Modification of Polylactide with Triblock and Diblock Copolymers of Ethylene Glycol and Propylene Glycol
Abstract
1. Introduction
2. Results and Discussion
2.1. Thermal Properties
2.2. Dynamic Mechanical Thermal Properties
2.3. Morphology
2.4. Tensile and Tensile Impact Properties
3. Materials and Methods
3.1. Materials
3.2. Blend and Sample Preparation
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef]
- Jiang, Y.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8, 243. [Google Scholar] [CrossRef]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current Progress on Bio-Based Polymers and Their Future Trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef]
- Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. Chem. Bio. Eng. Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol. Rapid Commun. 2016, 37, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Piorkowska, E. Overview of Biobased Polymers. Adv. Polym. Sci. 2019, 283, 1–35. [Google Scholar] [CrossRef]
- Sinclair, R.G. The case for polylactic acid as a commodity packaging plastic. J. Macromol. Sci. Part A Pure Appl. Chem. 1996, 33, 585–597. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Hydrolysis and biodegradation of poly(lactic acid). Adv. Polym. Sci. 2018, 279, 119–151. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J. Research progress in toughening modification of poly(lactic acid). J. Polym. Sci. B Polym. Phys. 2011, 49, 1051–1083. [Google Scholar] [CrossRef]
- Grijpma, D.W.; Pennings, A.J. (Co)polymers of L-lactide, 2. Mechanical properties. Macromol. Chem. Phys. 1994, 195, 1649–1663. [Google Scholar] [CrossRef]
- Stefaniak, K.; Masek, A. Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials 2021, 14, 5254. [Google Scholar] [CrossRef] [PubMed]
- Coudane, J.; Van Den Berghe, H.; Mouton, J.; Garric, X.; Nottelet, B. Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022, 27, 4135. [Google Scholar] [CrossRef]
- Hiljanen-Vainio, M.; Karjalainen, T.; Seppälä, J. Biodegradable Lactone Copolymers. I. Characterization and Mechanical Behavior of ε-Caprolactone and Lactide Copolymers. J. Appl. Polym. Sci. 1996, 59, 1281–1288. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Das, S.; Lipik, V.; Mohanty, A.K.; Misra, M.; You, X.; Tan, L.P.; Chang, B.P. The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications—Review. Materials 2024, 17, 4556. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Piorkowska, E.; Dutkiewicz, S.; Sowinski, P. Toughening of Polylactide by Blending with a Novel Random Aliphatic–Aromatic Copolyester. Eur. Polym. J. 2014, 59, 59–68. [Google Scholar] [CrossRef]
- Anderson, K.S.; Lim, S.H.; Hillmyer, M.A. Toughening of Polylactide by Melt Blending with Linear Low-Density Polyethylene. J. Appl. Polym. Sci. 2003, 89, 3757–3768. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Wang, S.; Shen, D. Miscibility and Phase Structure of Binary Blends of Polylactide and Poly(methyl methacrylate). J. Polym. Sci. Part B Polym. Phys. 2003, 41, 23030. [Google Scholar] [CrossRef]
- Ishida, S.; Nagasaki, R.; Chino, K.; Dong, T.; Inoue, Y. Toughening of Poly(L-lactide) by Melt Blending with Rubbers. J. Appl. Polym. Sci. 2009, 113, 558–566. [Google Scholar] [CrossRef]
- Oyama, H.T. Super-Tough Poly(Lactic Acid) Materials: Reactive Blending with Ethylene Copolymer. Polymer 2009, 50, 747–751. [Google Scholar] [CrossRef]
- Hashima, K.; Nishitsuji, S.; Inoue, T. Structure–Properties of Supertough PLA Alloy with Excellent Heat Resistance. Polymer 2010, 51, 3934–3939. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, H. Improvement in Toughness of Poly(L-lactide) (PLLA) through Reactive Blending with Acrylonitrile-Butadiene-Styrene Copolymer (ABS): Morphology and Properties. Eur. Polym. J. 2009, 45, 738–746. [Google Scholar] [CrossRef]
