Fetuin-A and Heme Oxygenase 1 as Potential New Markers in the Diagnosis of Diabetic Kidney Disease
Abstract
1. Introduction
2. Diabetic Kidney Disease—Etiology, Pathogenesis, and Diagnostics
2.1. Etiology and Pathogenesis of Diabetic Kidney Disease
2.2. Diagnostics of Diabetic Kidney Disease
3. The Role of Fetuin-A and AHSG Polymorphisms in the Pathogenesis of Diabetic Kidney Disease
3.1. Structure and Functions of Fetuin-A
3.2. Biosynthesis and Bioregulation of Fetuin-A
3.3. The Role of AHSG Polymorphisms in the Development of Selected Diseases
4. The Role of Heme Oxygenase 1 and HMOX1 Polymorphisms in the Pathogenesis of Diabetic Kidney Disease
4.1. Structure and Functions of Heme Oxygenase 1
4.2. Biosynthesis and Bioregulation of Heme Oxygenase 1
4.3. The Role of HMOX1 Polymorphisms in the Development of Selected Diseases
4.3.1. GT(n) Microsatellite Polymorphism
4.3.2. T(–413)A Single-Nucleotide Polymorphism
5. New Markers in the Diagnosis of Diabetic Kidney Disease and Their Relationships with Fetuin-A and HO-1
5.1. Neutrophil Gelatinase-Associated Lipocalin (NGAL)
5.2. Kidney Injury Molecule-1 (KIM-1)
5.3. α-Klotho
5.4. MicroRNA
5.5. Liver-Type Fatty Acid Binding Protein (L-FABP)
5.6. The Influence of Comorbidities, Medications and Lifestyle Factors on the Concentrations of NGAL, KIM-1, α-Klotho, MicroRNA and L-FABP Biomarkers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DKD | Diabetic kidney disease |
DN | Diabetic nephropathy |
ESRD | End-stage renal disease |
HO-1 | Heme oxygenase 1 |
AHSG | Gene encoding fetuin-A |
Ang-II | Angiotensin II |
TGF-β | Transforming growth factor-β |
ROS | Reactive oxygen species |
NADPH | Reduced nicotinamide adenine dinucleotide phosphate |
RAS | Renin–angiotensin system |
NF-κB | Nuclear factor kappa B |
GFR | Glomerular filtration rate |
KDIGO | Kidney Disease: Improving Global Outcomes |
T2D | Type 2 diabetes |
TNF-α | Tumour necrosis factor α |
eGFR | Estimated glomerular filtration rate |
IFN-γ | Interferon gamma |
SS | Signal sequence |
CP | Connecting peptide |
FFA | Free fatty acids |
SNPs | Single-nucleotide polymorphisms |
CAC | Coronary artery calcification |
CKD | Chronic kidney disease |
CRP | C-reactive protein |
CAD | Coronary artery disease |
CACS | Coronary artery calcification score |
GDM | Gestational diabetes mellitus |
CO | Carbon monoxide |
Fe2+ | Free ferrous iron |
O2 | Molecular oxygen |
APC | Antigen-presenting cells |
SMCs | Smooth muscle cells |
COPD | Chronic obstructive pulmonary disease |
UV | Ultraviolet |
CoPP | Cobalt protoporphyrin IX |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
MAPKs | Mitogen-activated protein kinases |
PKC | Protein kinase C |
AMPK | AMP-activated protein kinase |
PI3K/Akt | Phosphoinositide 3-kinase/protein kinase B |
AP-1 | Activator protein-1 |
STAT3 | Signal transducer and activator of transcription 3 |
YY1 | Yin Yang 1 |
HIF-1 | Hypoxia-inducible factor 1 |
ZnPPIX | Zinc protoporphyrin IX |
SnPPIX | tin protoporphyrin IX |
LPS | Lipopolysaccharide |
Keap1 | Kelch-like ECH-associated protein 1 |
PAMPs | Pathogen-associated molecular patterns |
PI3K | Phosphatidylinositol 3-kinase |
Bach1 | BTB and CNC homology 1 |
NGAL | Neutrophil gelatinase-associated lipocalin |
ELISA | Enzyme-linked immunosorbent assay |
CMIA | Chemiluminescent microparticle immunoassay |
RIA | Radioimmunoassay |
LFIA | Lateral flow immunoassay |
POCT | Point of care test |
KIM-1 | Kidney injury molecule-1 |
mTOR | Mammalian target of rapamycin kinase |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
qPCR | Quantitative polymerase chain reaction |
L-FABP | Liver-type fatty acid binding protein |
PCR | Protein/creatinine ratio |
ACE | Angiotensin-converting enzyme |
AKI | Acute kidney injury |
References
- Sulaiman, M.K. Diabetic Nephropathy: Recent Advances in Pathophysiology and Challenges in Dietary Management. Diabetol. Metab. Syndr. 2019, 11, 7. [Google Scholar] [CrossRef]
- Neumiller, J.J.; Burnier, M.; Hoogeveen, E.K. The Epidemiology of Diabetic Kidney Disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Norris, K.C.; Smoyer, K.E.; Rolland, C.; Van Der Vaart, J.; Grubb, E.B. Albuminuria, Serum Creatinine, and Estimated Glomerular Filtration Rate as Predictors of Cardio-Renal Outcomes in Patients with Type 2 Diabetes Mellitus and Kidney Disease: A Systematic Literature Review. BMC Nephrol. 2018, 19, 36. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Z.; Ye, S.; Zheng, M. The Serum Uric Acid to Serum Creatinine Ratio Is an Independent Risk Factor for Diabetic Kidney Disease. Diabetes Metab. Syndr. Obes. 2022, 15, 3693–3703. [Google Scholar] [CrossRef] [PubMed]
- Bourebaba, L.; Marycz, K. Pathophysiological Implication of Fetuin-a Glycoprotein in the Development of Metabolic Disorders: A Concise Review. J. Clin. Med. 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, D.; Subramanyam, P.V.; Krishnamoorthy, E.; Viswanathan, V.; Ramkumar, K.M. Association of Fetuin-A with Thr256Ser Exon Polymorphism of A2-Heremans Schmid Glycoprotein (AHSG) Gene in Type 2 Diabetic Patients with Overt Nephropathy. J. Diabetes Complicat. 2022, 36, 108074. [Google Scholar] [CrossRef] [PubMed]
- Brylka, L.; Jahnen-Dechent, W. The Role of Fetuin-A in Physiological and Pathological Mineralization. Calcif. Tissue Int. 2013, 93, 355–364. [Google Scholar] [CrossRef]
