Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles
Abstract
1. Introduction
2. Results and Discussion
2.1. Keratin Hydrolysate Synthesis and Characterization
2.2. Morphology and Properties of EchP Extract and bioAgNPs
2.3. Properties of and Structure of KerP Electrospun Mats
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Keratin Hydrolysate Preparation and Characterization
3.2.2. Green Synthesis of Silver Nanoparticles (bioAgNPs) and Characterization
3.2.3. Keratin/PEO Electrospinning Solutions Preparation and Characterization
3.2.4. Keratin Mats Electrospinning and Characterization
3.2.5. Bioactivity Assay
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 2023, 80, 7247–7312. [Google Scholar]
- Manivannan, R.K.; Sharma, N.; Kumar, V.; Jayaraj, I.; Vimal, S.; Umesh, M. A comprehensive review on natural macromolecular biopolymers for biomedical applications: Recent advancements, current challenges, and future outlooks. Carbohydr. Polym. Technol. Appl. 2024, 8, 100536. [Google Scholar] [CrossRef]
- Nazish, J.; Atif, M. Polysaccharides based biopolymers for biomedical applications: A review. Polym. Adv. Technol. 2024, 35, e6203. [Google Scholar]
- Shubha, A.; Sharmita, G.; Manaswi, R. Recent advances in preparation and biomedical applications of keratin based biomaterials. Biotechno. Sustain. Mater. 2024, 1, 16. [Google Scholar] [CrossRef]
- Feroz, S.; Muhammad, N.; Ratnayake, J.; Dias, G. Keratin-based materials for biomedical applications. Bioact. Mater. 2020, 5, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Aadil, K.R.; Bhange, K.; Kumar, N.; Mishra, G. Keratin nanofibers in tissue engineering: Bridging nature and innovation. Biotechnol. Sustain. Mater. 2024, 1, 24. [Google Scholar] [CrossRef]
- Ye, M.; Qin, M.; Qiu, R.; Li, J. Keratin-based wound dressings: From waste to wealth. Int. J. Biol. Macromol. 2022, 211, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Soleymani Eil Bakhtiari, S.; Karbasi, S. Keratin-containing scaffolds for tissue engineering applications: A review. J. Biomater. Sci. Polym. Ed. 2024, 35, 916–965. [Google Scholar] [CrossRef]
- Swati Sharma, S.; Rostamabadi, H.; Gupta, S.; Kumar Nadda, A.; Kharazmi, S.M.; Jafari, S.M. Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur. Polym. J. 2022, 180, 11614. [Google Scholar] [CrossRef]
- Lazarus, B.S.; Chadha, C.; Velasco-Hogan, A.; Barbosa, J.D.V.; Jasiuk, I.; Meyers, M.A. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021, 24, 102798. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, H.; Li, Y.; Li, Z.; Wen, Y.; Wang, Z.; Fan, B.; Li, Q.; Li, Y. Antimicrobial keratin-based sustainable food packaging films reinforced with citric acid-modified cellulose nanocrystals. Sustain. Mater. Technol. 2024, 42, e01133. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, P.; Bu, T.; Mao, Y.; He, H.; Ge, N. Recent progress in the application of electrospinning technology in the biomedical field. J. Funct. Biomater. 2025, 16, 266. [Google Scholar] [CrossRef] [PubMed]
- Tonin, C.; Aluigi, A.; Varesano, A.; Vineis, C. Keratin-based Nanofibres. In Nanofibers; Kumar, A., Ed.; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar]
- Bayanmunkh, O.; Baatar, B.; Tserendulam, N.; Boldbaatar, K.; Radnaabazar, C.; Khishigjargal, T.; Norov, E. Fabrication of wet-spun wool keratin/poly (vinyl alcohol) hybrid fibers: Effects of keratin concentration and flow rate. ACS Omega 2023, 8, 12327–12333. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Xin, T.; Deng, H.; Chen, J.; Tang, S.-L.; Liu, L.-S.; Chen, X.-L. Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury. J. Mater. Sci. Mater. Med. 2025, 36, 15. [Google Scholar] [CrossRef]
