M.; Schmidt, L.; Verlohren, S. New advances in prediction and surveillance of preeclampsia: Role of machine learning approaches and remote monitoring. Arch. Gynecol. Obstet. 2023, 308, 1663–1677. [Google Scholar] [CrossRef]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Zeisler, H.; Calda, P.; Sabria, J.; Markfeld-Erol, F.; Galindo, A.; Schoofs, K.; et al. New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension 2014, 63, 346–352. [Google Scholar] [CrossRef]
- Álvarez-Fernández, I.; Prieto, B.; Rodríguez, V.; Ruano, Y.; Escudero, A.I.; Álvarez, F.V. New biomarkers in diagnosis of early onset preeclampsia and imminent delivery prognosis. Clin. Chem. Lab. Med. 2014, 52, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1: PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.; Binder, J.; Kalafat, E.; Jones, S.; Thilaganathan, B.; Khalil, A. Angiogenic marker prognostic models in pregnant women with hypertension. Hypertension 2020, 75, 755–761, Correction in Hypertension 2020, 75, 755–761. https://doi.org/10.1161/HYPERTENSIONAHA.119.13997. [Google Scholar] [CrossRef]
- Andersen, L.L.T.; Helt, A.; Sperling, L.; Overgaard, M. Decision threshold for kryptor sFlt-1/PlGF ratio in women with suspected preeclampsia: Retrospective study in a routine clinical setting. J. Am. Heart Assoc. 2021, 10, e021376. [Google Scholar] [CrossRef]
- Soundararajan, R.; Suresh, S.C.; Mueller, A.; Heimberger, S.; Avula, S.; Sathyanarayana, C.; Mahesh, S.; Madhuprakash, S.; Rana, S. Real life outpatient biomarker use in management of hypertensive pregnancies in third trimester in a low resource Setting: ROBUST study. Pregnancy Hypertens. 2021, 23, 97–103. [Google Scholar] [CrossRef]
- Peguero, A.; Fernandez-Blanco, L.; Mazarico, E.; Benitez, L.; Gonzalez, A.; Youssef, L.; Crispi, F.; Hernandez, S.; Figueras, F. Added prognostic value of longitudinal changes of angiogenic factors in early-onset severe pre-eclampsia: A prospective cohort study. BJOG 2021, 128, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Dröge, L.A.; Perschel, F.H.; Stütz, N.; Gafron, A.; Frank, L.; Busjahn, A.; Henrich, W.; Verlohren, S. Prediction of Preeclampsia-Related Adverse Outcomes With the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor)-Ratio in the Clinical Routine: A Real-World Study. Hypertension 2021, 77, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.R.; Jeong, D.H.; Lee, J.Y.; Woo, E.Y.; Shin, G.T.; Kim, S.Y. sFlt-1/PlGF ratio as a predictive and prognostic marker for preeclampsia. J. Obstet. Gynaecol. Res. 2021, 47, 2318–2323. [Google Scholar] [CrossRef] [PubMed]
- Dathan-Stumpf, A.; Czarnowsky, V.; Hein, V.; Andraczek, T.; Stepan, H. Real-world data on the clinical use of angiogenic factors in pregnancies with placental dysfunction. Am. J. Obstet. Gynecol. 2022, 226, S1037–S1047.e2. [Google Scholar] [CrossRef]
- Hund, M.; Allegranza, D.; Schoedl, M.; Dilba, P.; Verhagen-Kamerbeek, W.; Stepan, H. Multicenter prospective clinical study to evaluate the prediction of short-term outcome in pregnant women with suspected preeclampsia (PROGNOSIS): Study protocol. BMC Pregnancy Childbirth 2014, 14, 324. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.J.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Soluble fms-like tyrosine kinase-1 to placental growth factor ratio: Ruling out pre-eclampsia for up to 4 weeks and value of retesting. Ultrasound Obstet. Gynecol. 2019, 53, 367–375. [Google Scholar] [CrossRef]
- Bian, X.; Biswas, A.; Huang, X.; Lee, K.J.; Li, T.K.; Masuyama, H.; Ohkuchi, A.; Park, J.S.; Saito, S.; Tan, K.H.; et al. Short-Term Prediction of Adverse Outcomes Using the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio in Asian Women With Suspected Preeclampsia. Hypertension 2019, 74, 164–172. [Google Scholar] [CrossRef]
- Cerdeira, A.S.; O’Sullivan, J.; Ohuma, E.O.; Harrington, D.; Szafranski, P.; Black, R.; Mackillop, L.; Impey, L.; Greenwood, C.; James, T.; et al. Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women With Suspected Preeclampsia: INSPIRE. Hypertension 2019, 74, 983–990. [Google Scholar] [CrossRef]