- Dogru, T.; Kirik, A.; Gurel, H.; Rizvi, A.A.; Rizzo, M.; Sonmez, A. The Evolving Role of Fetuin-a in Nonalcoholic Fatty Liver Disease: An Overview from Liver to the Heart. Int. J. Mol. Sci. 2021, 22, 6627. [Google Scholar] [CrossRef]
- Chekol Abebe, E.; Tilahun Muche, Z.; Behaile T/Mariam, A.; Mengie Ayele, T.; Mekonnen Agidew, M.; Teshome Azezew, M.; Abebe Zewde, E.; Asmamaw Dejenie, T.; Asmamaw Mengstie, M. The Structure, Biosynthesis, and Biological Roles of Fetuin-A: A Review. Front. Cell Dev. Biol. 2022, 10, 945287. [Google Scholar] [CrossRef]
- Al-Said, N.H.; Taha, F.M.; Abdel-Aziz, G.M.; Abdel-Tawab, M.S. Fetuin-A Level in Type 2 Diabetic Patients: Relation to Microvascular Complications. Egypt. J. Intern. Med. 2018, 30, 121–130. [Google Scholar] [CrossRef]
- Malgavkar, D.S.; Dongre, N.; Goornavar, S.M.; Ambekar, J.G.; Ratna, S. Assessment of Serum Fetuin-A Levels in Diabetic Nephropathy. A Case Control Study. Front. Health Inform. 2024, 13, 10358–10367. [Google Scholar]
- Zhai, H.; Ni, L.; Wu, X. The Roles of Heme Oxygenase-1 in Renal Disease. Front. Nephrol. 2023, 3, 1156346. [Google Scholar] [CrossRef]
- Lv, C.; Cheng, T.; Zhang, B.; Sun, K.; Lu, K. Triptolide Protects against Podocyte Injury in Diabetic Nephropathy by Activating the Nrf2/HO-1 Pathway and Inhibiting the NLRP3 Inflammasome Pathway. Ren. Fail. 2023, 45, 2165103. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants 2024, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Noori, E.; Salehi, N.; Mozafari, H.; Elieh Ali Komi, D.; Saidi, M.; Bahrehmand, F.; Vaisi-Raygani, A.; Elahirad, S.; Moini, A.; Kiani, A. Association of AHSG Gene Polymorphisms with Serum Fetuin-A Levels in Individuals with Cardiovascular Calcification in West of Iran. Mol. Biol. Rep. 2020, 47, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, S.J.; Ogrizović, S.S.; Bukumirić, Z.; Erić, M.; Pavlović, N.; Kotlica, B.; Novaković, I. Impact of the Fetuin Gene Polymorphisms in Coronary Artery Calcification and Mortality of Patients with Chronic Kidney Disease and Renal Transplant. Genetika 2022, 54, 457–472. [Google Scholar] [CrossRef]
- Askenazi, D.J.; Halloran, B.; Patil, N.; Keeling, S.; Saeidi, B.; Koralkar, R.; Ambalavanan, N. Genetic Polymorphisms of Heme-Oxygenase 1 (HO-1) May Impact on Acute Kidney Injury, Bronchopulmonary Dysplasia, and Mortality in Premature Infants. Pediatr. Res. 2015, 77, 793–798. [Google Scholar] [CrossRef]
- Chinedu, O.; Tonassé, W.V.; Albuquerque, D.M.; Domingos, I.d.F.; Araújo, A.d.S.; Bezerra, M.A.C.; Sonati, M.d.F.; Santos, M.N.N. dos Polymorphisms in the Heme Oxygenase-1 and Bone Morphogenetic Protein Receptor Type 1b Genes and Estimated Glomerular Filtration Rate in Brazilian Sickle Cell Anemia Patients. Hematol. Transfus. Cell Ther. 2021, 43, 165–170. [Google Scholar] [CrossRef]
- Tavafi, M. Diabetic Nephropathy and Antioxidants. J. Nephropathol. 2013, 2, 20–27. [Google Scholar] [CrossRef]
- Chen, S.J.; Lv, L.L.; Liu, B.C.; Tang, R.N. Crosstalk between Tubular Epithelial Cells and Glomerular Endothelial Cells in Diabetic Kidney Disease. Cell Prolif. 2020, 53, e12763. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C.; Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ha, X.; Yang, S.; Tian, X.; Jiang, H. Advances in Understanding and Treating Diabetic Kidney Disease: Focus on Tubulointerstitial Inflammation Mechanisms. Front. Endocrinol. 2023, 14, 1232790. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Ghosh, S.; Sahu, B.D. Scopoletin Alleviates High Glucose-Induced Toxicity in Human Renal Proximal Tubular Cells via Inhibition of Oxidative Damage, Epithelial-Mesenchymal Transition, and Fibrogenesis. Mol. Biol. Rep. 2024, 51, 620. [Google Scholar] [CrossRef]
- Zhang, A.; Fang, H.; Chen, J.; He, L.; Chen, Y. Role of VEGF-A and LRG1 in Abnormal Angiogenesis Associated with Diabetic Nephropathy. Front. Physiol. 2020, 11, 1064. [Google Scholar] [CrossRef]
- Wada, J.; Makino, H. Inflammation and the Pathogenesis of Diabetic Nephropathy. Clin. Sci. 2013, 124, 139–152. [Google Scholar] [CrossRef]
- Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary Epidermal Growth Factor, Monocyte Chemoattractant Protein-1 or Their Ratio as Predictors for Rapid Loss of Renal Function in Type 2 Diabetic Patients with Diabetic Kidney Disease. BMC Nephrol. 2018, 19, 246. [Google Scholar] [CrossRef]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; Ijpelaar, D.H.T. Macrophages in Diabetic Nephropathy in Patients with Type 2 Diabetes. Nephrol. Dial. Transplant. 2017, 32, 1322–1329. [Google Scholar] [CrossRef]
- Pichler, R.; Afkarian, M.; Dieter, B.P.; Tuttle, K.R. Immunity and Inflammation in Diabetic Kidney Disease: Translating Mechanisms to Biomarkers and Treatment Targets. Am. J. Physiol. Ren. Physiol. 2017, 312, F716–F731. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, Stress, and Diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef]
- Komada, T.; Muruve, D.A. The Role of Inflammasomes in Kidney Disease. Nat. Rev. Nephrol. 2019, 15, 501–520. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Chertow, G.M.; Devarajan, P.; Levin, A.; Andreoli, S.P.; Bangalore, S.; Warady, B.A. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int. Rep. 2021, 6, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Durvasula, R.V.; Shankland, S.J. The Renin-Angiotensin System in Glomerular Podocytes: Mediator of Glomerulosclerosis and Link to Hypertensive Nephropathy. Curr. Hypertens. Rep. 2006, 8, 132–138. [Google Scholar] [CrossRef]