- Donato, R.K.; Mija, A. Keratin associations with synthetic, biosynthetic and natural polymers: An extensive review. Polymers 2019, 12, 32. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, S.; Yang, H.; Liao, Z.; Gong, Z.; Zhao, W.; Li, Y.; Gu, J.; Wei, Z.; Yang, J. Keratin-based composite bioactive films and their preservative effects on cherry tomato. Molecules 2022, 27, 6331. [Google Scholar] [CrossRef]
- Costa, A.F.; Luís, S.; Noro, J.; Silva, S.; Silva, C.; Ribeiro, A. Therapeutic textiles functionalized with keratin-based particles encapsulating terbinafine for the treatment of onychomycosis. Int. J. Mol. Sci. 2022, 23, 13999. [Google Scholar] [CrossRef]
- He, M.; Chen, M.; Dou, Y.; Ding, J.; Yue, H.; Yin, G.; Chen, X.; Cui, Y. Electrospun silver nanoparticles-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) antibacterial composite nanofibers. Polymers 2022, 12, 305. [Google Scholar] [CrossRef]
- Banu, S.P.N.; Rajendrakumar, K. Studies on gelatin-keratin-chitosan functionalized silver nanoparticles based bionanocomposite films with improved antimicrobial and UV-blocking properties. Biopolymers 2025, 116, e70023. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Luo, J.; Qi, X.; Naz, A.; Khan, I.A.; Liu, H.; Yu, S.; Wei, J. Silver nanoparticles: Synthesis, structure, properties and applications. Nanomaterials 2024, 14, 1425. [Google Scholar] [CrossRef] [PubMed]
- Arshad, F.; Naikoo, G.A.; Hassan, I.U.; Chava, S.R.; El-Tanani, M.; Aljabali, A.A.; Tambuwala, M.M. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl. Biochem. Biotechnol. 2024, 196, 3636–3669. [Google Scholar] [CrossRef]
- Shahzadi, S.; Fatima, S.; Ain, Q.U.; Shafiq, Z.; Janjua, M.R.S.A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: A multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RCS Adv. 2025, 15, 3858–3880. [Google Scholar] [CrossRef]
- Ahmadi, F. Phytochemistry, mechanisms, and preclinical studies of echinacea extracts in modulating immune responses to bacterial and viral infections: A comprehensive Review. Antibiotics 2024, 13, 947. [Google Scholar] [CrossRef]
- Gecer, E.N.; Erenler, R.; Temiz, C.; Genc, N.; Yildiz, I. Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Particul. Sci. Technol. 2021, 40, 50–57. [Google Scholar] [CrossRef]
- Ahmadi, F.; Kariman, K.; Mousavi, M.; Rengel, Z. Echinacea: Bioactive compounds and agronomy. Plants 2024, 13, 1235. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega 2020, 5, 8572–8578. [Google Scholar] [CrossRef]
- Kakkar, P.; Balaraman, M.; Shanmugam, G. Transient structures of keratins from hoof and horn influence their self association and supramolecular assemblies. Inter. J. Biol. Macromol. 2016, 93, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Tou, J.C.; Jaczynski, J. Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill (Euphausia Superba) using isoelectric solubilization/precipitation. J. Food Sci. 2008, 74, 31–39. [Google Scholar] [CrossRef] [PubMed]
- De Meutter, J.; Goormaghtigh, E. Amino acid side chain contribution to protein FTIR spectra: Impact on secondary structure evaluation. Eur. Biophys. J. 2021, 50, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gong, J.S.; Ye, J.P.; He, J.M.; Li, R.Y.; Jiang, M.; Geng, Y.; Zhang, Y.; Chen, J.H.; Xu, Z.H.; et al. Enzymatic extraction of bioactive and self-assembling wool keratin for biomedical applications. Macromol. Biosci. 2020, 20, e2000073. [Google Scholar] [CrossRef]