- Kifle, M.M.; Dahal, P.; Vatish, M.; Cerdeira, A.S.; Ohuma, E.O. The prognostic utility of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PIGF) biomarkers for predicting preeclampsia: A secondary analysis of data from the INSPIRE trial. BMC Pregnancy Childbirth 2022, 22, 520. [Google Scholar] [CrossRef]
- Hughes, R.C.E.; Phillips, I.; Florkowski, C.M.; Gullam, J. The predictive value of the sFlt-1/PlGF ratio in suspected preeclampsia in a New Zealand population: A prospective cohort study. Aust. N. Z. J. Obstet. Gynaecol. 2023, 63, 34–41. [Google Scholar] [CrossRef]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005, Erratum in N. Engl. J. Med. 2006, 355, 1840. [Google Scholar] [CrossRef] [PubMed]
- Thadhani, R.; Mutter, W.P.; Wolf, M.; Levine, R.J.; Taylor, R.N.; Sukhatme, V.P.; Ecker, J.; Karumanchi, S.A. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J. Clin. Endocrinol. Metab. 2004, 89, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Verlohren, S.; Galindo, A.; Schlembach, D.; Zeisler, H.; Herraiz, I.; Moertl, M.G.; Pape, J.; Dudenhausen, J.W.; Denk, B.; Stepan, H. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am. J. Obstet. Gynecol. 2010, 202, 161-e1. [Google Scholar] [CrossRef] [PubMed]
- Sunderji, S.; Gaziano, E.; Wothe, D.; Rogers, L.C.; Sibai, B.; Karumanchi, S.A.; Hodges-Savola, C. Automated assays for sVEGF R1 and PlGF as an aid in the diagnosis of preterm preeclampsia: A prospective clinical study. Am. J. Obstet. Gynecol. 2010, 202, 40.e1–40.e7. [Google Scholar] [CrossRef]
- Verlohren, S.; Brennecke, S.P.; Galindo, A.; Karumanchi, S.A.; Mirkovic, L.B.; Schlembach, D.; Stepan, H.; Vatish, M.; Zeisler, H.; Rana, S. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022, 27, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Cerdeira, A.S.; O’Sullivan, J.; Ohuma, E.O.; James, T.; Papageorghiou, A.T.; Knight, M.; Vatish, M. Ruling out preeclampsia in the next 4 weeks using a soluble fms-like tyrosine kinase 1/placental growth factor ratio ≤38: Secondary analysis of the Interventional Study on Prediction of Preeclampsia/Eclampsia in Women With Suspected Preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, 443–445. [Google Scholar] [CrossRef]
- Hastie, R.; Bergman, L.; Walker, S.P.; Kaitu’u-Lino, T.; Hannan, N.J.; Brownfoot, F.; Schell, S.; Harper, A.; Cannon, P.; Cluver, C.A.; et al. Associations between soluble fms-like tyrosine kinase-1 and placental growth factor and disease severity among women with preterm eclampsia and preeclampsia. J. Am. Heart Assoc. 2022, 11, e024395. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Nie, J.; Zou, X.; Tian, H.; Qin, Y.; Liu, C. Evaluation of Annexin A2 as a novel diagnostic serum biomarker for lung cancer. Cancer Biomark. 2015, 15, 205–211. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Zhang, J.; Guo, N. Serum sFlt-1/PlGF ratio combined with ANXA2 correlates with adverse pregnancy outcomes in women with suspected preeclampsia. J. Matern. Fetal Neonatal Med. 2025, 38, 2506008. [Google Scholar] [CrossRef]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef]
- Cruickshank, T.; MacDonald, T.M.; Walker, S.P.; Keenan, E.; Dane, K.; Middleton, A.; Kyritsis, V.; Myers, J.; Cluver, C.; Hastie, R.; et al. Circulating Growth Differentiation Factor 15 Is Increased Preceding Preeclampsia Diagnosis: Implications as a Disease Biomarker. J. Am. Heart Assoc. 2021, 10, e020302. [Google Scholar] [CrossRef]
- Huppertz, B.; Sammar, M.; Chefetz, I.; Neumaier-Wagner, P.; Bartz, C.; Meiri, H. Longitudinal Determination of Serum Placental Protein 13 during Development of Preeclampsia. Fetal Diagn. Ther. 2008, 24, 230–236. [Google Scholar] [CrossRef]
