Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Characterization
Phenolic Compounds Profile in C. majus
Group | Phenolic Compounds | Molecular Formula | Retention Time | Calculated | Experimental | ms/ms | Error | MSIMI Level a | Mean | SD | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(min) | [m/z]- | [m/z]- | (ppm) | (mg/g) | (mg/g) | |||||||||
Phenolic Acids | ||||||||||||||
Hydroxybenzoic acids | Protocatechuic acid | C7H6O4 | 5.8 | 153.0193 | 153.0192 | 55.6681 | 81.0347 | 108.0216 | 109.0295 | 6.76 | 2 | 0.468 | 0.077 | [38] |
Veratric Acid | C9H10O4 | 6.56 | 181.0506 | 181.0508 | 92.92 | 107.0502 | 136.91 | 163.0399 | 1.33 | 2 | 0.525 | 0.077 | ||
Salicylic acid | C7H6O3 | 7.21 | 137.0244 | 137.0244 | 65.0397 | 93.0346 | 96.0093 | 108. 8996 | 8.17 | 2 | 1.545 | 0.22 | ||
4-H-phenylacetic acid | C8H8O3 | 7.52 | 151.04 | 151.0399 | 44.9984 | 94.9573 | 107.0503 | 122.952 | 6.68 | 1 | 0.659 | 0.083 | Standard | |
Vanillic acid | C8H8O4 | 7.74 | 167.0349 | 167.0353 | 108.0217 | 123.0448 | 138.929 | 152.0117 | 8.53 | 1 | 0.153 | 0.02 | ||
Ellagic Acid | C14H6O8 | 8.33 | 300.9989 | 300.999 | 126.8811 | 257.2135 | 265.1811 | 283.1914 | 3.94 | 2 | 0.235 | 0.035 | [39] | |
Hydroxycinnamic acids | Dihydrocaffeic acid | C9H10O4 | 6.95 | 181.0506 | 181.0508 | 59.6585 | 92.92 | 136.91 | 181.0509 | 1.33 | 1 | 0.174 | 0.002 | Standard |
Neochlorogenic acid | C16H18O9 | 7.01 | 353.0878 | 353.0871 | 106.0289 | 133.0151 | 178.0739 | 310.1153 | 1.27 | 2 | 0.192 | 0 | [40] | |
Caffeic acid | C9H8O4 | 7.57 | 179.0349 | 179.0354 | 44.9982 | 90.9243 | 107.0504 | 135.0452 | 8.9 | 1 | 0.04 | 0.005 | Standard | |
Homovanillic acid | C9H10O4 | 8.28 | 181.0506 | 181.0508 | 92.92 | 122.8946 | 136.9099 | 152.9176 | 7.2 | 1 | 0.006 | 0.001 | Standard | |
p-Coumaric acid | C9H8O3 | 8.56 | 163.04 | 163.0401 | 93.0344 | 119.0503 | 121.0522 | 162.8392 | 1.15 | 2 | 0.058 | 0.008 | [38] | |
Ferulic acid | C10H10O4 | 8.8 | 193.0506 | 193.05 | 121.0659 | 134.0374 | 149.0972 | 178.0273 | 6.24 | 1 | 0.055 | 0.01 | Standard | |
4,5-Dicaffeoylquinic acid | C25H24O12 | 9.01 | 515.1194 | 515.1195 | 93.0345 | 135.0452 | 173.0455 | 191.0563 | 2.15 | 1 | 0.178 | 0.004 | ||
Hydroxycinnamic acid amides | Feruloylagmatine | C15H22N4O3 | 8.08 | 305.1619 | 305.1589 | 97.0659 | 135.0816 | 249.1497 | 287.1646 | −6.05 | 2 | 0.006 | 0.001 | [41] |
p-Coumaroylputrescine | C13H18N2O2 | 9.23 | 233.1295 | 233.1659 | 120.0819 | 164.9275 | 215.1557 | 4.93 | 2 | 0.001 | 0 | [42] | ||
N-Caffeoyltyramine | C17H17NO4 | 9.29 | 298.1084 | 298.1086 | 75.0088 | 135.03 | 179.0357 | 206.9749 | 4.31 | 2 | 0.008 | 0 | [43] | |
p-Coumaroyltyramine | C17H17NO3 | 9.96 | 282.1135 | 282.1136 | 119.0503 | 132.0579 | 145.0298 | 162.0561 | 4.07 | 2 | 0.901 | 0.002 | [44] | |
Feruloyltyramine | C18H19O4N | 10.16 | 312.1241 | 312.12418 | 148.0531 | 178.0511 | 190.0513 | 297.101 | 3.67 | 2 | 1.77 | 0.242 | [45] | |
p-Coumaroyltryptamine | C19H18N2O2 | 11.8 | 305.1295 | 305.1759 | 135.0816 | 249.1497 | 287.1646 | 8.41 | 2 | 0.002 | 0 | [46] | ||
Flavonoids | ||||||||||||||
Flavanol | Catechin | C15H14O6 | 6.98 | 289.0717 | 289.0718 | 146.9387 | 162.8392 | 190.9286 | 197.8081 | 4.17 | 1 | 0.002 | 0 | Standard |
Epicatechin | C15H14O6 | 7.12 | 289.0717 | 289.0718 | 160.8422 | 181.0508 | 190.9287 | 195.8111 | 4.17 | 1 | 0.021 | 0 | ||
Flavanone | Hesperidin | C28H34O15 | 9.01 | 609.1824 | 609.1462 | 151.0033 | 243.0298 | 271.0244 | 300.0277 | 2.01 | 1 | 0.181 | 0.024 | |
Naringenin | C15H12O5 | 11.32 | 271.0611 | 271.0613 | 59.0139 | 62.5824 | 95.9463 | 198.829 | 4.68 | 1 | 0.59 | 0.031 | ||
Hesperetin | C16H14O6 | 11.57 | 301.0717 | 301.2022 | 126.8811 | 221.1912 | 265.1811 | 283.1914 | 4.18 | 1 | 0.038 | 0.004 | ||
Pinocembrin | C15H12O4 | 13.62 | 255.0662 | 255.0664 | 151.0037 | 171.0455 | 213.0554 | 4.8 | 2 | 2.599 | 0.094 | [47] | ||