- Reddy, N.; Zhou, W.; Ma, M. Keratin-Based Materials; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020; pp. 30–45. [Google Scholar]
- Burlou-Nagy, C.; Bănică, F.; Jurca, T.; Vicaș, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and pharmacological properties. A review. Plants 2022, 11, 1244. [Google Scholar] [CrossRef]
- Fierascu, I.C.; Fierascu, I.; Baroi, A.M.; Ungureanu, C.; Ortan, A.; Avramescu, S.M.; Somoghi, R.; Fierascu, R.C.; Dinu-Parvu, C.E. Phytosynthesis of biological active silver nanoparticles using Echinacea purpurea L. extracts. Materials 2022, 15, 7327. [Google Scholar] [CrossRef] [PubMed]
- Temerdashev, Z.; Vinitskaya, E.; Meshcheryakova, E.; Shpigun, O. Chromatographic analysis of water and water-alcohol extracts of Echinacea purpurea L. obtained by various methods. Microchem. J. 2022, 179, 107507. [Google Scholar] [CrossRef]
- Balčiūnaitienė, A.; Liaudanskas, M.; Puzerytė, V.; Viškelis, J.; Janulis, V.; Viškelis, P.; Jankauskaitė, V. Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants 2022, 11, 1085. [Google Scholar] [CrossRef]
- Hosseingholian, A.; Gohari, S.D.; Feirahi, F.; Moammeri, F.; Mesbahian, G.; Moghaddam, Z.S.; Ren, Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023, 24, 100500. [Google Scholar] [CrossRef]
- Pradeep, M.; Kruszka, D.; Kachlicki, P.; Mondal, D.; Franklin, G. Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustain. Chem. Eng. 2022, 10, 562–571. [Google Scholar] [CrossRef]
- Eker, F.; Akdaşçi, E.; Duman, H.; Bechelany, M.; Karav, S. Green Synthesis of Silver Nanoparticles Using Plant Extracts: A Comprehensive Review of Physicochemical Properties and Multifunctional Applications. Int. J. Mol. Sci. 2025, 26, 6222. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef]
- Predoi, D.; Groza, A.; Iconaru, S.L.; Predoi, G.; Barbuceanu, F.; Guegan, R.; Motelica-Heino, M.S.; Cimpeanu, C. Properties of basil and lavender essential oils adsorbed on the surface of hydroxyapatite. Materials 2018, 11, 652. [Google Scholar] [CrossRef]
- Damavandi, M.S.; Shojaei, H.; Esfahani, B.N. The anticancer and antibacterial potential of bioactive secondary metabolites derived from bacterial endophytes in association with Artemisia absinthium. Sci. Rep. 2023, 13, 18473. [Google Scholar] [CrossRef]
- Ladika, G.; Strati, I.F.; Tsiaka, T.; Cavouras, D.; Sinanoglou, V.J. On the assessment of strawberries’ shelf-life and quality, based on image analysis, physicochemical methods, and chemometrics. Foods 2024, 13, 234. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Batley, R.J.; Mani, J.S.; Naiker, M. How Low can it go? ATR-FTIR characterization of compounds isolated from ginger at the nanogram level. Eng. Proc. 2023, 56, 80. [Google Scholar]
- Singh, P.K.; Bhardwaj, K.; Dubeya, P.; Prabhune, A. UV-assisted size sampling and antibacterial screening of Lantana camara leaf extract synthesized silver nanoparticles. RSC Adv. 2015, 5, 24513–24520. [Google Scholar] [CrossRef]
- Moges, W.; Misskire, Y. Green synthesis, characterization and antibacterial activities of silver nanoparticles using Sida schimperiana Hochst. ex A. Rich (Chifrig) leaves extract. Discov. Mater. 2025, 5, 34. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- De Silva, C.; Nawawi, N.M.; Abd Karim, M.M.; Abd Gani, S.; Masarudin, M.J.; Gunasekaran, B.; Ahmad, S.A. The mechanistic action of biosynthesised silver nanoparticles and its application in aquaculture and livestock industries. Animals 2021, 11, 2097. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Panda, S.R.; Meher, A.; Prusty, G.; Behera, S.; Prasad, B.R. Antibacterial properties and therapeutic potential of few medicinal plants: Current insights and challenges. Discover Plants 2025, 2, 21. [Google Scholar] [CrossRef]