- Than, N.G.; Balogh, A.; Romero, R.; Kárpáti, E.; Erez, O.; Szilágyi, A.; Kovalszky, I.; Sammar, M.; Gizurarson, S.; Matkó, J.; et al. Placental Protein 13 (PP13)—A Placental Immunoregulatory Galectin Protecting Pregnancy. Front. Immunol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Gadde, R.; Cd, D.; Sheela, S. Placental protein 13: An important biological protein in preeclampsia. J. Circ. Biomark. 2018, 7, 1849454418786159. [Google Scholar] [CrossRef] [PubMed]
- Vasilache, I.A.; Carauleanu, A.; Socolov, D.; Matasariu, R.; Pavaleanu, I.; Nemescu, D. Predictive performance of first trimester serum galectin-13/PP-13 in preeclampsia screening: A systematic review and meta-analysis. Exp. Ther. Med. 2022, 23, 370. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.; Khalil, A.; Premakumar, Y.; Allotey, J.; Snell, K.I.E.; Chan, C.; Chappell, L.C.; Hooper, R.; Green, M.; Mol, B.W.; et al. Prediction of pre-eclampsia: Review of reviews. Ultrasound Obstet. Gynecol. 2019, 54, 16–27. [Google Scholar] [CrossRef]
- Conover, C.A.; Oxvig, C. The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocr. Rev. 2023, 44, 1012–1028. [Google Scholar] [CrossRef]
- Sun, X.W.; Li, X.H.; Zhang, C.; Meng, F.-Q.; Xing, Y.G.; Ding, Y. Correlation analysis of serum placental growth factor, pregnancy-related plasma protein-A and disease severity in patients with hypertensive disorder in pregnancy. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1788–1795. [Google Scholar] [CrossRef]
- Shahsavandi, E.; Movahedi, M.; Khanjani, S.; Shahshahan, Z.; Hajihashemi, M.; Farahbod, F. Evaluation of the relationship between pregnancy-associated plasma protein A (PAPP-A) and pregnancy outcomes. Adv. Biomed. Res. 2023, 12, 91. [Google Scholar] [CrossRef]
- Tzanaki, I.; Makrigiannakis, A.; Lymperopoulou, C.; Al-Jazrawi, Z.; Agouridis, A.P. Pregnancy-associated plasma protein A (PAPP-A) as a first trimester serum biomarker for preeclampsia screening: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2025, 38, 2448502. [Google Scholar] [CrossRef] [PubMed]
- Yücel, B.; Gedikbasi, A.; Dündar, O.; Olgac, Y.; Yıldırım, D.; Yıldırım, G.; Polat, I. The utility of first trimester uterine artery Doppler, placental volume and PAPP-A levels alone and in combination to predict preeclampsia. Pregnancy Hypertens. 2016, 6, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Zain, H. Prospective Evaluation of Screening Performance of First-Trimester Prediction Models for Preterm Preeclampsia. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. S1), S191–S193. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Wang, W. Predictive value of prenatal screening markers combined with serum placental growth factor in early pregnancy for preeclampsia. Pak. J. Med. Sci. 2025, 41, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.E.; Sovio, U.; Gaccioli, F.; Cook, E.; Charnock-Jones, D.S.; Smith, G.C.S. The association between first trimester AFP to PAPP-A ratio and placentally-related adverse pregnancy outcome. Placenta 2019, 81, 25–31. [Google Scholar] [CrossRef]
- Brunkow, M.E.; Gardner, J.C.; Van Ness, J.; Paeper, B.W.; Kovacevich, B.R.; Proll, S.; Skonier, J.E.; Zhao, L.; Sabo, P.J.; Fu, Y.; et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 2001, 68, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Godang, K.; Frøslie, K.F.; Henriksen, T.; Isaksen, G.A.; Voldner, N.; Lekva, T.; Ueland, T.; Bollerslev, J. Umbilica cord levels of sclerostin, placental weight, and birth weight are predictors of total bone mineral content in neonates. Eur. J. Endocrinol. 2013, 168, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145, 1–33, Erratum in Int. J. Gynaecol. Obstet. 2019, 146, 390–391. https://doi.org/10.1002/ijgo.12892. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Syngelaki, A.; O’Gorman, N.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 492–495, Correction in Ultrasound Obstet. Gynecol. 2017, 50, 807. https://doi.org/10.1002/uog.18950. [Google Scholar] [CrossRef]