- Młynarska, E.; Buławska, D.; Czarnik, W.; Hajdys, J.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Novel Insights into Diabetic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 10222. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, F. Immune Cells and Inflammation in Diabetic Nephropathy. J. Diabetes Res. 2016, 2016, 1841690. [Google Scholar] [CrossRef]
- Hickey, F.B.; Martin, F. Role of the Immune System in Diabetic Kidney Disease. Curr. Diab. Rep. 2018, 18, 20. [Google Scholar] [CrossRef]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed. Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef]
- Peng, Q.Y.; An, Y.; Jiang, Z.Z.; Xu, Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J. Inflamm. Res. 2024, 17, 2103. [Google Scholar] [CrossRef]
- Moon, J.Y.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Lim, S.J.; Lee, S.H. Aberrant Recruitment and Activation of T Cells in Diabetic Nephropathy. Am. J. Nephrol. 2012, 35, 164–174. [Google Scholar] [CrossRef]
- Lampropoulou, I.T.; Stangou, Μ.; Sarafidis, P.; Gouliovaki, A.; Giamalis, P.; Tsouchnikas, I.; Didangelos, T.; Papagianni, A. TNF-α Pathway and T-Cell Immunity Are Activated Early during the Development of Diabetic Nephropathy in Type II Diabetes Mellitus. Clin. Immunol. 2020, 215, 108423. [Google Scholar] [CrossRef]
- Shang, J.; Wang, L.; Zhang, Y.; Zhang, S.; Ning, L.; Zhao, J.; Cheng, G.; Liu, D.; Xiao, J.; Zhao, Z. Chemerin/ChemR23 Axis Promotes Inflammation of Glomerular Endothelial Cells in Diabetic Nephropathy. J. Cell. Mol. Med. 2019, 23, 3417. [Google Scholar] [CrossRef]
- Saraheimo, M.; Teppo, A.M.; Forsblom, C.; Fagerudd, J.; Groop, P.H. Diabetic Nephropathy Is Associated with Low-Grade Inflammation in Type 1 Diabetic Patients. Diabetologia 2003, 46, 1402–1407. [Google Scholar] [CrossRef]
- Cortvrindt, C.; Speeckaert, R.; Moerman, A.; Delanghe, J.R.; Speeckaert, M.M. The Role of Interleukin-17A in the Pathogenesis of Kidney Diseases. Pathology 2017, 49, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Lemos, D.R.; McMurdo, M.; Karaca, G.; Wilflingseder, J.; Leaf, I.A.; Gupta, N.; Miyoshi, T.; Susa, K.; Johnson, B.G.; Soliman, K.; et al. Interleukin-1b Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. J. Am. Soc. Nephrol. 2018, 29, 1690–1705. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qin, Y.; Qin, S.; Zhou, X.; Zhao, W.; Zhang, D. Circ_WBSCR17 Aggravates Inflammatory Responses and Fibrosis by Targeting MiR-185-5p/SOX6 Regulatory Axis in High Glucose-Induced Human Kidney Tubular Cells. Life Sci. 2020, 259, 118269. [Google Scholar] [CrossRef] [PubMed]
- Castellani, P.; Balza, E.; Rubartelli, A. Inflammation, DAMPs, Tumor Development, and Progression: A Vicious Circle Orchestrated by Redox Signaling. Antioxid. Redox Signal 2014, 20, 1086–1097. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal 2014, 20, 1126. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Rodríguez-Iturbe, B. Mechanisms of Disease: Oxidative Stress and Inflammation in the Pathogenesis of Hypertension. Nat. Clin. Pract. Nephrol. 2006, 2, 582–593. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Selby, N.M.; Taal, M.W. An Updated Overview of Diabetic Nephropathy: Diagnosis, Prognosis, Treatment Goals and Latest Guidelines. Diabetes Obes. Metab. 2020, 22, 3–15. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Parving, H.H.; Hommel, E.; Mathiesen, E.; Skøtt, P.; Edsberg, B.; Bahnsen, M.; Lauritzen, M.; Lauritzen, E.; Hougaard, P. Prevalence of Microalbuminuria, Arterial Hypertension Retinopathy and Neuropathy in Patients with Insulin Dependent Diabetes. Br. Med. J. 1988, 296, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Caramori, M.L.; Fioretto, P.; Mauer, M. Low Glomerular Filtration Rate in Normoalbuminuric Type 1 Diabetic Patients: An Indicator of More Advanced Glomerular Lesions. Diabetes 2003, 52, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Cho, Y.M.; Yu, H.G.; Jang, H.C.; Park, K.S.; Kim, S.Y.; Lee, H.K. The Clinical Characteristics of Normoalbuminuric Renal Insufficiency in Korean Type 2 Diabetic Patients: A Possible Early Stage Renal Complication. J. Korean Med. Sci. 2009, 24, S75. [Google Scholar] [CrossRef]
- MacIsaac, R.J.; Tsalamandris, C.; Panagiotopoulos, S.; Smith, T.J.; McNeil, K.J.; Jerums, G. Nonalbuminuric Renal Insufficiency in Type 2 Diabetes. Diabetes Care 2004, 27, 195–200. [Google Scholar] [CrossRef]
- American Diabetes Association. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetesd—2019. Diabetes Care 2019, 42, S124–S138. [Google Scholar] [CrossRef]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not so Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef]
- Satirapoj, B. Tubulointerstitial Biomarkers for Diabetic Nephropathy. J. Diabetes Res. 2018, 2018, 2852398. [Google Scholar] [CrossRef]
- Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From Physiology to Clinical Application. Eur. J. Intern. Med. 2020, 72, 9–14. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, S.; Pan, T. The Role of Serum and Urinary Biomarkers in the Diagnosis of Early Diabetic Nephropathy in Patients with Type 2 Diabetes. PeerJ 2019, 2019, e7079. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.J. Chronic Kidney Disease: CKD-EPI Equation-Accurately Stratifying Risk in CKD. Nat. Rev. Nephrol. 2012, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.N. The Role of Novel Biomarkers in Predicting Diabetic Nephropathy: A Review. Int. J. Nephrol. Renov. Dis. 2017, 10, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C. Kidney Biopsy in Diabetic Kidney Disease. Yes, but in Very Selected Cases. Clin. Kidney J. 2024, 17, SFAD268. [Google Scholar] [CrossRef]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; TerenceCook, H.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; De Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef]