Flavone | Vitexin | C21H20O10 | 8.28 | 431.0983 | 477.10413 | 1101.0243 | 114.6059 | 205.9066 | 348.5617 | 8.28 | 1 | 0.001 | 0 | Standard |
Cynaroside | C21H20O11 | 8.44 | 447.0932 | 447.0929 | 227.0347 | 255.0298 | 284.0329 | 285.0406 | 0.8 | 1 | 0.002 | 0 | ||
Diosmin | C28H32O15 | 8.87 | 607.1668 | 607.1673 | 277.0348 | 283.0256 | 299.0564 | 2.65 | 1 | 0.024 | 0.005 | |||
Apigetrin | C21H20O10 | 9.01 | 431.0983 | 431.0983 | 151.0038 | 211.0406 | 268.038 | 311.0568 | 1.08 | 1 | 0.002 | 0 | ||
Diosmetin-7-glucoside | C22H22O11 | 9.18 | 461.1089 | 461.1087 | 63.0241 | 255.0298 | 284.0328 | 299.0564 | 2 | 1 | 0.023 | 0.001 | ||
Luteolin/Scutellarein | C15H10O6 | 10.38 | 285.0404 | 285.0405 | 121.0296 | 126.8811 | 133.0295 | 136.9099 | 4.08 | 1 | 0.003 | 0 | ||
Apigenin | C15H10O5 | 11.23 | 269.0455 | 269.0455 | 57.8443 | 64.8013 | 65.6261 | 3.9 | 1 | 0.004 | 0 | |||
Diosmetin | C16H12O6 | 11.4 | 299.0561 | 299.0561 | 59.014 | 69.6641 | 164.8297 | 255.3027 | 1.1 | 1 | 0.002 | 0 | ||
Flavonol | Isorhamnetin-rutinoside- glucoside | C34H42O21 | 7.15 | 785.2145 | 785.2154 | 315.051 | 623.1617 | 2.5 | 2 | 0.028 | 0 | [30] | ||
Quercetin-3-rhamnosylrutinoside | C33H40O20 | 7.66 | 755.204 | 755.2044 | 300.0276 | 271.025 | 255.0302 | 243.0297 | 1.49 | 2 | 0.141 | 0.003 | [28] | |
Isorhamnetin rutinoside-rhamnoside | C34H42O20 | 7.96 | 769.2196 | 769.2206 | 315.051 | 299.0197 | 271.0249 | 243.0299 | 2.69 | 2 | 0.082 | 0.001 | [30] | |
Rutin | C27H30O16 | 8.12 | 609.1461 | 609.1466 | 243.0296 | 271.0246 | 300.0276 | 405.7915 | 2.72 | 1 | 0.429 | 0.035 | Standard | |
Quercetin-glucoside | C21H20O12 | 8.4 | 463.0881 | 463.0878 | 151.0037 | 255.0303 | 271.0245 | 300.0275 | 1.63 | 2 | 0.021 | 0.001 | [28] | |
Kaempferol 3-rutinoside | C27H30O15 | 8.53 | 593.1511 | 593.1517 | 183.0449 | 227.035 | 255.0301 | 285.0406 | 2.85 | 1 | 0.069 | 0.011 | Standard | |
Isorhamnetin rutinoside | C28H32O16 | 8.58 | 623.1617 | 623.1619 | 315.051 | 299.0197 | 271.0249 | 243.0299 | 2.03 | 2 | 0.32 | 0.024 | [30] | |
Guaiaverin/Reynoutrin | C20H18O11 | 8.73 | 433.0776 | 433.0764 | 151.0044 | 255.0307 | 271.025 | 300.0276 | −0.118 | 1 | 0.001 | 0 | Standard | |
Quercitrin/Quercetin 3-rhamnoside | C21H20O11 | 8.84 | 447.0932 | 447.0929 | 183.0463 | 255.0295 | 284.0329 | 300.0275 | 1.79 | 1 | 0.025 | 0.001 | ||
Isorhamnetin-3-glucoside | C22H22O12 | 8.89 | 477.1038 | 477.1041 | 199.0409 | 243.0298 | 285.0407 | 314.0435 | 2.88 | 1 | 0.005 | 0 | ||
Quercetin | C15H10O7 | 10.44 | 301.0353 | 301.2022 | 126.8811 | 221.1912 | 265.1811 | 283.1914 | 4.18 | 1 | 0.011 | 0 | ||
Kaempferol | C15H10O6 | 11.37 | 285.0404 | 285.2075 | 52.2938 | 126.8809 | 267.1924 | 5.3 | 1 | 0.007 | 0 | |||
Isorhamnetin | C16H12O7 | 11.53 | 315.051 | 315.0512 | 288.9368 | 294.8804 | 310.858 | 313.0358 | 1.34 | 1 | 0.042 | 0 | ||
Coumarins | ||||||||||||||
Esculetin/Aesculetin | C9H6O4 | 7.57 | 177.0193 | 177.0193 | 89.0393 | 105.0345 | 133.0296 | 149.0244 | 6.18 | 2 | 0.061 | 0.012 | [48] | |
Umbelliferone | C9H6O3 | 7.68 | 161.0244 | 161.0819 | 87.0451 | 115.0401 | 117.0557 | 132.9808 | 6.92 | 2 | 0.004 | 0 | [49] | |
Scoparone | C11H10O4 | 8.78 | 205.0506 | 205.0506 | 125.8733 | 157.8631 | 160.8422 | 161.8501 | 1.07 | 2 | 0.004 | 0 | [50] | |
Scopoletin | C10H8O4 | 8.98 | 191.0349 | 191.0193 | 102.9488 | 111.0088 | 146.9387 | 176.0115 | 3.82 | 2 | 0.008 | 0.001 | [45] | |
Stilbenes | ||||||||||||||
Resveratrol | C14H12O3 | 9.37 | 227.0713 | 227.1289 | 130.9838 | 165.1285 | 183.1392 | 227.1289 | 1.15 | 2 | 0.01 | 0 | [51] | |
Piceatannol | C14H12O4 | 10.98 | 243.0662 | 243.1236 | 146.961 | 199.1338 | 174.9564 | 225.1131 | 4.07 | 2 | 0.01 | 0 | [52] | |
Others | ||||||||||||||
Phenolic Aldehyde | Syringaldehyde | C9H10O4 | 6.56 | 181.0506 | 181.0508 | 92.92 | 136.91 | 152.9175 | 181.0509 | 1.33 | 2 | 0.124 | 0.008 | [53] |
Vanillin | C8H8O3 | 8.56 | 151.04 | 151.04 | 108.0217 | 122.9521 | 136.0166 | 151.0401 | 7.34 | 1 | 0.129 | 0.01 | Standard | |