- Sun, S.; Weng, Y.; Zhang, C. Recent Advancements in Bio-Based Plasticizers for Polylactic Acid (PLA): A Review. Polym. Test. 2024, 140, 108693. [Google Scholar] [CrossRef]
- Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Thermal and Mechanical Properties of Plasticized Poly(L-Lactic Acid). J. Appl. Polym. Sci. 2003, 90, 1731–1738. [Google Scholar] [CrossRef]
- Martin, O.; Avérous, L. Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer 2001, 42, 6209–6219. [Google Scholar] [CrossRef]
- Labrecque, L.V.; Kumar, R.A.; Davé, V.; Gross, R.A.; McCarthy, S.P. Citrate Esters as Plasticizers for Poly(Lactic Acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513. [Google Scholar] [CrossRef]
- Ljungberg, N.; Wesslén, B. The Effects of Plasticizers on the Dynamic Mechanical and Thermal Properties of Poly(Lactic Acid). J. Appl. Polym. Sci. 2002, 86, 1227–1234. [Google Scholar] [CrossRef]
- Nijenhuis, A.J.; Colstee, E.; Grijpma, D.W.; Pennings, A.J. High Molecular Weight Poly(L-Lactide) and Poly(Ethylene Oxide) Blends: Thermal Characterization and Physical Properties. Polymer 1996, 37, 5849–5857. [Google Scholar] [CrossRef]
- Jacobsen, S.; Fritz, H.G. Plasticizing Polylactide—The Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999, 39, 1303–1310. [Google Scholar] [CrossRef]
- Sheth, M.; Kumar, R.A.; Davé, V.; Gross, R.A.; McCarthy, S.P. Biodegradable Polymer Blends of Poly(Lactic Acid) and Poly(Ethylene Glycol). J. Appl. Polym. Sci. 1997, 66, 1495–1505. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y.S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Crystallization and Phase Separation in Blends of High Stereoregular Poly(Lactide) with Poly(Ethylene Glycol). Polymer 2003, 44, 5681–5689. [Google Scholar] [CrossRef]
- Kulinski, Z.; Piorkowska, E. Crystallization, Structure and Properties of Plasticized Poly(L-Lactide). Polymer 2005, 46, 10290–10300. [Google Scholar] [CrossRef]
- Kuliński, Z.; Piorkowska, E.; Gadzinowska, K.; Stasiak, M. Plasticization of Poly(L-Lactide) with Poly(Propylene Glycol). Biomacromolecules 2006, 7, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Piorkowska, E.; Kuliński, Z.; Galeski, A.; Masirek, R. Plasticization of Semicrystalline Poly(L-Lactide) with Poly(Propylene Glycol). Polymer 2006, 47, 7178–7188. [Google Scholar] [CrossRef]
- Kang, H.; Li, Y.; Gong, M.; Guo, Y.; Guo, Z.; Fang, Q.; Li, W. An Environmentally Sustainable Plasticizer Toughened Polylactide. RSC Adv. 2018, 8, 11643–11651. [Google Scholar] [CrossRef]
- Turco, R.; Tesser, R.; Cucciolito, M.E.; Fagnano, M.; Ottaiano, L.; Mallardo, S.; Malinconico, M.; Santagata, G.; Di Serio, M. Cynara cardunculus Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers. ACS Sustain. Chem. Eng. 2019, 7, 4069–4077. [Google Scholar] [CrossRef]
- Dominguez-Candela, I.; Ferri, J.M.; Cardona, S.C.; Lora, J.; Fombuena, V. Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid). Polymers 2021, 13, 1283. [Google Scholar] [CrossRef]
- Perez-Nakai, A.; Lerma-Canto, A.; Dominguez-Candela, I.; Garcia-Garcia, D.; Ferri, J.M.; Fombuena, V. Comparative Study of the Properties of Plasticized Polylactic Acid with Maleinized Hemp Seed Oil and a Novel Maleinized Brazil Nut Seed Oil. Polymers 2021, 13, 2376. [Google Scholar] [CrossRef]
- Najera-Losada, L.; Narvaez-Rincon, P.C.; Orjuela, A.; Gomez-Caturla, J.; Fenollar, O.; Balart, R. Plasticization of Polylactide Using Biobased Epoxidized Isobutyl Esters Derived from Waste Soybean Oil Deodorizer Distillate. J. Polym. Environ. 2025, 33, 125–144. [Google Scholar] [CrossRef]
- Hu, Y.; Rogunova, M.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of Poly(Lactide)/Poly(Ethylene Glycol) Blends. Part 1. Poly(Lactide) with Low Stereoregularity. Polymer 2003, 44, 5701–5710. [Google Scholar] [CrossRef]
- Hu, Y.S.; Hu, Y.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of Poly(Lactide)/Poly(Ethylene Glycol) Blends. Part 2. Poly(Lactide) with High Stereoregularity. Polymer 2003, 44, 5711–5720. [Google Scholar] [CrossRef]