- Brown, W.M.; Dziegielewska, K.M.; Saunders, N.R.; Møsllgård, K. Fetuin—An Old Friend Revisited. BioEssays 1992, 14, 749–755. [Google Scholar] [CrossRef]
- Rizzu, P.; Baldini, A. Three Members of the Human Cystatin Gene Superfamily, AHSG, HRG, and KNG, Map within One Megabase of Genomic DNA at 3q27. Cytogenet. Cell Genet. 1995, 70, 26–28. [Google Scholar] [CrossRef]
- Osawa, M.; Umetsu, K.; Sato, M.; Ohki, T.; Yukawa, N.; Suzuki, T.; Takeichi, S. Structure of the Gene Encoding Human Alpha2-HS Glycoprotein (AHSG). Gene 1997, 196, 121–125. [Google Scholar] [CrossRef]
- Araki, T.; Yoshioka, Y.; Schmid, K. The Position of the Disulfide Bonds in Human Plasma A2HS-Glycoprotein and the Repeating Double Disulfide Bonds in the Domain Structure. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1989, 994, 195–199. [Google Scholar] [CrossRef]
- Elzanowski, A.; Barker, W.C.; Hunt, L.T.; Seibel-Ross, E. Cystatin Domains in Alpha-2-HS-Glycoprotein and Fetuin. FEBS Lett. 1988, 227, 167–170. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Inaba, M. Fetuin-A: A Multifunctional Protein. Recent Pat. Endocr. Metab. Immune Drug Discov. 2012, 5, 124–146. [Google Scholar] [CrossRef]
- Denecke, B.; Gräber, S.; Schäfer, C.; Heiss, A.; Wöltje, M.; Jahnen-Dechent, W. Tissue Distribution and Activity Testing Suggest a Similar but Not Identical Function of Fetuin-B and Fetuin-A. Biochem. J. 2003, 376, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Mey, J.; Varady, K.A. Fetuin-A: A Novel Link between Obesity and Related Complications. Int. J. Obes. 2015, 39, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Khadir, A.; Kavalakatt, S.; Madhu, D.; Hammad, M.; Devarajan, S.; Tuomilehto, J.; Tiss, A. Fetuin-A Levels Are Increased in the Adipose Tissue of Diabetic Obese Humans but Not in Circulation. Lipids Health Dis. 2018, 17, 291. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.; Majumdar, S.S.; Bhattacharya, S. Fetuin-A Acts as an Endogenous Ligand of TLR4 to Promote Lipid-Induced Insulin Resistance. Nat. Med. 2012, 18, 1279–1285. [Google Scholar] [CrossRef]
- Smith, E.R.; Holt, S.G. The Formation and Function of Calciprotein Particles. Pflügers Arch. Eur. J. Physiol. 2025, 477, 753–772. [Google Scholar] [CrossRef]
- Dabrowska, A.M.; Tarach, J.S.; Wojtysiak-Duma, B.; Duma, D. Fetuin-A (AHSG) and Its Usefulness in Clinical Practice. Review of the Literature. Biomed. Pap. 2015, 159, 352–359. [Google Scholar] [CrossRef]
- Lin, Y.H.; Franc, V.; Heck, A.J.R. Similar Albeit Not the Same: In-Depth Analysis of Proteoforms of Human Serum, Bovine Serum, and Recombinant Human Fetuin. J. Proteome Res. 2018, 17, 2861–2869. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Zhu, S.; Wang, P.; Sama, A.E.; Wang, H.; Li, W.; Zhu, S.; Wang, P.; Sama, A.E. Role of Fetuin-A in Injury and Infection. In Acute Phase Proteins—Regulation and Functions of Acute Phase Proteins; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Guo, V.Y.; Cao, B.; Cai, C.; Cheng, K.K.Y.; Cheung, B.M.Y. Fetuin-A Levels and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetol. 2018, 55, 87–98. [Google Scholar] [CrossRef]
- Ix, J.H.; Wassel, C.L.; Kanaya, A.M.; Vittinghoff, E.; Johnson, K.C.; Koster, A.; Cauley, J.A.; Harris, T.B.; Cummings, S.R.; Shlipak, M.G. Fetuin-A and Incident Diabetes Mellitus in Older Persons. JAMA 2008, 300, 182–188. [Google Scholar] [CrossRef]
- Roshanzamir, F.; Miraghajani, M.; Rouhani, M.H.; Mansourian, M.; Ghiasvand, R.; Safavi, S.M. The Association between Circulating Fetuin-A Levels and Type 2 Diabetes Mellitus Risk: Systematic Review and Meta-Analysis of Observational Studies. J. Endocrinol. Investig. 2018, 41, 33–47. [Google Scholar] [CrossRef]
- Stefan, N.; Fritsche, A.; Weikert, C.; Boeing, H.; Joost, H.G.; Häring, H.U.; Schulze, M.B. Plasma Fetuin-A Levels and the Risk of Type 2 Diabetes. Diabetes 2008, 57, 2762. [Google Scholar] [CrossRef]
- Caglar, K.; Yilmaz, M.I.; Saglam, M.; Cakir, E.; Kilic, S.; Sonmez, A.; Eyileten, T.; Yenicesu, M.; Oguz, Y.; Tasar, M.; et al. Serum Fetuin-A Concentration and Endothelial Dysfunction in Chronic Kidney Disease. Nephron Clin. Pract. 2008, 108, c233–c240. [Google Scholar] [CrossRef]
- Toprak, A.E.; Gerin, F.; Erman, H.; Duran, İ.; Atalay, E.; Korlaelçi, F.; Öztürk, Ü. Serum Fetuin-A Levels and Association with Hematological Parameters in Chronic Kidney Disease and Hemodialysis Patients. Turk. J. Biochem. 2019, 44, 517–523. [Google Scholar] [CrossRef]
- Icer, M.A.; Yıldıran, H. Effects of Nutritional Status on Serum Fetuin-A Level. Crit. Rev. Food Sci. Nutr. 2020, 60, 1938–1946. [Google Scholar] [CrossRef]