Protocatechualdehyde | C7H6O3 | 10.3 | 137.0244 | 137.0244 | 92.92 | 108.9 | 124.8951 | 8.53 | 2 | 0.186 | 0.037 | [54] | ||
Phenylethanoids | Hydrotyrosol | C8H8O3 | 8.56 | 151.04 | 151.04 | 108.02 | 122.9521 | 136.0166 | 7.34 | 1 | 0.061 | 0.012 | Standard | |
Phenylpropanoids | Phenylacetic acid | C8H8O2 | 9.88 | 135.0451 | 135.0451 | 59.0139 | 87.0088 | 90.9241 | 1.09 | 1 | 5.774 | 0.323 |
2.2. Antimicrobial Activity
2.3. Cytocompatibility Evaluation
3. Materials and Methods
3.1. Chelidonium majus L. (C. majus)
3.2. Sericin
3.3. Combination of the Extracts
3.4. Identification and Quantification of Phenolic Compounds in C. majus
3.5. Bioactivities Evaluation
3.5.1. Antimicrobial Assay
3.5.2. Cytocompatibility Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Li, M.; Wang, L.; Zhang, J.; Wang, X.; Nie, J.; Ma, G. The Synergetic Effect of Alginate-Derived Hydrogels and Metal-Phenolic Nanospheres for Chronic Wound Therapy. J. Mater. Chem. B 2024, 12, 2571–2586. [Google Scholar] [CrossRef] [PubMed]
- Iosageanu, A.; Mihai, E.; Seciu-Grama, A.M.; Utoiu, E.; Gaspar-Pintiliescu, A.; Gatea, F.; Cimpean, A.; Craciunescu, O. In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of Aloe Vera Gel. J. Funct. Biomater. 2024, 15, 266. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Y.; Wang, T.; Zhang, J.; Song, Y.; Zhang, J.; Li, Y.; Zhou, D.; Gu, Z. Natural Polyphenolic Antibacterial Bio-Adhesives for Infected Wound Healing. Biomater. Sci. 2024, 12, 2282–2291. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, Y.; Xu, R.; Han, X.; Xiang, Z.; Guo, H.; Li, X.; Liang, J.; Zhang, X.; Fan, Y.; et al. Metal-Phenolic Self-Assembly Shielded Probiotics in Hydrogel Reinforced Wound Healing with Antibiotic Treatment. Mater. Horiz. 2023, 10, 3114–3123. [Google Scholar] [CrossRef]
- Aminzadehanboohi, M.; Makridakis, M.; Rasti, D.; Cambet, Y.; Krause, K.H.; Vlahou, A.; Jaquet, V. Redox Mechanisms Driving Skin Fibroblast-to-Myofibroblast Differentiation. Antioxidants 2025, 14, 486. [Google Scholar] [CrossRef] [PubMed]
- Yerebakan, M.; Tuter, G.; Bagriacik, E.U.; Oruklu, N.; Guldurur, T. Evaluation of the Anti-Inflammatory, Antioxidant and Wound Healing Effects of Pterostilbene in Human Gingival Fibroblasts in Vitro. Odontology 2025, 113, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Shipman, W.D.; Sun, Y.; Glahn, J.Z.; Beraki, L.; Hsia, H.C. Macroporous Scaffolds Based on Biomass Polymers and Their Applications in Wound Healing. J. Bioresour. Bioprod. 2025, 10, 14–31. [Google Scholar] [CrossRef]
- Olteanu, G.; Neacșu, S.M.; Joița, F.A.; Musuc, A.M.; Lupu, E.C.; Ioniță-Mîndrican, C.B.; Lupuliasa, D.; Mititelu, M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3849. [Google Scholar] [CrossRef]
- Rana, J.N.; Mumtaz, S. Prunin: An Emerging Anticancer Flavonoid. Int. J. Mol. Sci. 2025, 26, 2678. [Google Scholar] [CrossRef]
- Cioanca, O.; Lungu, I.I.; Batir-Marin, D.; Lungu, A.; Marin, G.A.; Huzum, R.; Stefanache, A.; Sekeroglu, N.; Hancianu, M. Modulating Polyphenol Activity with Metal Ions: Insights into Dermatological Applications. Pharmaceutics 2025, 17, 194. [Google Scholar] [CrossRef]
- Joorabloo, A.; Liu, T. Recent Advances in Reactive Oxygen Species Scavenging Nanomaterials for Wound Healing. Exploration 2024, 4, 20230066. [Google Scholar] [CrossRef]
- Liu, H.; Ai, R.; Liu, B.Z.; He, L. Tea Polyphenol Nano-Crosslinked Dynamical Hyaluronic Acid-Based Hydrogel for Diabetic Wound Healing. Int. J. Biol. Macromol. 2024, 282, 136856. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cao, H.C.; Wang, R.; Yang, Q.; Wei, S.; Pan, P.; Shi, H. Polyphenol-Hyaluronic Acid-Based Hydrogel Remodels the Wound Microenvironment and Eliminates Bacterial Infection for Accelerating Wound Healing. Int. J. Biol. Macromol. 2024, 280, 135931. [Google Scholar] [CrossRef]