- Tan, M.Y.; Wright, D.; Syngelaki, A.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Greco, E.; Wright, A.; Maclagan, K.; et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: Results of SPREE. Ultrasound Obstet. Gynecol. 2018, 51, 743–750. [Google Scholar] [CrossRef]
- Poon, L.C.; Galindo, A.; Surbek, D.; Chantraine, F.; Stepan, H.; Hyett, J.; Tan, K.H.; Verlohren, S. From first-trimester screening to risk stratification of evolving pre-eclampsia in second and third trimesters of pregnancy: Comprehensive approach. Ultrasound Obstet. Gynecol. 2020, 55, 5–12. [Google Scholar] [CrossRef]
- Poon, L.C.; Kametas, N.A.; Maiz, N.; Akolekar, R.; Nicolaides, K.H. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 2009, 53, 812–818. [Google Scholar] [CrossRef]
- Mosimann, B.; Amylidi-Mohr, S.K.; Surbek, D.; Raio, L. First trimester screening for preeclampsia—A systematic review. Hypertens. Pregnancy 2020, 39, 1–11. [Google Scholar] [CrossRef]
- Hu, J.; Gao, J.; Liu, J.; Meng, H.; Hao, N.; Song, Y.; Ma, L.; Luo, W.; Sun, J.; Gao, W.; et al. Prospective evaluation of first-trimester screening strategy for preterm pre-eclampsia and its clinical applicability in China. Ultrasound Obstet. Gynecol. 2021, 58, 529–539. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Yu, F.; Li, X.; Chen, X.; Zhu, D.; Sun, J.; Huang, Q.; Li, M.; Sun, M.; et al. CircRNA_06354 might promote early-onset preeclampsia in humans via hsa-miR-92a-3p/vascular endothelial growth factor-A. J. Hypertens. 2023, 41, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, K.; Fijałkowska, A.; Issat, T.; Maciejewski, T.M. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int. J. Mol. Sci. 2021, 22, 3132. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Sun, J.; Groome, L.J.; Wang, Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E836–E843. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Ivankova, K.; Krofta, L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS ONE 2017, 12, e0171756. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.B.; Wang, W. Human placental microRNAs and preeclampsia. Biol. Reprod. 2013, 88, 130. [Google Scholar] [CrossRef]
- Munjas, J.; Sopić, M.; Stefanović, A.; Košir, R.; Ninić, A.; Joksić, I.; Antonić, T.; Spasojević-Kalimanovska, V.; ProsencZmrzljak, U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int. J. Mol. Sci. 2021, 22, 10652. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, C.; Xu, M.; Sui, X.; Sun, L.; Liu, Y.; Su, M.; Wang, H.; Yuan, Y.; Zhang, S.; et al. Serum lncRNAs in early pregnancy as potential biomarkers for the prediction of pregnancy-induced hypertension, including preeclampsia. Mol. Ther. Nucleic Acids 2021, 24, 416–425. [Google Scholar] [CrossRef] [PubMed]
- NICE. PlGF-Based Testing to Help Diagnose Suspected Preeclampsia (Triage PlGF Test, Elecsys Immunoassay sFlt-1/PlGF Ratio, DELFIA Xpress PlGF 1-2-3 Test, and BRAHMS sFlt-1 Kryptor/BRAHMS PlGF plus Kryptor PE ratio). Diagnostics Guidance. [DG23]. Available online: https://www.nice.org.uk/guidance/dg23/ (accessed on 20 July 2021).
- Regitz-Zagrosek, V.; Roos-Hesselink, J.W.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef] [PubMed]
- Danish Society for Obstetrics and Gynecology: Danish 2018 National Clinical Guideline for Hypertensive Disorders in Pregnancy and Preeclampsia. Available online: https://static1.squarespace.com/static/5467abcce4b056d72594db79/t/5bac84e7652dea0a1b5fb489/1538032877105/180924+PE-guideline-final+sandbjerg.pdf (accessed on 3 November 2021).
- German Society of Obstetrics and Gynecology (DGGG); Austrian Society of Obstetrics and Gynecology (OEGGG); Swiss Society for Obstetric and Gynecology (SGGG). Guidelines for Hypertensive Disorders in Pregnancy: Diagnosis and Therapy. Available online: https://register.awmf.org/assets/guidelines/015-018l_S2k_Diagnostik_Therapie_hypertensiver_Schwangerschaftserkrankungen_2019-07.pdf (accessed on 28 June 2019).
- Spanish Society of Gynaecology and Obstetrics (SEGO): Practical assistance guide: Hypertensive disorders in pregnancy. Prog. Obstet. Ginecol. 2020, 63, 244–272.