- Pluta, M.; Paul, M.-A.; Alexandre, M.; Dubois, P. Plasticized Polylactide/Clay Nanocomposites. II. The Effect of Aging on Structure and Properties in Relation to the Filler Content and the Nature of Its Organo-Modification. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 312–325. [Google Scholar] [CrossRef]
- Ulbricht, J.; Jordan, R.; Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 2014, 35, 4848–4861. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, M.; Eubeler, J.P.; Zok, S.; Knepper, T.P. Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater. Water Res. 2008, 42, 4791–4801. [Google Scholar] [CrossRef] [PubMed]
- Zgoda-Grzeskowiak, A.; Grzeskowiak, T.; Zembrzuska, J.; Franska, M.; Franski, R.; Kozik, T.; Lukaszewski, Z. Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test. Chemosphere 2007, 67, 928–933. [Google Scholar] [CrossRef]
- West, R.J.; Davis, J.W.; Pottenger, L.H.; Banton, M.I.; Graham, C. Biodegradability relationships among propylene glycol substances in the organization for Economic Cooperation and Development ready- and seawater biodegradability tests. Environ. Toxicol. Chem. 2007, 26, 862–871. [Google Scholar] [CrossRef]
- .Jia, Z.; Tan, J.; Han, C.; Yang, Y.; Dong, L. Poly(ethylene glycol-co-propylene glycol) as a macromolecular plasticizing agent for polylactide: Thermomechanical properties and aging. J. Appl. Polym. Sci. 2009, 114, 1105–1117. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Pluta, M.; Piorkowska, E.; Krasnikova, N. Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. J. Appl. Polym. Sci. 2012, 125, 4292–4301. [Google Scholar] [CrossRef]
- Pluta, M.; Piorkowska, E. Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym. Test. 2015, 41, 209–218. [Google Scholar] [CrossRef]
- Pluta, M.; Piorkowska, E. Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym. Test. 2015, 46, 79–87. [Google Scholar] [CrossRef]
- Sarasua, J.-R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry studies on poly (ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13, 690–696. [Google Scholar] [CrossRef]
- Lai, W.-C.; Liau, W.-B.; Lin, T.-T. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer 2004, 45, 3073–3080. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Tsubakihara, S.; Sugimoto, Y.; Nakafuku, C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J. Polym. Sci. Part B Polym. Phys. 2004, 42, 25–32. [Google Scholar] [CrossRef]
- Quero, E.; Müller, A.J.; Signori, F.; Coltelli, M.-B.; Bronco, S. Isothermal Cold-Crystallization of PLA/PBAT Blends With and Without the Addition of Acetyl Tributyl Citrate. Macromol. Chem. Phys. 2012, 213, 36–48. [Google Scholar] [CrossRef]
- Bartczak, Z.; Galeski, A.; Martuscelli, E. Spherulite growth in isotactic polypropylene-based blends: Energy and morphological considerations. Polym. Eng. Sci. 1984, 24, 1155–1165. [Google Scholar] [CrossRef]
- Available online: https://www.scribd.com/document/395470836/Pla-2002d-Data-Sheet (accessed on 18 October 2025).
- ASTM D1238; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2023.
- Clover, B.C. Micelle and Aggregate Formation in Amphiphilic Block Copolymer Solutions. Ph.D. Dissertation, The University of Maryland, College Park, MD, USA, 2010. Available online: https://api.drum.lib.umd.edu/server/api/core/bitstreams/3fa4c97d-0337-494f-84c8-4b6e314eeb19/content?trackerId=22428863e75bee0b (accessed on 15 October 2025).
- Pluta, M.; Galeski, A. Crystalline and Supermolecular Structure of Polylactide in Relation to the Crystallization Method. J. Appl. Polym. Sci. 2002, 86, 1386–1395. [Google Scholar] [CrossRef]
- ISO-527; Plastics—Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 8256; Plastics—Determination of Tensile-Impact Strength. International Organization for Standardization: Geneva, Switzerland, 2023.