- González-Acedo, A.; Illescas-Montes, R.; de Luna-Bertos, E.; Ruiz, C.; Ramos-Torrecillas, J.; García-Martínez, O.; Melguizo-Rodríguez, L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes 2024, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Dostemessova, A.B.; Ametov, A.A.; Kurmanbayeva, M.S.; Izbastina, K.S. Biomorphological and Phytochemical Parameters of Chelidonium majus L. in the Conditions of Kungei-Alatau. Fundam. Exp. Biol. 2023, 111, 57–67. [Google Scholar] [CrossRef]
- Maji, A.K.; Banerji, P. Chelidonium majus L. (Greater Celandine)-A Review on Its Phytochemical and Therapeutic Perspectives. Int. J. Herbal. Med. 2015, 3, 10–27. [Google Scholar] [CrossRef]
- Terzic, M.; Fayez, S.; Fahmy, N.M.; Eldahshan, O.A.; Uba, A.I.; Ponniya, S.K.M.; Selvi, S.; Nilofar; Koyuncu, I.; Yüksekdağ, Ö.; et al. Chemical Characterization of Three Different Extracts Obtained from Chelidonium majus L. (Greater Celandine) with Insights into Their In Vitro, In Silico and Network Pharmacological Properties. Fitoterapia 2024, 174, 105835. [Google Scholar] [CrossRef]
- Samatadze, T.E.; Yurkevich, O.Y.; Hazieva, F.M.; Konyaeva, E.A.; Morozov, A.I.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Agro-Morphological, Microanatomical and Molecular Cytogenetic Characterization of the Medicinal Plant Chelidonium majus L. Plants 2020, 9, 1396. [Google Scholar] [CrossRef]
- Nile, S.H.; Wang, H.; Nile, A.; Lin, X.; Dong, H.; Venkidasamy, B.; Sieniawska, E.; Enkhtaivan, G.; Kai, G. Comparative Analysis of Metabolic Variations, Antioxidant Potential and Cytotoxic Effects in Different Parts of Chelidonium majus L. Food Chem. Toxicol. 2021, 156, 112483. [Google Scholar] [CrossRef]
- Hilal, B.; Khan, M.M.; Fariduddin, Q. Recent Advancements in Deciphering the Therapeutic Properties of Plant Secondary Metabolites: Phenolics, Terpenes, and Alkaloids. Plant Physiol. Biochem. 2024, 211, 108674. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kohli, S.K.; Bali, S.; Sharma, M.; Kumar, R.; Bhardwaj, R.; Thukral, A.K. Differential Distribution of Polyphenols in Plants Using Multivariate Techniques. Biotechnol. Res. Innov. 2019, 3, 1–21. [Google Scholar] [CrossRef]
- Zielinska, S.; Jezierska-Domaradzka, A.; Wójciak-Kosior, M.; Sowa, I.; Junka, A.; Matkowski, A.M. Greater Celandine’s Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus from the Viewpoint of Today’s Pharmacology. Front. Pharmacol. 2018, 9, 299. [Google Scholar] [CrossRef]
- Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Pharmacologically Active Compounds from Latex-Bearing Plants. Adv. Bot. Res. 2020, 93, 119–151. [Google Scholar] [CrossRef]
- Borges, A.; Calvo, M.L.M.; Vaz, J.A.; Calhelha, R.C. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. Materials 2024, 17, 4199. [Google Scholar] [CrossRef]
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; El-Samad, L.M.; Gomaa, R.A.; Augustyniak, M.; Hassan, M.A. A Comprehensive Review of Recent Advances in Silk Sericin: Extraction Approaches, Structure, Biochemical Characterization, and Biomedical Applications. Int. J. Biol. Macromol. 2023, 250, 126067. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.; Sharma, A. A Review on Phytochemical and Pharmacological Potential of Genus Chelidonium. Pharmacogn. J. 2013, 5, 184–190. [Google Scholar] [CrossRef]
- Grosso, C.; Ferreres, F.; Gil-Izquierdo, A.; Valentão, P.; Sampaio, M.; Lima, J.; Andrade, P.B. Box-Behnken Factorial Design to Obtain a Phenolic-Rich Extract from the Aerial Parts of Chelidonium majus L. Talanta 2014, 130, 128–136. [Google Scholar] [CrossRef]
- Reis, S.; Spencer, C.; Soares, C.M.; Falcão, S.I.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J. Chemical Characterization and Bioactivities of Sericin Extracted from Silkworm Cocoons from Two Regions of Portugal. Molecules 2025, 30, 1179. [Google Scholar] [CrossRef]