- Vatish, M.; Strunz-McKendry, T.; Hund, M.; Allegranza, D.; Wolf, C.; Smare, C. sFlt-1/PlGF ratio test for pre-eclampsia: An economic assessment for the UK. Ultrasound Obstet. Gynecol. 2016, 48, 765–771. [Google Scholar] [CrossRef]
- Figueira, S.F.; Wolf, C.; D’Innocenzo, M.; de Carvalho, J.P.V.; Barbosa, M.G.; Zlotnik, E.; Cordioli, E. Economic evaluation of sFlt-1/PlGF ratio test in pre-eclampsia prediction and diagnosis in two Brazilian hospitals. Pregnancy Hypertens. 2018, 13, 30–36. [Google Scholar] [CrossRef]
- Chantraine, F.; VanCalsteren, K.; Devlieger, R.; Gruson, D.; Keirsbilck, J.V.; Dubon Garcia, A.; Vandeweyer, K.; Gucciardo, L. Enhancing the value of the sFlt-1/PlGF ratio for the prediction of preeclampsia: Costanalysis from the Belgian healthcare payers’ perspective. Pregnancy Hypertens. 2021, 26, 31–37. [Google Scholar] [CrossRef]
- Schlembach, D.; Hund, M.; Schroer, A.; Wolf, C. Economic assessment of the use of the sFlt-1/PlGF ratio test to predict preeclampsia in Germany. BMC Health Serv. Res. 2018, 18, 603. [Google Scholar] [CrossRef]
- Chuah, T.T.; Tey, W.S.; Ng, M.J.; Tan, E.T.H.; Chern, B.; Tan, K.H. Serum sFlt-1/PlGF ratio has better diagnostic ability in early- compared to late-onset pre-eclampsia. J. Perinat. Med. 2018, 47, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Sapantzoglou, I.; Rouvali, A.; Koutras, A.; Chatziioannou, M.I.; Prokopakis, I.; Fasoulakis, Z.; Zachariou, E.; Douligeris, A.; Mortaki, A.; Perros, P.; et al. sFLT1, PlGF, the sFLT1/PlGF Ratio and Their Association with Pre-Eclampsia in Twin Pregnancies—A Review of the Literature. Medicina 2023, 59, 1232. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Herraiz, I.; Schlembach, D.; Verlohren, S.; Brennecke, S.; Chantraine, F.; Klein, E.; Lapaire, O.; Llurba, E.; Ramoni, A.; et al. Implementation of the sFlt-1/PlGF ratio for prediction and diagnosis of pre-eclampsia in singleton pregnancy: Implications for clinical practice. Ultrasound Obstet. Gynecol. 2015, 45, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Caillon, H.; Tardif, C.; Dumontet, E.; Winer, N.; Masson, D. Evaluation of sFlt-1/PlGF Ratio for Predicting and Improving Clinical Management of Pre-eclampsia: Experience in a Specialized Perinatal Care Center. Ann. Lab. Med. 2018, 38, 95–101. [Google Scholar] [CrossRef] [PubMed]


| High Risk Factor for PE | Moderate Risk Factors for PE |
|---|---|
| Prior preeclampsia | First pregnancy |
| Chronic hypertension | Maternal age > 40 years |
| Pregestational diabetes mellitus | Multifetal pregnancy |
| Chronic kidney disease (including kidney-transplanted women) | Prior pregnancy with placental abruption |
| Antiphospholipid syndrome/Systemic lupus erythematosus | Prior pregnancy with stillbirth |
| Multiple gestation | Prior pregnancy with FGR |
| Pre-pregnancy BMI > 30 | Genetic susceptibility |
| Assisted reproductive technology | |
| Family history of thrombophilia | |
| Pregnancy interval of >10 years | |
| Family history of preeclampsia | |
| Trisomy 13 fetus | |
| Maternal low birth weight Race |
| Author | Ref. | Role of Endothelial Dysfunction in Pathogenesis of PE |
|---|---|---|
| Jim B. et al., 2017 | [17] | Central role in PE pathogenesis; caused by antiangiogenic imbalance (↑ sFlt-1, ↑ sEng → ↓ VEGF/PlGF); leads to hypertension, proteinuria, and long-term vascular risk. |
| Stepan H. et al., 2023 | [18] | Endothelial dysfunction due to angiogenic imbalance (↑ sFlt-1/↓ PlGF) causes vasoconstriction, increased permeability, and organ injury in PE. |
| Redman C.W. et al., 2005 | [19] | Systemic endothelial activation and injury—central to maternal syndrome; causes vasoconstriction, hypertension, and proteinuria in PE. |
| Palei A.C. et al., 2013 | [20] | Placental ischemia–induced endothelial dysfunction (↓ NO, ↑ endothelin-1, ↑ sFlt-1) drives vasoconstriction and hypertension in PE. |
| Brosens I. et al., 1967 | [21] | Defective spiral artery remodeling → placental ischemia → endothelial dysfunction underlying PE. |