- Seyithanoğlu, M.; Öner-Iyidoğan, Y.; Doğru-Abbasoğlu, S.; Tanrikulu-Küçük, S.; Kocąk, H.; Beyhan-Özdaş, Ş.; Kocąk-Toker, N. The Effect of Dietary Curcumin and Capsaicin on Hepatic Fetuin-A Expression and Fat Accumulation in Rats Fed on a High-Fat Diet. Arch. Physiol. Biochem. 2016, 122, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.; Burgdorf, K.S.; Sparsø, T.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; Pedersen, O. AHSG Tag Single Nucleotide Polymorphisms Associate with Type 2 Diabetes and Dyslipidemia: Studies of Metabolic Traits in 7,683 White Danish Subjects. Diabetes 2008, 57, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- An, W.S.; Lee, S.M.; Son, Y.K.; Kim, S.E.; Kim, K.H.; Han, J.Y.; Bae, H.R.; Rha, S.H.; Park, Y. Omega-3 Fatty Acid Supplementation Increases 1,25-Dihydroxyvitamin D and Fetuin-A Levels in Dialysis Patients. Nutr. Res. 2012, 32, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.X.; Basilion, J.P.; Stanton, J. Single-Nucleotide Polymorphisms Can Cause Different Structural Folds of MRNA. Proc. Natl. Acad. Sci. USA 1999, 96, 7871. [Google Scholar] [CrossRef]
- Luttropp, K.; Stenvinkel, P.; Carrero, J.J.; Pecoits-Filho, R.; Lindholm, B.; Nordfors, L. Understanding the Role of Genetic Polymorphisms in Chronic Kidney Disease. Pediatr. Nephrol. 2008, 23, 1941–1949. [Google Scholar] [CrossRef]
- Li, G.; Zhu, L.; Bai, M.; Wang, L.; Yuan, D.; He, Y.; Jin, T. The Impact of the AHSG Genetic Polymorphism on the Risk of Ischemic Stroke: A Case-Control Study. Int. J. Clin. Exp. Pathol. 2018, 11, 5094. [Google Scholar]
- Lin, Y.H.; Zhu, J.; Meijer, S.; Franc, V.; Heck, A.J.R. Glycoproteogenomics: A Frequent Gene Polymorphism Affects the Glycosylation Pattern of the Human Serum Fetuin/α-2-HS-Glycoprotein. Mol. Cell. Proteom. 2019, 18, 1479–1490. [Google Scholar] [CrossRef]
- Jensen, M.K.; Jensen, R.A.; Mukamal, K.J.; Guo, X.; Yao, J.; Sun, Q.; Cornelis, M.; Liu, Y.; Chen, M.H.; Kizer, J.R.; et al. Detection of Genetic Loci Associated with Plasma Fetuin-A: A Meta-Analysis of Genome-Wide Association Studies from the CHARGE Consortium. Hum. Mol. Genet. 2017, 26, 2156–2163. [Google Scholar] [CrossRef]
- Ahmadihosseini, Z.; Moeinian, M.; Nazemi, S.; Elyasi, S.; Mohammadpour, A.H. Evaluation of the Correlation between the Rs4918 Polymorphism of AHSG Gene and Coronary Artery Calcification in Patients with Coronary Artery Disease. Cardiogenetics 2020, 10, 33–41. [Google Scholar] [CrossRef]
- Al Ali, L.; van de Vegte, Y.J.; Said, M.A.; Groot, H.E.; Hendriks, T.; Yeung, M.W.; Lipsic, E.; van der Harst, P. Fetuin-A and Its Genetic Association with Cardiometabolic Disease. Sci. Rep. 2023, 13, 21469. [Google Scholar] [CrossRef] [PubMed]
- Kröger, J.; Meidtner, K.; Stefan, N.; Guevara, M.; Kerrison, N.D.; Ardanaz, E.; Aune, D.; Boeing, H.; Dorronsoro, M.; Dow, C.; et al. Circulating Fetuin—A and Risk of Type 2 Diabetes: A Mendelian Randomization Analysis. Diabetes 2018, 67, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Akbas, H.; Kahraman, S.; Sak, S.; Akkafa, F. Minor Variant of AHSG Gene 767C>G Polymorphism May Decrease the Risk of Gestational Diabetes Mellitus. J. Obstet. Gynaecol. 2020, 40, 303–307. [Google Scholar] [CrossRef]
- Akbari, M.; Nayeri, H.; Nasri, H. Association of Fetuin-A with Kidney Disease; a Review on Current Concepts and New Data. J. Nephropharmacol. 2018, 8, e14. [Google Scholar] [CrossRef]
- Morsy, E.Y.; Saad, N.L.; Elghoneimy, H.A.; Smeida, A.A.G.; Ismail, A.A. Fetuin-A Gene Polymorphism and Its Serum Level Association with Atherosclerotic Vascular Disease in Type 2 Diabetes Patients with Early Diabetic Kidney Disease. Biomed. Res. Ther. 2020, 7, 4122–4131. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, Y.M. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int. J. Mol. Sci. 2022, 23, 7041. [Google Scholar] [CrossRef]
- Nitti, M.; Ivaldo, C.; Traverso, N.; Furfaro, A.L. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants 2021, 10, 789. [Google Scholar] [CrossRef]
- Consoli, V.; Sorrenti, V.; Grosso, S.; Vanella, L. Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021, 11, 589. [Google Scholar] [CrossRef]
- Behnammanesh, G.; Durante, G.L.; Khanna, Y.P.; Peyton, K.J.; Durante, W. Canagliflozin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration: Role of Heme Oxygenase-1. Redox. Biol. 2020, 32, 101527. [Google Scholar] [CrossRef]
- Campbell, N.K.; Fitzgerald, H.K.; Dunne, A. Regulation of Inflammation by the Antioxidant Haem Oxygenase 1. Nat. Rev. Immunol. 2021, 21, 411–425. [Google Scholar] [CrossRef]
- Leal, E.C.; Carvalho, E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int. J. Mol. Sci. 2022, 23, 12043. [Google Scholar] [CrossRef] [PubMed]
- Durante, W. Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants 2020, 9, 829. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, S.; Li, C.; Cui, L.; Ma, J.; Hui, Y. The Non-Canonical Effects of Heme Oxygenase-1, a Classical Fighter against Oxidative Stress. Redox. Biol. 2021, 47, 102170. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.L.; Amaral, E.P.; Andrade, B.B.; Sher, A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants 2020, 9, 1205. [Google Scholar] [CrossRef]
- Ma, L.L.; Sun, L.; Wang, Y.X.; Sun, B.H.; Li, Y.F.; Jin, Y.L. Association between HO-1 Gene Promoter Polymorphisms and Diseases (Review). Mol. Med. Rep. 2022, 25, 12545. [Google Scholar] [CrossRef]
- Detsika, M.G.; Lianos, E.A. Regulation of Complement Activation by Heme Oxygenase-1 (Ho-1) in Kidney Injury. Antioxidants 2021, 10, 60. [Google Scholar] [CrossRef]
- Lee, E.Y.; Lee, Y.H.; Kim, S.H.; Chung, K.S.; Kwon, O.; Kim, B.S.; Nam, C.M.; Park, C.S.; Lee, B.W.; Kang, E.S.; et al. Association between Heme Oxygenase-1 Promoter Polymorphisms and the Development of Albuminuria in Type 2 Diabetes: A Case-Control Study. Medicine 2015, 94, e1825. [Google Scholar] [CrossRef]