- Metzner, B.T.; Marcelino, S.; Mandim, F.; Calhelha, R. Exploration of Chelidonium majus L. as a Healing Agent. 2023. [Google Scholar]
- Rana, J.N.; Gul, K.; Mumtaz, S. Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery. Int. J. Mol. Sci. 2025, 26, 7381. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Paprotny, Ł.; Wianowska, D. Stability of Selected Phenolic Acids Under Simulated and Real Extraction Conditions from Plants. Molecules 2024, 29, 5861. [Google Scholar] [CrossRef]
- Krizhanovska, V.; Sile, I.; Kronberga, A.; Nakurte, I.; Mezaka, I.; Dambrova, M.; Pugovics, O.; Grinberga, S. The Cultivation of Chelidonium majus L. Increased the Total Alkaloid Content and Cytotoxic Activity Compared with Those of Wild-Grown Plants. Plants 2021, 10, 1971. [Google Scholar] [CrossRef]
- Dozio, D.; Ghosh, S.; Consolini, D.A.; Ermini Starna, J.L.; Pinto, L.; Baruzzi, F.; Contente, M.L.; Pinto, A.; Cortesi, P.; Princiotto, S.; et al. Feruloyl-Amides as Natural Antimicrobials for Crop and Food Protection. Chem. Biol. Technol. Agric. 2025, 12, 18. [Google Scholar] [CrossRef]
- Pasquet, P.L.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and Preservation of Phenolic Compounds and Related Antioxidant Capacity from Agro-Food Matrix: Effect of PH and Atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Teschke, R.; Frenzel, C.; Glass, X.; Schulze, J.; Eickhoff, A. Greater Celandine Hepatotoxicity: A Clinical Review. Ann. Hepatol. 2012, 11, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Schmitz, H.J.; Merz, K.H.; Schrenk, D. Characterization of the Cytotoxicity of Selected Chelidonium Alkaloids in Rat Hepatocytes. Toxicol. Lett. 2019, 311, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.M.; Sabry, O.M.; El-Askary, H.I.; El Zalabani, S.M.; Eltanany, B.M.; Pont, L.; Benavente, F.; Mohamed, A.F.; Fayek, N.M. Uncovering the Therapeutic Potential of Green Pea Waste in Breast Cancer: A Multi-Target Approach Utilizing LC-MS/MS Metabolomics, Molecular Networking, and Network Pharmacology. BMC Complement. Med. Ther. 2024, 24, 379. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, G.A.; Sgroppo, S.C.; Sánchez Moreno, C.; de Ancos Siguero, B. Mango ‘Criollo’ by-Products as a Source of Polyphenols with Antioxidant Capacity. Ultrasound Assisted Extraction Evaluated by Response Surface Methodology and HPLC-ESI-QTOF-MS/MS Characterization. Food Chem. 2022, 396, 133738. [Google Scholar] [CrossRef]
- Ding, Y.; Morozova, K.; Imperiale, S.; Angeli, L.; Asma, U.; Ferrentino, G.; Scampicchio, M. HPLC-Triple Detector (Coulometric Array, Diode Array and Mass Spectrometer) for the Analysis of Antioxidants in Officinal Plants. LWT 2022, 162, 113456. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive Metabolite Profiling of Solanum tuberosum L. (Potato) Leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Han, Z.; He, X.; Herrera-Balandrano, D.D.; Xiang, J. Comprehensive Evaluation on Phenolic Derivatives and Antioxidant Activities of Diverse Yellow Maize Varieties. Food Chem. 2025, 464, 141602. [Google Scholar] [CrossRef]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Cuisinomics: MS-Based Untargeted Approach Reveals Chemical Modulation by a Recipe during Home Cooking. Food Res. Int. 2020, 138, 109787. [Google Scholar] [CrossRef]
- Elattar, M.M.; Hammoda, H.M.; Ghareeb, D.A.; Abdulmalek, S.A.; Abdelrahim, F.A.; Seif, I.A.K.; Dawood, H.M.; Darwish, R.S. Insights into Bioactive Constituents of Onion (Allium cepa L.) Waste: A Comparative Metabolomics Study Enhanced by Chemometric Tools. BMC Complement. Med. Ther. 2024, 24, 271. [Google Scholar] [CrossRef]
- Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of Tyrosinase Inhibitory Constituents from the Aerial Parts of Humulus Japonicus Using LC-MS/MS Coupled Online Assay. Bioorg Med. Chem. 2018, 26, 509–515. [Google Scholar] [CrossRef]