| Brosens I. et al., 2011 | [22] | Abnormal deep placentation → placental ischemia → endothelial dysfunction → PE and other obstetrical syndromes. |
| Taylor R.N. et al., 2003 | [23] | Low PlGF → impaired placental angiogenesis → endothelial dysfunction → PE. |
| Taylor R.N. et al., 2009 | [24] | VEGF promotes endothelial proliferation, angiogenesis, and tissue repair. |
| Ntellas P. et al., 2020 | [25] | VEGF/VEGFR overactivation → Endothelial dysfunction → ↑ vascular permeability, inflammation, hypoxia → tumor progression, metastasis. |
| Koch S. et al., 2012 | [26] | Endothelial dysfunction from abnormal VEGR signaling → ↑ permeability and disrupts vascular integrity. |
| Boudria A. et al., 2019 | [27] | Endothelial dysfunction induced by the VEGF165b/β1 integrin-VEGFR autocrine loop enhances tumor progression and resistance to anti-angiogenic therapy. |
| Woolard J. et al., 2009 | [28] | Altered VEGF-A isoform balance → endothelial dysfunction vascular permeability, stability, and signaling. |
| Zhou Y. et al., 1997 | [29] | Impaired cytotrophoblast vascular adhesion and invasion → endothelial dysfunction in PE → defect vascular remodeling. |
| Brosens I. et al., 1972 | [30] | Endothelial dysfunction → placental infracts in PE->inadequate spiral artery remodeling and ↓ placental perfusion. |
| De Wolf F. et al., 1975 | [31] | Endothelial dysfunction in hypertensive pregnancies → acute atherosis impairing spiral arteries and placental flow. |
| Huang Q.T. et al., 2013 | [32] | Oxidative stress → endothelial dysfunction → ↑ sFlt-1 expression in trophoblast → PE. |
| Vaughan J.E. et al., 2002 | [33] | Oxidative stress → endothelial dysfunction, → vasoconstriction, ↑ vascular permeability, and inflammation. |
| Romero R. et al., 2013 | [34] | Endothelial dysfunction → ↓ bioavailability of vasodilators (e.g., NO, prostacyclin) and ↑ vasoconstrictors (e.g., endothelin-1), → hypertension, ↑ vascular permeability and organ injury. |
| Rajakumar A. et al., 2004 | [35] | HIFs are overexpressed and functionally active in preeclamptic placenta, contributing to altered gene expression under low oxygen conditions. |
| Caniggia I. et al., 2000 | [36] | Sustained HIF-1α/TGF-β3 signaling impairs trophoblast invasion and spiral artery remodeling, → to abnormal placental perfusion → endothelial dysfunction, hypertension and organ injury. |
| Caniggia I. et al., 2019 | [37] | Abnormal placental factors (e.g., excess sFlt-1) → endothelial dysfunction, → vasoconstriction, ↑ permeability, and organ injury. |
| Caniggia I. et al., 2018 | [38] | Imbalance between angiogenic factors (e.g., placental growth factor) and anti-angiogenic factors (e.g., soluble endoglin, soluble VEGF receptor-1) → endothelial dysfunction → impairs vascular remodeling and ↑ vascular resistance → hypertension and organ injury. |
| Powe C.E. et al., 2011 | [39] | Imbalance between pro-angiogenic and anti-angiogenic factors →, maternal endothelial dysfunction → hypertension, proteinuria, and ↑ cardiovascular risk later in life. |
| Ahmad S. et al., 2004 | [40] | ↑ levels sFlt-1 in preeclamptic placental tissue inhibit angiogenesis by sequestering VEGF and placental growth factor (PlGF), → impaired endothelial cell migration and tube formation. |
| Maynard S.E. et al., 2003 | [41] | ↑ sFlt1 → endothelial dysfunction by sequestering vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), → hypertension, proteinuria, and glomerular endotheliosis. |
| Walsh S.W. et al., 2004 | [42] | Imbalance between TXA2 and (PGI2), favoring TXA2 → hypertension, platelet aggregation, and ↓ uteroplacental blood flow. Oxidative stress exacerbates this imbalance by ↑ TXA2 synthesis and ↓ PGI2 synthesis. Low-dose aspirin therapy has been considered for the prevention of preeclampsia because it selectively inhibits TXA2 synthesis. |