- Grunenwald, A.; Roumenina, L.T.; Frimat, M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int. J. Mol. Sci. 2021, 22, 2009. [Google Scholar] [CrossRef]
- Welliam, Y.; Witarto, B.S.; Visuddho, V.; Wungu, C.D.K.; Budiarto, R.M.; Susilo, H.; Multazam, C.E.C.Z. Osteopontin, Kidney Injury Molecule-1, and Fetuin-A as Prognostic Markers of End-Stage Renal Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2025, 20, e0320804. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Ting, I.W.; Chang, D.R.; Hsiao, Y.L.; Lin, Y.T.; Hsieh, M.C.; Ju, S.W.; Wang, J.S.; Jiang, C.C.; Lin, H.J.; et al. Distribution of Urinary Neutrophil Gelatinase-Associated Lipocalin and Post-Translationally Modified Fetuin-A in Outpatients with Acute Kidney Disease Detected Using a Nationwide Automatic Detection System. Heliyon 2025, 11, e43550. [Google Scholar] [CrossRef]
- Wang, D.; Chu, X.L.; Cao, J.H.; Peng, Y.H. Correlation of Serum Klotho, Fetuin-A, and MGP Levels with Coronary Artery Calcification in Maintenance Hemodialysis Patients. Clinics 2024, 79, 100417. [Google Scholar] [CrossRef] [PubMed]
- Alkaff, F.F.; Kremer, D.; Niekolaas, T.M.; van den Born, J.; Rimbach, G.; Tseng, T.L.; Berger, S.P.; Bakker, S.J.L.; de Borst, M.H. Urinary Vanin-1, Tubular Injury, and Graft Failure in Kidney Transplant Recipients. Sci. Rep. 2024, 14, 2283. [Google Scholar] [CrossRef]
- Wei, Q.; Mi, Q.S.; Dong, Z. The Regulation and Function of MicroRNAs in Kidney Diseases. IUBMB Life 2013, 65, 602. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Tu, J.; Zheng, Y. Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation. J. Microbiol. Biotechnol. 2022, 32, 1262–1274. [Google Scholar] [CrossRef]
- Gluba-Sagr, A.; Franczyk, B.; Rysz-Górzyńska, M.; Ławiński, J.; Rysz, J. The Role of MiRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023, 11, 2358. [Google Scholar] [CrossRef]
- Skrypnyk, N.I.; Gist, K.M.; Okamura, K.; Montford, J.R.; You, Z.; Yang, H.; Moldovan, R.; Bodoni, E.; Blaine, J.T.; Edelstein, C.L.; et al. IL-6-Mediated Hepatocyte Production Is the Primary Source of Plasma and Urine Neutrophil Gelatinase–Associated Lipocalin during Acute Kidney Injury. Kidney Int. 2020, 97, 966–979. [Google Scholar] [CrossRef]
- Saberi, S.; Askaripour, M.; Khaksari, M.; Amin Rajizadeh, M.; Abbas Bejeshk, M.; Akhbari, M.; Jafari, E.; Khoramipour, K. Exercise Training Improves Diabetic Renal Injury by Reducing Fetuin-A, Oxidative Stress and Inflammation in Type 2 Diabetic Rats. Heliyon 2024, 10, e27749. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2011, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Dadej, D.; Szczepanek-Parulska, E.; Ruchała, M. Interplay between Fatty Acid Binding Protein 4, Fetuin-A, Retinol Binding Protein 4 and Thyroid Function in Metabolic Dysregulation. Metabolites 2022, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Song, Y.; Ma, Q.; Yang, J.; Bai, L. Expression and Significance of KIM-1, NGAL, and HO-1 in Patients with Acute Kidney Injury After Cardiac Valve Replacement. J. Inflamm. Res. 2023, 16, 2755–2761. [Google Scholar] [CrossRef]
- Xu, Y.; You, J.; Yao, J.; Hou, B.; Wang, W.; Hao, Z. Klotho Alleviates Oxidative Stress and Mitochondrial Dysfunction through the Nrf2/HO-1 Pathway, Thereby Reducing Renal Senescence Induced by Calcium Oxalate Crystals. Urolithiasis 2025, 53, 61. [Google Scholar] [CrossRef]
- Xie, T.; Yao, L.; Li, X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants 2024, 13, 659. [Google Scholar] [CrossRef]
- Cronin, S.J.F.; Woolf, C.J.; Weiss, G.; Penninger, J.M. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front. Mol. Biosci. 2019, 6, 481580. [Google Scholar] [CrossRef]
- Li, Y.; Ma, K.; Han, Z.; Chi, M.; Sai, X.; Zhu, P.; Ding, Z.; Song, L.; Liu, C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front. Med. 2021, 8, 708453. [Google Scholar] [CrossRef]
- Donate-Correa, J.; Martín-Carro, B.; Cannata-Andía, J.B.; Mora-Fernández, C.; Navarro-González, J.F. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants 2023, 12, 239. [Google Scholar] [CrossRef]
- Zhao, X.; Han, D.; Zhao, C.; Yang, F.; Wang, Z.; Gao, Y.; Jin, M.; Tao, R. New Insights into the Role of Klotho in Inflammation and Fibrosis: Molecular and Cellular Mechanisms. Front. Immunol. 2024, 15, 1454142. [Google Scholar] [CrossRef]
- Sun, C.Y.; Lin, Y.T.; Huang, Y.T.; Cheng, H.C.; Chou, W.C.; Chang, Y.T.; Ling, T.C.; Hsieh, P.L.; Tsai, K.L. Klotho Suppresses Indoxyl Sulfate-Mediated Apoptosis in Human Kidney Proximal Tubular (HK-2) Cells through Modulating the AKT/Nrf2 Mechanism. ACS Omega 2025, 10, 24018–24029. [Google Scholar] [CrossRef]
- Beckman, J.D.; Chen, C.; Nguyen, J.; Thayanithy, V.; Subramanian, S.; Steer, C.J.; Vercellotti, G.M. Regulation of Heme Oxygenase-1 Protein Expression by MiR-377 in Combination with MiR-217. J. Biol. Chem. 2011, 286, 3194–3202. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Ni, P.; Song, Y.; Gao, M.J.; Guo, X.Y.; Zhao, B.Q. Effective Protective Mechanisms of HO-1 in Diabetic Complications: A Narrative Review. Cell Death Discov. 2024, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, X.; Cao, Z.; Zhang, Z.; Tang, J.; Xi, J.; Zhang, S.; Zhang, S.; Xie, Y.; Wu, Y.; et al. Yishen Tongluo Prescription Ameliorates Oxidative Stress Injury in Mouse Model of Diabetic Kidney Disease via Nrf2/HO-1/NQO1 Signaling Pathway. Chin. J. Exp. Tradit. Med. Formulae 2025, 31, 41–51. [Google Scholar] [CrossRef]