- Hanif, S.; Shahzadi, Z.; Anjum, I.; Yousaf, Z.; Aftab, A.; Javed, S.; Maqboo, Z.; Ullah, R.; Iqbal, Z.; Raza, M.A. Colchicine, Serotobenine, and Kinobeon A: Novel Therapeutic Compounds in Carthamus tinctorius L. for the Management of Diabetes. Appl. Biol. Chem. 2024, 67, 86. [Google Scholar] [CrossRef]
- Saber, F.R.; Mohsen, E.; El-Hawary, S.; Eltanany, B.M.; Elimam, H.; Sobeh, M.; Elmotayam, A.K. Chemometric-Enhanced Metabolic Profiling of Five Pinus Species Using HPLC-MS/MS Spectrometry: Correlation to in Vitro Anti-Aging, Anti-Alzheimer and Antidiabetic Activities. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1177, 122759. [Google Scholar] [CrossRef]
- Yun, E.S.; Park, S.K.; Kim, B.S.; Chae, Y.Z.; Cho, S.M.; Yi, H.; Cho, H.J.; Shin, H.C. Determination of the Esculetin Contents of Medicinal Plants by Liquid Chromatography-Tandem Mass Spectrometry. Biomed. Chromatogr. 2012, 26, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, J.; Yan, C. Simultaneous Determination of Three Flavonoids and One Coumarin by LC–MS/MS: Application to a Comparative Pharmacokinetic Study in Normal and Arthritic Rats after Oral Administration of Daphne Genkwa Extract. Biomed. Chromatogr. 2018, 32, e4233. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, T.P.; Tsai, T.H. Preclinical Pharmacokinetics of Scoparone, Geniposide and Rhein in an Herbal Medicine Using a Validated LC-MS/MS Method. Molecules 2018, 23, 2716. [Google Scholar] [CrossRef]
- Ramalingam, P.; Ko, Y.T. Validated LC-MS/MS Method for Simultaneous Quantification of Resveratrol Levels in Mouse Plasma and Brain and Its Application to Pharmacokinetic and Brain Distribution Studies. J. Pharm. Biomed. Anal. 2016, 119, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Vasdekis, E.P.; Karkabounas, A.; Giannakopoulos, I.; Savvas, D.; Lekka, M.E. Screening of Mushrooms Bioactivity: Piceatannol Was Identified as a Bioactive Ingredient in the Order Cantharellales. Eur. Food Res. Technol. 2018, 244, 861–871. [Google Scholar] [CrossRef]
- Gasparetto, J.C.; Guimarães De Francisco, T.M.; Campos, F.R.; Pontarolo, R. Development and Validation of Two Methods Based on High-Performance Liquid Chromatography-Tandem Mass Spectrometry for Determining 1,2-Benzopyrone, Dihydrocoumarin, o-Coumaric Acid, Syringaldehyde and Kaurenoic Acid in Guaco Extracts and Pharmaceutical Preparations. J. Sep. Sci. 2011, 34, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, A.-P.; Zheng, Z.-G.; Liu, F.; Liu, J.; Wang, R.-X.; Yang, H.; Huang, Z.-J.; Huang, P.-Y. Natural Products as Sources of Cytotoxic Compounds with Potential for Development into Anti-Cancer Agents-Short Communication Screening for Potential Antibreast Cancer Components from Prunellae Spica Using MCF-7 Cell Extraction Coupled with HPLC-ESI-MS/MS. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Al Jammal, D.; Bachir, J.; Moussa, J.A.; Al Ramahi, J.W. In Vitro Antimicrobial Susceptibility of Clinical Isolates from Adult and Paediatric Patients in Jordan: Antimicrobial Testing Leadership and Surveillance (ATLAS) 2010–2021. Front. Antibiot. 2024, 3, 1375980. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and Antimicrobial Properties of Dried Portuguese Apple Variety (Malus Domestica Borkh. Cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Resistance to Fluconazole of Candida Albicans in Vaginal Isolates: A 10-Year Study in a Clinical Referral Center. Antimicrob. Agents Chemother. 2023, 67, e00181-23. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.R.; Costa, R.; Amorim, M.; Dias, J.R.; Ramos, O.; Alves, P.; Granja, P.L.; Soares, R.; et al. In Situ Forming Silk Sericin-Based Hydrogel: A Novel Wound Healing Biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A.; Dydak, K.; Czerwińska, M.E.; Dziągwa-Becker, M.; Kucharski, M.; Wójciak, M.; Sowa, I.; Plińska, S.; Fijałkowski, K.; et al. Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures. Materials 2022, 15, 16. [Google Scholar] [CrossRef]