| Shah D. et al., 2015 | [43] | Placental ischemia → release of bioactive factors into the systemic circulation → widespread endothelial dysfunction. This dysfunction is characterized by ↓ NO and PG levels, ↑ ET-1 and TX A2 levels, and ↑ vascular smooth muscle contraction, culminating in hypertension and organ damage. |
| Su H. et al., 2024 | [44] | ET-1 induces stronger contractions in placental veins through ETAR/ETBR receptors, despite ↓ CaV1.2 expression. Hypoxia ↑ ET-1 levels, promoting caldesmon (CALD1) expression and ↑ vascular tone → placental vascular dysfunction. |
| Zolfaghari M.A. et al., 2021 | [45] | An imbalance between Th17 and Treg cells, regulated by microRNAs → endothelial dysfunction and systemic inflammation. ↑ Th17 and ↓ Treg cell numbers, along with ↑ IL-17 and ↓ IL-10 levels, are observed in preeclamptic patients. Additionally, the upregulation of miR-106b and miR-326 has been linked to this imbalance. |
| Aneman I. et al., 2020 | [46] | EOPE is associated with impaired placental development and growth restriction, while LOPE is linked to maternal endothelial dysfunction |
| Regal J.F. et al., 2017 | [47] | In PE, deregulated complement activation → endothelial dysfunction, hypertension, and placental insufficiency. C5 inhibition → potential therapeutic approach. |
| Phipps E.A. et al., 2019 | [48] | sFLT-1and sENG released into maternal circulation disrupt VEGF/PlGF signaling, lowering production of vasodilators (e.g., nitric oxide, prostacyclin) → vasoconstriction, proteinuria, hypertension and multi-organ injury. |
| Youssef L. et al., 2021 | [49] | ↑ activation of complement and coagulation cascades → deposition of C5b-9 and vWF on endothelial cells exacerbating endothelial injury and dysfunction in early onset severe PE. |
| Alpoim P.N. et al., 2011 | [50] | ↑ vWF levels and ↓ ADAMTS13 activity → microvascular thrombosis and endothelial injury. |
| Venou T.M. et al., 2024 | [51] | ↓ ADAMTS13 activity and elevated complement activation (C5b-9), → microvascular thrombosis, complement-mediated endothelial damage, and vascular injury in preeclampsia/HELLP syndrome |
| Author, Year | Ref. | GA/Sample Size | Mean BP (mmHg) | Findings—Key Conclusions |
|---|---|---|---|---|
| Verlohren et al., 2014 | [77] | 10–37 w 1149 women | --------- | Developed gestational age-specific cutoffs; ratio ≥ 85 (<34 w) and ≥110 (≥34 w) linked to PE. Gestational age-specific cutoffs improve diagnostic accuracy. |
| Álvarez-Fernández et al., 2014 | [78] | <34 w (early-onset PE focus) 257 women | Mild PE: SBP: 145 DBP: 91 Severe PE: SBP: 167 DBP: 106 | Identified angiogenic factors as biomarkers for early PE and adverse pregnancy outcomes. sFlt-1/PlGF ratio improves early diagnosis and predicts imminent delivery. |
| Hund et al., 2014 | [87] | 24–37 w without clinical suspicions. 1000 women | --------- | Adoption of the sFlt-1/PlGF test in clinical practice has the potential to reduce the frequency of adverse pregnancy outcomes for both mother and fetus, and decrease healthcare costs associated with the unnecessary hospitalization of women with suspected preeclampsia. |
| Zeisler et al., 2016 | [79] | 24 + 0–36 + 6 w 1050 women | --------- | sFlt-1/PlGF ratio ≤ 38 ruled out PE within 1-week (NPV 99.3%). Ratio is reliable for short-term prediction, helps exclude PE. |
| Zeisler et al., 2019 | [88] | 24 + 0–36 + 6 w 550 women | Development Cohort: NO PE: SBP: 128 DBP: 80 PE: SBP: 137 DBP: 85 Validation cohort: NO PE: SBP: 125 DBP: 78 PE: SBP: 137 DBP: 90 | A sFlt-1/PlGF ratio ≤ 38 effectively excluded the onset of PE for up to 2 and 3 weeks after baseline (NPVs of 97.9% and 95.7%, respectively). Within 4 weeks, the development of pre-PE was also reliably ruled out, NPV 94.3%. |
| Bian et al., 2019 | [89] | 20 + 0 (18 + 0 in Japan)–36 + 6 w 764 women | NO PE: SBP: 132 DBP: 81 PE: SBP: 144 DBP: 90 |
An sFlt-1/PlGF ratio of ≤38 had an NPV of 98.9% (95% CI, 97.6–99.6%) for ruling out fetal adverse outcomes within 1 week and a ratio of >38 had a positive predictive value of 53.5% (95% CI, 45.0–61.8%) for ruling in fetal adverse outcomes within 4 weeks.