- Singer, E.; Markó, L.; Paragas, N.; Barasch, J.; Dragun, D.; Müller, D.N.; Budde, K.; Schmidt-Ott, K.M. Neutrophil Gelatinase-Associated Lipocalin: Pathophysiology and Clinical Applications. Acta Physiol. 2013, 207, 663. [Google Scholar] [CrossRef]
- De Carvalho, J.A.M.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Moretto, M.B.; Duarte, T.; Duarte, M.M.M.F.; Londero, S.W.K.; Premaor, M.O.; Comim, F.V.; et al. Urinary Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin as Indicators of Tubular Damage in Normoalbuminuric Patients with Type 2 Diabetes. Clin. Biochem. 2016, 49, 232–236. [Google Scholar] [CrossRef]
- Tong, M.; Carrero, J.J.; Qureshi, A.R.; Anderstam, B.; Heimbürger, O.; Bárány, P.; Axelsson, J.; Alvestrand, A.; Stenvinkel, P.; Lindholm, B.; et al. Plasma Pentraxin 3 in Patients with Chronic Kidney Disease: Associations with Renal Function, Protein-Energy Wasting, Cardiovascular Disease, and Mortality. Clin. J. Am. Soc. Nephrol. 2007, 2, 889–897. [Google Scholar] [CrossRef]
- Wolkow, P.P.; Niewczas, M.A.; Perkins, B.; Ficociello, L.H.; Lipinski, B.; Warram, J.H.; Krolewski, A.S. Association of Urinary Inflammatory Markers and Renal Decline in Microalbuminuric Type 1 Diabetics. J. Am. Soc. Nephrol. 2008, 19, 789–797. [Google Scholar] [CrossRef]
- Passov, A.; Petäjä, L.; Pihlajoki, M.; Salminen, U.S.; Suojaranta, R.; Vento, A.; Andersson, S.; Pettilä, V.; Schramko, A.; Pesonen, E. The Origin of Plasma Neutrophil Gelatinase-Associated Lipocalin in Cardiac Surgery. BMC Nephrol. 2019, 20, 182. [Google Scholar] [CrossRef]
- Schrezenmeier, E.V.; Barasch, J.; Budde, K.; Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in Acute Kidney Injury—Pathophysiological Basis and Clinical Performance. Acta Physiol. 2017, 219, 554–572. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Schjoedt, K.J.; Astrup, A.S.; Tarnow, L.; Lajer, M.; Hansen, P.R.; Parving, H.H.; Rossing, P. Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM1) in Patients with Diabetic Nephropathy: A Cross-Sectional Study and the Effects of Lisinopril. Diabet. Med. 2010, 27, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Romejko, K.; Markowska, M.; Niemczyk, S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int. J. Mol. Sci. 2023, 24, 1047. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Chen, J.; Wu, L.; Nie, G.; Sun, L.; Zhang, C.; Huang, Z.; Xing, C.; Zhang, B.; Yuan, Y. Assessment of Urinary NGAL for Differential Diagnosis and Progression of Diabetic Kidney Disease. J. Diabetes Complicat. 2020, 34, 107665. [Google Scholar] [CrossRef]
- Zeng, X.F.; Lu, D.X.; Li, J.M.; Tan, Y.; Li, Z.; Zhou, L.; Xi, Z.Q.; Zhang, S.M.; Duan, W. Performance of Urinary Neutrophil Gelatinase-Associated Lipocalin, Clusterin, and Cystatin C in Predicting Diabetic Kidney Disease and Diabetic Microalbuminuria: A Consecutive Cohort Study. BMC Nephrol. 2017, 18, 233. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Moosaie, F.; Khaloo, P.; Dehghani Firouzabadi, F.; Fatemi Abhari, S.M.; Atainia, B.; Ardeshir, M.; Nakhjavani, M.; Esteghamati, A. Neutrophil Gelatinase-Associated Lipocalin and Retinol-Binding Protein-4 as Biomarkers for Diabetic Kidney Disease. Kidney Blood Press. Res. 2020, 45, 222–232. [Google Scholar] [CrossRef]
- Garg, V.; Kumar, M.; Mahapatra, H.S.; Chitkara, A.; Gadpayle, A.K.; Sekhar, V. Novel Urinary Biomarkers in Pre-Diabetic Nephropathy. Clin. Exp. Nephrol. 2015, 19, 895–900. [Google Scholar] [CrossRef]
- Tunakhun, P.; Ngernpimai, S.; Tippayawat, P.; Choowongkomon, K.; Anutrakulchai, S.; Charoensri, N.; Tavichakorntrakool, R.; Daduang, S.; Srichaiyapol, O.; Maraming, P.; et al. A Highly Sensitive Lateral-Flow Strip Using Latex Microspheres to Detect NGAL in Urine Samples. ACS Omega 2024, 9, 36475–36484. [Google Scholar] [CrossRef]
- Ning, M.; Mao, X.; Niu, Y.; Tang, B.; Shen, H. Usefulness and Limitations of Neutrophil Gelatinase-Associated Lipocalin in the Assessment of Kidney Diseases. J. Lab. Precis. Med. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Villalva, C.; Sorel, N.; Bonnet, M.L.; Guilhot, J.; Mayeur-Rousse, C.; Guilhot, F.; Chomel, J.C.; Turhan, A.G. Neutrophil Gelatinase-Associated Lipocalin Expression in Chronic Myeloid Leukemia. Leuk. Lymphoma 2008, 49, 984–988. [Google Scholar] [CrossRef]
- Haase, M.; Bellomo, R.; Devarajan, P.; Schlattmann, P.; Haase-Fielitz, A.; Bagshaw, S.M.; Bogle, R.; Changchun, C.; Constantin, J.M.; Cruz, D.; et al. Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 2009, 54, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Jou-Valencia, D.; Volbeda, M.; Zijlstra, J.G.; Kootstra-Ros, J.E.; Moser, J.; van Meurs, M.; Koeze, J. Longitudinal NGAL and Cystatin C Plasma Profiles Present a High Level of Heterogeneity in a Mixed ICU Population. BMC Nephrol. 2024, 25, 43. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Rozet, E.; Krzesinski, J.M.; Cavalier, E. Urinary NGAL Measurement: Biological Variation and Ratio to Creatinine. Clin. Chim. Acta 2011, 412, 390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gibson, B.; Mori, R.; Snow-Lisy, D.; Yamaguchi, Y.; Campbell, S.C.; Simmons, M.N.; Daly, T.M. Analytical and Biological Validation of a Multiplex Immunoassay for Acute Kidney Injury Biomarkers. Clin. Chim. Acta 2013, 415, 88–93. [Google Scholar] [CrossRef]
- Grenier, F.C.; Ali, S.; Syed, H.; Workman, R.; Martens, F.; Liao, M.; Wang, Y.; Wong, P.Y. Evaluation of the ARCHITECT Urine NGAL Assay: Assay Performance, Specimen Handling Requirements and Biological Variability. Clin. Biochem. 2010, 43, 615–620. [Google Scholar] [CrossRef]