- Dash, R.; Acharya, C.; Bindu, P.; Kundu, S. Antioxidant Potential of Silk Protein Sericin Against Hydrogen Peroxide-Induced Oxidative Stress in Skin Fibroblasts. BMB Rep. 2008, 41, 236–241. [Google Scholar] [CrossRef]
- Saha, J.; Mondal, M.I.; Karim Sheikh, M.R.; Habib, M.A. Extraction, Structural and Functional Properties of Silk Sericin Biopolymer from Bombyx Mori Silk Cocoon Waste. J. Text. Sci. Eng. 2019, 9, 1000390. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein-Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef]
- Liu, J.; Yong, H.; Yao, X.; Hu, H.; Yun, D.; Xiao, L. Recent Advances in Phenolic-Protein Conjugates: Synthesis, Characterization, Biological Activities and Potential Applications. RSC Adv. 2019, 9, 35825–35840. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [CrossRef]
- Nayak, M.; Kumar, V.; Banerjee, D.; Pradhan, L.; Kamath, P.; Mukherjee, S. Quercetin Nanocrystal-Loaded Alginate Hydrogel Patch for Wound Healing Applications. J. Mater. Chem. B 2024, 13, 1690–1703. [Google Scholar] [CrossRef]
- Babić Radić, M.M.; Vukomanović, M.; Nikodinović-Runić, J.; Tomić, S. Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. Pharmaceutics 2024, 16, 372. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhe, M.; Wu, W.; Yu, P.; Xiao, Y.; Liu, H.; Liu, M.; Xiang, Z.; Xing, F. Injectable Photocrosslinked Hydrogel Dressing Encapsulating Quercetin-Loaded Zeolitic Imidazolate Framework-8 for Skin Wound Healing. Pharmaceutics 2024, 16, 1429. [Google Scholar] [CrossRef] [PubMed]
- Chollakup, R.; Uttayarat, P.; Chworos, A.; Smitthipong, W. Noncovalent Sericin-Chitosan Scaffold: Physical Properties and Low Cytotoxicity Effect. Int. J. Mol. Sci. 2020, 21, 775. [Google Scholar] [CrossRef]
- de Oliveira, M.R.; Peres, A.; Gama, C.S.; Bosco, S.M.D. Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-SY5Y Neuroblastoma Cells Exposed to Paraquat. Mol. Neurobiol. 2017, 54, 6018–6031. [Google Scholar] [CrossRef] [PubMed]
- Klančnik, A.; Šimunović, K.; Kovac, J.; Sahin, O.; Wu, Z.; Vučković, D.; Abram, M.; Zhang, Q.; Možina, S.S. The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action. Microorganisms 2019, 7, 675. [Google Scholar] [CrossRef]
- Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W.; Butimal, J. Phenolic Composition and Antioxidant Activity of Thai and Eri Silk Sericins. Food Sci. Biotechnol. 2012, 21, 389–398. [Google Scholar] [CrossRef]
- Tao, G.; Cai, R.; Wang, Y.; Zuo, H.; He, H. Fabrication of Antibacterial Sericin Based Hydrogel as an Injectable and Mouldable Wound Dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and Antityrosinase Activity of Sericin from Various Extraction Methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef]
- Maghsoudi, M.A.F.; Aghdam, R.M.; Asbagh, R.A.; Moghaddaszadeh, A.; Ghaee, A.; Tafti, S.M.A.; Foroutani, L.; Tafti, S.H.A. 3D-Printing of Alginate/Gelatin Scaffold Loading Tannic Acid@ZIF-8 for Wound Healing: In Vitro and In Vivo Studies. Int. J. Biol. Macromol. 2024, 265, 130744. [Google Scholar] [CrossRef]
- Tourabi, M.; Metouekel, A.; ghouizi, A.E.L.; Jeddi, M.; Nouioura, G.; Laaroussi, H.; Hosen, M.E.; Benbrahim, K.F.; Bourhia, M.; Salamatullah, A.M.; et al. Efficacy of Various Extracting Solvents on Phytochemical Composition, and Biological Properties of Mentha longifolia L. Leaf Extracts. Sci. Rep. 2023, 13, 18028. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Larbi, S.; Aylanc, V.; Rodríguez-Flores, M.S.; Calhelha, R.C.; Barros, L.; Rezouga, F.; Seijo, M.C.; Falcão, S.I.; Vilas-Boas, M. Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules 2023, 28, 7601. [Google Scholar] [CrossRef] [PubMed]
Antibacterial Activity | Antifungal Activity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gram-Positive Bacteria | ||||||||||