- Jan, T.; Ganaie, A.A.; Khurshid, I. Antimicrobial activity of plant derived extracts on disease causing strains of bacteria. SR J. Biotechnol. Biochem. 2024, 10, 33–46. [Google Scholar]
- Gwada, A.; Smith, B.; Lee, C. Synergistic antibacterial activity of silver nanoparticles synthesized with plant extracts. RSC Adv. 2025, 15, 1234–1245. [Google Scholar]
- Zahra, F.T.; Zhang, Y.; Ajayi, A.O.; Quick, Q.; Mu, R. Optimization of electrospinning parameters for lower molecular weight polymers: A case study on polyvinylpyrrolidone. Polymers 2024, 16, 1217. [Google Scholar] [CrossRef]
- Yong, L.; Jia, L.; Jie, F.; Meng, W. Preparation and Characterization of Electrospun Human Hair Keratin/Poly (ethylene oxide) Composite Nanofibers. Materia 2014, 19, 382–388. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Liu, Y.; Jiao, Y. Effect of molecular weight on conformational changes of PEO: An infrared spectroscopic analysis. J. Mater. Sci. 2015, 50, 1544–1552. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, J.; Medhi, T.; Kumar, A. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bio-active compounds identified in HR-LC/MS analysis of the polyherbal formulation from Northeast India. ASC Omega 2022, 7, 33067–33078. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Mendoza Villicana, A.; Gutiérrez, M.C.; Martínez, A.I.; Rodríguez, J.F.; González, C.M.; González, I.; Martínez, R. Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. Polym. Plast. Technol. Mater. 2023, 62, 1029–1056. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, G.Z.; Zhou, Y. Effects of Viscosities and Solution Composition on Core-Sheath Electrospun Polycaprolactone (PCL) Nanoporous Microtubes. Polymers 2021, 13, 3650. [Google Scholar] [CrossRef]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef]
- Gencturk, A.; Kahraman, E.; Güngör, S.; Özhan, G.; Özsoy, Y.; Sarac, A.S. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: Characterization studies and in vitro assays. Artif. Cells Nanomed. Biotechnol. 2017, 45, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Gaidau, C.; Epure, D.-G.; Enascuta, C.E.; Carsote, C.; Sendrea, C.; Proietti, N.; Chen, W.; Gu, H. Wool keratin total solubilisation for recovery and reintegration—An ecological approach. J. Clean. Prod. 2019, 236, 117586. [Google Scholar] [CrossRef]
- Gaidau, C.; Stanca, M.; Niculescu, M.-D.; Alexe, C.-A.; Becheritu, M.; Horoias, R.; Cioineag, C.; Râpa, M.; Stanculescu, I.R. Wool keratin hydrolysates for bioactive additives preparation. Materials 2021, 14, 4696. [Google Scholar] [CrossRef]
- Olariu, L.; Dumitriu, B.G.; Gaidau, C.; Stanca, M.; Tanase, L.M.; Ene, M.D.; Stanculescu, I.-R.; Tablet, C. Bioactive low molecular weight keratin hydrolysates for improving skin wound healing. Polymers 2022, 14, 1125. [Google Scholar] [CrossRef]
- Brown, E.M.; Pandya, K.; Taylor, M.M.; Liu, C.K. Comparison of Methods for Extraction of Keratin from Waste Wool. Agric. Sci. 2016, 7, 670–679. [Google Scholar] [CrossRef]
- He, F. Laemmli-SDS-PAGE. Bio-Protocol Exchange. Available online: https://bio-protocol.org/exchange/protocoldetail?id=80&type=1 (accessed on 15 October 2024).