The sFlt-1/PlGF ratio cutoff of 38 demonstrated clinical value for the short-term prediction of preeclampsia in Asian women with suspected preeclampsia, potentially helping to prevent unnecessary hospitalization and intervention. |
| Cerdeira et al., 2019 | [90] | 24 + 0–37 + 0 w 370 women with suspected PE | Non-reveal arm: SBP: 132 DBP: 180 Reveal arm: SBP: 131 DBP: 84 | The use of the sFlt-1/PlGF ratio enhanced clinical accuracy while leaving admission rates unchanged. |
| Perry et al., 2020 | [80] | >20 w 302 pregnant women with hypertension |
Not Delivered within 4 days: 107
Delivery within 7 days: 111.5 Delivery within 14 days: 110.8 | sFlt-1/PIGF ratio combined with the maternal characteristics predicts delivery within 1 or 2 weeks in GA < 35 weeks. Angiogenic biomarkers add predictive value, especially when the sFlt-1/PlGF ratio is applied as a continuous measure, though their usefulness declines after 35 weeks of gestation. |
| Andersen et al., 2021 | [81] | ≥20 wk 517 women | --------- | Kryptor sFlt-1/PlGF thresholds validated in real-life. Ratio cutoffs applicable in clinical routine. The sFlt-1/PlGF ratio is a useful clinical tool for ruling out and ruling in preeclampsia within 1 week. |
| Soundararajan et al., 2021 | [82] | 28–37 w 50 women | sFlt-1/plGf > 85: SBP: 157 DBP: 100 | Pregnancy management guided by these biomarkers enabled the closer monitoring of women at highest risk for adverse outcomes, while allowing standard follow-up for those at lower risk. |
| Peguero et al., 2021 | [83] | <34 w 63 women | ------------ | Longitudinal changes in sflt-1 added prognostic value. Serial measurements of sflt-1 improve prediction of adverse outcomes. |
| Drögeetal. et al., 2021 | [84] | 20–37 w 1117 women | No AO: SBP: 127.4 DBP: 79.6 AO: SBP: 138.3 DBP: 86.4 | Risk-stratification with the sFlt-1/PlGF cutoff values into high- (>85), intermediate- (38–85), and low-risk (<38) showed a significantly shorter time to delivery in high- and intermediate- versus low-risk patients. Ratio predicted PE-related adverse outcomes in real-world setting. High clinical utility for predicting maternal/fetal complications. |
| Jeon et al., 2021 | [85] | 20-36 + 6 w 73 women | ------ | Ratio predictive and prognostic marker for PE. Confirms ratio as useful for both diagnosis and prognosis. |
| Kifle et al., 2022 | [91] | 24 + 0–37 + 0 w 370 women | ------- | Models incorporating continuous values of sFlt-1 or the sFlt-1/PlGF ratio demonstrated superior predictive performance compared with models using PlGF alone or applying a fixed cutoff of 38 for the ratio. The study confirmed the clinical utility of sFlt-1/PlGF biomarkers for risk stratification in women with suspected preeclampsia, supporting their integration into predictive models to improve management and surveillance strategies. |
| Dathan-Stumpf et al., 2022 | [86] | >33 w 283 women with hypertension | ------------ | The sFlt-1/PlGF ratio shows a positive correlation with the severity of placental dysfunction and an inverse relationship with time to delivery. The sFlt-1/PlGF ratio distinguishes between pregnancies with normal outcomes and those complicated by placental dysfunction. |
| Hughes et al., 2023 | [92] | 20 + 0–36 + 6 w 222 women | ----------- | <37 w ratio ≤ 38 rules out PE in the subsequent week (NPV 96.2%) and ruled in PE within 4 weeks (PPV) 75%. In New Zealand, the predictive value of the sFlt-1/PlGF ratio aligns with international evidence. When applied in practice, it can help stratify risk in women with suspected preeclampsia and focus resources on those most vulnerable. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papapanagiotou, A.; Daskalaki, M.A.; Gargalionis, A.N.; Margoni, A.; Domali, A.; Daskalakis, G.; Papavassiliou, A.G. The Role of Angiogenetic Factors in Preeclampsia. Int. J. Mol. Sci. 2025, 26, 10431. https://doi.org/10.3390/ijms262110431
Papapanagiotou A, Daskalaki MA, Gargalionis AN, Margoni A, Domali A, Daskalakis G, Papavassiliou AG. The Role of Angiogenetic Factors in Preeclampsia. International Journal of Molecular Sciences. 2025; 26(21):10431. https://doi.org/10.3390/ijms262110431
Chicago/Turabian StylePapapanagiotou, Angeliki, Maria Anastasia Daskalaki, Antonios N. Gargalionis, Angeliki Margoni, Aikaterini Domali, George Daskalakis, and Athanasios G. Papavassiliou. 2025. "The Role of Angiogenetic Factors in Preeclampsia" International Journal of Molecular Sciences 26, no. 21: 10431. https://doi.org/10.3390/ijms262110431
APA StylePapapanagiotou, A., Daskalaki, M. A., Gargalionis, A. N., Margoni, A., Domali, A., Daskalakis, G., & Papavassiliou, A. G. (2025). The Role of Angiogenetic Factors in Preeclampsia. International Journal of Molecular Sciences, 26(21), 10431. https://doi.org/10.3390/ijms262110431