Cutibacterium acnes | Staphylococcus aureus | Staphylococcus epidermidis | Candida albicans | |||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | |||
Samples | C | 10 mg/mL | 5 | >10 | 5 | 10 | 10 | >10 | 10 | >10 |
S1 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
S2 | 10 mg/mL | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
S3 | 10 mg/mL | 5 | >10 | >10 | >10 | 5 | >10 | >10 | >10 | |
S4 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
1CS1 | 10 mg/mL | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | |
1CS2 | 10 mg/mL | 10 | >10 | 10 | 10 | >10 | >10 | >10 | >10 | |
1CS3 | 10 mg/mL | 10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | |
1CS4 | 10 mg/mL | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | |
2CS1 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
2CS2 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
2CS3 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
2CS4 | 10 mg/mL | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | |
3CS1 | 10 mg/mL | 10 | >10 | 10 | 10 | >10 | >10 | >10 | >10 | |
3CS2 | 10 mg/mL | 10 | >10 | 10 | 10 | 10 | >10 | >10 | >10 | |
3CS3 | 10 mg/mL | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | |
3CS4 | 10 mg/mL | 10 | >10 | 10 | 10 | 10 | >10 | >10 | >10 | |
4CS1 | 10 mg/mL | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | |
4CS2 | 10 mg/mL | 10 | >10 | 10 | 10 | >10 | >10 | >10 | >10 | |
4CS3 | 10 mg/mL | 10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | |
4CS4 | 10 mg/mL | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | |
Positive control | Ampicillin | 20 mg/mL | 0.07 | 5 | <0.15 | <0.15 | n.t. | n.t. | n.t. | n.t. |
Vancomycin | 1 mg/mL | n.t. | n.t. | 0.25 | 0.5 | 0.25 | 5 | n.t. | n.t. | |
Fluconazol | 1 mg/mL | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 0.06 | 0.06 |
C | S1 | S2 | S3 | S4 | 1CS1 | 1CS2 | 1CS3 | 1CS4 | 2CS1 | 2CS2 | 2CS3 | 2CS4 | 3CS1 | 3CS2 | 3CS3 | 3CS4 | 4CS1 | 4CS2 | 4CS3 | 4CS4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HFF1 | >400 | 150 ± 3.6 | 250 ± 8.9 | >400 | 155 ± 4.1 | 333 ± 3.4 | >400 | 182 ± 2.1 | 377 ± 4.7 |
Codes | Ratio | Concentration C. majus/Sericin (µg/mL) | Type of Sericin (Location/Provider) |
---|---|---|---|
1CS1 | 1:1 | 200:1600 | Castelo Branco |
1CS2 | Bragança | ||
1CS3 | Sigma-Aldrich | ||
1CS4 | FUJIFILM Wako Chemicals | ||
2CS1 | 1:2 | 200:3200 | Castelo Branco |
2CS2 | Bragança | ||
2CS3 | Sigma-Aldrich | ||
2CS4 | FUJIFILM Wako Chemicals | ||
3CS1 | 2:1 | 400:1600 | Castelo Branco |
3CS2 | Bragança | ||
3CS3 | Sigma-Aldrich | ||
3CS4 | FUJIFILM Wako Chemicals | ||
4CS1 | 2:2 | 400:3200 | Castelo Branco |
4CS2 | Bragança | ||
4CS3 | Sigma-Aldrich | ||
4CS4 | FUJIFILM Wako Chemicals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.; Ordóñez-Díaz, J.L.; Aquino, Y.; Moreno-Rojas, J.M.; Calvo, M.L.M.; Vaz, J.A.; Calhelha, R.C. Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility. Int. J. Mol. Sci. 2025, 26, 9911. https://doi.org/10.3390/ijms26209911
Borges A, Ordóñez-Díaz JL, Aquino Y, Moreno-Rojas JM, Calvo MLM, Vaz JA, Calhelha RC. Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility. International Journal of Molecular Sciences. 2025; 26(20):9911. https://doi.org/10.3390/ijms26209911
Chicago/Turabian StyleBorges, Ana, José Luis Ordóñez-Díaz, Yara Aquino, José Manuel Moreno-Rojas, María Luisa Martín Calvo, Josiana A. Vaz, and Ricardo C. Calhelha. 2025. "Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility" International Journal of Molecular Sciences 26, no. 20: 9911. https://doi.org/10.3390/ijms26209911
APA StyleBorges, A., Ordóñez-Díaz, J. L., Aquino, Y., Moreno-Rojas, J. M., Calvo, M. L. M., Vaz, J. A., & Calhelha, R. C. (2025). Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility. International Journal of Molecular Sciences, 26(20), 9911. https://doi.org/10.3390/ijms26209911