- Drobota, M.; Gradinaru, L.M.; Vlad, S.; Bargan, A.; Butnaru, M.; Angheloiu, M.; Aflori, M. Preparation and Characterization of electrospun collagen based composites for biomedical applications. Materials 2020, 13, 3961. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Suzuki, K.; Citterio, D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 2008, 80, 6928–6934. [Google Scholar] [CrossRef] [PubMed]
- Andziukevičiūtė-Jankūnienė, A.; Zasčiurinskaitė, U.; Adomavičiūtė, E.; Jankauskaitė, V. Investigation of electrospun keratin mats containing biosynthesized silver nanoparticles. In Proceedings of the 19th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Liepaja, Latvia, 12–14 June 2023. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Volatile matter (%) | 9.00 ± 0.35 |
Total ash (%) | 14.40 ± 0.24 |
Total nitrogen (%) | 12.50 ± 0.34 |
Protein substance (%) | 75.75 ± 0.34 |
Aminic nitrogen (%) | 0.75 ± 0.05 |
Molecular weight (Da) | 11,315 |
pH (pH units) | 10.30 ± 0.10 |
Electrical conductivity (μS/cm) | 13,700 |
Viscosity (cP) | 47 |
Average particle size (nm) | 2353 |
Polydispersity (a.u.) | 0.42 |
Zeta potential (mV) | −11.4 |
Proteinogenic amino acids (% of protein): | |
| 17.89 ± 0.15 |
| 13.60 ± 0.12 |
| 9.88 ± 0.08 |
| 7.64 ± 0.70 |
| 7.46 ± 0.06 |
| 7.03 ± 0.06 |
| 6.52 ± 0.06 |
| 5.40 ± 0.05 |
| 5.03 ± 0.04 |
| 5.03 ± 0.04 |
| 4.47 ± 0.04 |
| 4.28 ± 0.04 |
| 2.24 ± 0.02 |
| 2.42 ± 0.02 |
| 1.86 ± 0.02 |
| 0.80 ± 0.01 |
Band No. | Mw (Da) | Relative Front | Adj. Volume (Int) | Volume (Int) | Band (%) | Lane (%) |
---|---|---|---|---|---|---|
1 | 250,000 | 0.043 | 33,698 | 3,285,033 | 6.7 | 6.7 |
2 | 250,000 | 0.092 | 20,851 | 2,766,977 | 4.1 | 4.1 |
3 | 14,000 | 0.771 | 451,675 | 29,961,669 | 89.2 | 89.2 |
4 | 10,000 | 0.863 | 232 | 2,340,039 | 0.0 | 0.0 |
Material | β-Sheets, % | Random Coils, % | α-Helix, % | Turns, % |
---|---|---|---|---|
Wool keratin hydrolysate | 26.88 | 53.55 | 19.56 | – |
Wool [32] | 10.00 | – | 56.00 | 25 |
Time, min | L* | a* | b* | C* | h |
---|---|---|---|---|---|
0 | 25.92 ± 1.05 | 7.06 ± 0.02 | 6.73 ± 0.04 | 9.76 ± 1.04 | 43.62 ± 1.02 |
15 | 26.07 ± 0.70 | 7.36 ± 1.01 | 5.91 ± 0.02 | 9.44 ± 0.20 | 38.75 ± 1.04 |
30 | 25.35 ± 0.71 | 6.93 ± 0.07 | 3.90 ± 0.07 | 7.95 ± 0.10 | 29.41 ± 2.14 |
45 | 25.22 ± 0.02 | 6.44 ± 0.25 | 3.86 ± 0.10 | 7.51 ± 0.02 | 30.92 ± 0.07 |
60 | 24.22 ± 0.31 | 4.16 ± 0.02 | 2.56 ± 0.05 | 4.88 ± 0.20 | 31.63 ± 0.30 |
Compound Name | EchP | bioAgNPs |
---|---|---|
The total content of:
| 24.56 ± 0.4 | 15.13 ± 0.24 |
| 17.30 ± 0.45 | 6.55 ± 0.24 |
| 74.23 ± 1.29 | 60.02 ± 1.78 |