| Sample Code | In Nitrogen | In Air | ||
|---|---|---|---|---|
| T5% (°C) | Td (°C) | T5% (°C) | Td (°C) | |
| P2700-40 | 324 | 392 | 197 | 270 |
| P4000-50 | 350 | 393 | 223 | 285 |
| qPLA | 334 | 382 | 331 | 367 |
| qPLA5P2700-40 | 335 | 370 | 314 | 369 |
| qPLA10P2700-40 | 325 | 369 | 295 | 372 |
| qPLA5P4000-50 | 340 | 381 | 324 | 371 |
| qPLA10P4000-50 | 322 | 379 | 306 | 375 |
| Sample Code | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | Xc (%) | XcPEG (%) |
|---|---|---|---|---|---|---|---|
| P2700-40 | −68 | −13 | 1.5 | 13 | 43 | 22 | 55 |
| P4000-50 | −72 | - | - | 26, 47 | 74 | 38 | 75 |
| Sample Code | Tg (°C) | Tcc (°C) | ΔHcc (J/gPLA) | Tm (°C) | ΔHm (J/gPLA) | XcPLA (%) | TLE″ (°C) | THE″ (°C) |
|---|---|---|---|---|---|---|---|---|
| qPLA | 53 | 122 | 25.5 | 150 | 25.5 | 0 | - | 57 |
| cPLA | 55 | 99 | 2.0 | 151 | 35 | 31 | - | 58 |
| qPLA5P2700-40 | 48 | 102 | 28.9 | 144, 153 | 30.3 | 1.3 | - | 45 |
| qPLA10P2700-40 | 38 | 93 | 30.6 | 141, 152 | 31.6 | 0.9 | (−20) | 39 |
| qPLA5P4000-50 | 46 | 120 | 21.4 | 155 | 22.4 | 0.9 | −32 | 49 |
| qPLA10P4000-50 | 46 | 113 | 29.4 | 153 | 29.6 | 0.2 | −50 | 46 |
| cPLA5P2700-40 | 43 | - | - | 145, 153 | 33.6 | 31.7 | −38 | 52 |
| cPLA10P2700-40 | 42 | - | - | 142, 153 | 34.8 | 33.0 | −39 | 49 |
| cPLA5P4000-50 | 46 | 94 | 10.8 | 151 | 35.0 | 22.8 | −46 | 51 |
| cPLA10P4000-50 | 46 | - | - | 151, 156 | 35.5 | 33.5 | −64 | 51 |
| Sample Code | E (GPa) | σy (MPa) | εy (%) | σb (MPa) | εb (%) | U (kJ/m2) |
|---|---|---|---|---|---|---|
| qPLA | 1.45 | 67 | 4.2 | 60 | 8.0 | 65 |
| cPLA | 1.55 | - | - | 68 | 5.0 | 34 |
| qPLA5P2700-40 | 1.20 | 59 | 5.1 | 44 | 11.0 | 66 |
| qPLA10P2700-40 | 0.87 | 46 | 7.5 | 38 | 560 | 70 |
| qPLA5P4000-50 | 1.35 | 56 | 4.3 | 36 | 35 | 95 |
| qPLA10P4000-50 | 1.30 | 44 | 3.4 | 26 | 240 | 90 |
| cPLA5P2700-40 | 1.25 | 52 | 5.0 | 46 | 6.7 | 55 |
| cPLA10P2700-40 | 0.93 | 35 | 5.0 | 26 | 36 | 120 |
| cPLA5P4000-50 | 1.22 | - | - | 39 | 3.7 | 57 |
| cPLA10P4000-50 | 1.25 | 34 | 3.0 | 27 | 123 | 107 |
| Trade Name | Sample Code | M (g/mol) | Pc (wt%) |
|---|---|---|---|
| Pluronic®17R4 | P2700-40 | 2700 | 40 |
| Pluriol®WSB125 | P4000-50 | 4000 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, M.; Bojda, J.; Piorkowska, E. Modification of Polylactide with Triblock and Diblock Copolymers of Ethylene Glycol and Propylene Glycol. Int. J. Mol. Sci. 2025, 26, 10422. https://doi.org/10.3390/ijms262110422
Pluta M, Bojda J, Piorkowska E. Modification of Polylactide with Triblock and Diblock Copolymers of Ethylene Glycol and Propylene Glycol. International Journal of Molecular Sciences. 2025; 26(21):10422. https://doi.org/10.3390/ijms262110422
Chicago/Turabian StylePluta, Miroslaw, Joanna Bojda, and Ewa Piorkowska. 2025. "Modification of Polylactide with Triblock and Diblock Copolymers of Ethylene Glycol and Propylene Glycol" International Journal of Molecular Sciences 26, no. 21: 10422. https://doi.org/10.3390/ijms262110422
APA StylePluta, M., Bojda, J., & Piorkowska, E. (2025). Modification of Polylactide with Triblock and Diblock Copolymers of Ethylene Glycol and Propylene Glycol. International Journal of Molecular Sciences, 26(21), 10422. https://doi.org/10.3390/ijms262110422