| 38.14 ± 0.67 | 21.50 ± 0.24 |
Composition | Viscosity, mPa·s | Conductivity, μS/cm | ||
---|---|---|---|---|
Average | ±SD | Average | ±SD | |
KerP | 164.0 | 0.1 | 22.0 | 0.1 |
KerP/EchP(7.5) | 123.3 | 0.6 | 22.1 | 0.1 |
KerP/EchP(15) | 91.8 | 0.3 | 22.0 | 0.1 |
KerP/bioAgNPs(7.5) | 133.3 | 0.1 | 22.8 | 0.1 |
KerP/bioAgNPs(15) | 100.6 | 0.6 | 22.4 | 0.1 |
Functional Group | Peak (cm−1): | ||
---|---|---|---|
KerP | KerP/EchP | KerP/bioAgNPs | |
O–H and N–H stretching | 3245 | 3242 | 3240 |
Methylene (CH2) groups stretching (PEO) | 2882 | 2882 | 2882 |
Amide I (C=O stretching) | 1653 | 1645 | 1640 |
Amide II (N–H bending, C–N stretching) | 1545 | 1540 | 1536 |
C–O–C stretching (PEO crystalline phase indicator) Planar conformation of PEO Helical conformation of PEO | 1140, 1099, 1060 1340, 1240, 961 1359, 1278, 945, 841 | 1140, 1099, 1060 1340, 1240, 961 1359, 1278, 945, 841 | 1140, 1099, 1060 1340, 1240, 961 1359, 1278, 945, 841 |
Code of Sample | Amount (%) | ||||
---|---|---|---|---|---|
Keratin Hydrolysate | PEO Aqueous Solution (c = 10%) | Water | EchP Aqueous Extract (10 mg/mL) | bioAgNP Colloidal Solution (0.58 mg/mL) | |
KerP | 14 | 72.0 | 14 | – | – |
KerP/EchP(7.5) | 13 | 66.5 | 13 | 7.5 | – |
KerP/EchP(15) | 12 | 61.0 | 12 | 15.0 | – |
KerP/bioAgNPs(7.5) | 13 | 66.5 | 13 | – | 7.5 |
KerP/bioAgNPs(15) | 12 | 61.0 | 12 | – | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andziukevičiūtė-Jankūnienė, A.; Adomavičiūtė, E.; Gaidau, C.; Valeika, V.; Balčiūnaitienė, A.; Viškelis, J.; Rapa, M.; Jankauskaitė, V. Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles. Int. J. Mol. Sci. 2025, 26, 9919. https://doi.org/10.3390/ijms26209919
Andziukevičiūtė-Jankūnienė A, Adomavičiūtė E, Gaidau C, Valeika V, Balčiūnaitienė A, Viškelis J, Rapa M, Jankauskaitė V. Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles. International Journal of Molecular Sciences. 2025; 26(20):9919. https://doi.org/10.3390/ijms26209919
Chicago/Turabian StyleAndziukevičiūtė-Jankūnienė, Akvilė, Erika Adomavičiūtė, Carmen Gaidau, Virgilijus Valeika, Aistė Balčiūnaitienė, Jonas Viškelis, Maria Rapa, and Virginija Jankauskaitė. 2025. "Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles" International Journal of Molecular Sciences 26, no. 20: 9919. https://doi.org/10.3390/ijms26209919
APA StyleAndziukevičiūtė-Jankūnienė, A., Adomavičiūtė, E., Gaidau, C., Valeika, V., Balčiūnaitienė, A., Viškelis, J., Rapa, M., & Jankauskaitė, V. (2025). Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles. International Journal of Molecular Sciences, 26(20), 9919. https://doi.org/10.3390/ijms26209919