- Helmersson-Karlqvist, J.; Ärnlöv, J.; Larsson, A. Day-to-Day Variation of Urinary NGAL and Rational for Creatinine Correction. Clin. Biochem. 2013, 46, 70–72. [Google Scholar] [CrossRef]
- Bataille, A.; Tiepolo, A.; Robert, T.; Boutten, A.; Longrois, D.; Dehoux, M.; Provenchère, S. Reference Change Values of Plasma and Urine NGAL in Cardiac Surgery with Cardiopulmonary Bypass. Clin. Biochem. 2017, 50, 1098–1103. [Google Scholar] [CrossRef]
- Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel Biomarkers of Diabetic Kidney Disease: Current Status and Potential Clinical Application. Acta Diabetol. 2021, 58, 819–830, Erratum in Acta Diabetol. 2022, 59, 439–441. https://doi.org/10.1007/s00592-021-01816-5. [Google Scholar] [CrossRef]
- Tekce, B.K.; Tekce, H.; Aktas, G.; Sit, M. Evaluation of the Urinary Kidney Injury Molecule-1 Levels in Patients with Diabetic Nephropathy. Clin. Investig. Med. 2014, 37, E377–E383. [Google Scholar] [CrossRef]
- Van Timmeren, M.M.; van den Heuvel, M.C.; Bailly, V.; Bakker, S.J.L.; van Goor, H.; Stegeman, C.A. Tubular Kidney Injury Molecule-1 (KIM-1) in Human Renal Disease. J. Pathol. 2007, 212, 209–217. [Google Scholar] [CrossRef]
- Van Timmeren, M.M.; Bakker, S.J.L.; Vaidya, V.S.; Bailly, V.; Schuurs, T.A.; Damman, J.; Stegeman, C.A.; Bonventre, J.V.; Van Goor, H. Tubular Kidney Injury Molecule-1 in Protein-Overload Nephropathy. Am. J. Physiol. Renal. Physiol. 2006, 291, F456–F464. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, S.; Ahmed, N.; Zahran, F.E.; Mohammed, G.; Ibrahim, E.S.I. Diagnostic Performance of Kidney Injury Molecule-1 for Detection of Abnormal Urinary Albumin-to-creatinine Ratio in Type 2 Diabetes Mellitus. J. Immunoass. Immunochem. 2021, 42, 1954947. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Wang, S.; Li, Y.; Meng, C.; Wang, J.; Chang, B.; Yang, J. Simultaneous Detection of Multiple Urinary Biomarkers in Patients with Early-Stage Diabetic Kidney Disease Using Luminex Liquid Suspension Chip Technology. Front. Endocrinol. 2024, 15, 1443573. [Google Scholar] [CrossRef] [PubMed]
- Kapoula, G.V.; Kontou, P.I.; Bagos, P.G. Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diagnostics 2020, 10, 909. [Google Scholar] [CrossRef]
- Balu, D.; Krishnan, V.; Krishnamoorthy, V.; Singh, R.B.S.; Narayanasamy, S.; Ramanathan, G. Does Serum Kidney Injury Molecule-1 Predict Early Diabetic Nephropathy: A Comparative Study with Microalbuminuria. Ann. Afr. Med. 2022, 21, 136–139. [Google Scholar] [CrossRef]
- Khan, F.A.; Fatima, S.S.; Khan, G.M.; Shahid, S. Evaluation of Kidney Injury Molecule-1 as a Disease Progression Biomarker in Diabetic Nephropathy. Pak. J. Med. Sci. 2019, 35, 992–996. [Google Scholar] [CrossRef]
- Wright, J.D.; An, S.W.; Xie, J.; Yoon, J.; Nischan, N.; Kohler, J.J.; Oliver, N.; Lim, C.; Huang, C.L. Modeled Structural Basis for the Recognition of A2-3-Sialyllactose by Soluble Klotho. FASEB J. 2017, 31, 3574–3586. [Google Scholar] [CrossRef]
- Wang, K.; Mao, Y.; Lu, M.; Liu, X.; Sun, Y.; Li, Z.; Li, Y.; Ding, Y.; Zhang, J.; Hong, J.; et al. Association between Serum Klotho Levels and the Prevalence of Diabetes among Adults in the United States. Front. Endocrinol. 2022, 13, 1005553. [Google Scholar] [CrossRef]
- Asai, O.; Nakatani, K.; Tanaka, T.; Sakan, H.; Imura, A.; Yoshimoto, S.; Samejima, K.I.; Yamaguchi, Y.; Matsui, M.; Akai, Y.; et al. Decreased Renal α-Klotho Expression in Early Diabetic Nephropathy in Humans and Mice and Its Possible Role in Urinary Calcium Excretion. Kidney Int. 2012, 81, 539–547. [Google Scholar] [CrossRef]
- Typiak, M.; Piwkowska, A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 956. [Google Scholar] [CrossRef]
- Xin, C.; Sun, X.; Li, Z.; Gao, T. Relationship of Soluble Klotho and Early Stage of Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 902765. [Google Scholar] [CrossRef]
- Kim, S.S.; Song, S.H.; Kim, I.J.; Lee, E.Y.; Lee, S.M.; Chung, C.H.; Kwak, I.S.; Lee, E.K.; Kim, Y.K. Decreased Plasma α-Klotho Predict Progression of Nephropathy with Type 2 Diabetic Patients. J. Diabetes Complicat. 2016, 30, 887–892. [Google Scholar] [CrossRef]
- Silva, A.P.; Mendes, F.; Pereira, L.; Fragoso, A.; Gonçalves, R.B.; Santos, N.; Rato, F.; Neves, P.L. Klotho Levels: Association with Insulin Resistance and Albumin-to-Creatinine Ratio in Type 2 Diabetic Patients. Int. Urol. Nephrol. 2017, 49, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced Levels of Anti-Ageing Hormone Klotho Predict Renal Function Decline in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, X.; Deng, L.; Jin, K.; Xiong, X.; Su, X.; Qiu, S.; Yang, L. The Association between Serum Soluble Klotho and Chronic Kidney Disease among Us Adults Ages 40 to 79 Years: Cross-Sectional Study. Front Public Health 2022, 10, 995314. [Google Scholar] [CrossRef]
- Kim, H.R.; Nam, B.Y.; Kim, D.W.; Kang, M.W.; Han, J.H.; Lee, M.J.; Shin, D.H.; Doh, F.M.; Koo, H.M.; Ko, K.I.; et al. Circulating α-Klotho Levels in CKD and Relationship to Progression. Am. J. Kidney Dis. 2013, 61, 899–909. [Google Scholar] [CrossRef]
- Pei, Y.; Miu, M.; Mao, X.; Chen, W.; Zhu, J. α-Klotho: An Early Risk-Predictive Biomarker for Acute Kidney Injury in Patients with Acute Myocardial Infarction. Int. J. Clin. Pract. 2023, 2023, 8244545. [Google Scholar] [CrossRef]
- Lee, E.Y.; Kim, S.S.; Lee, J.S.; Kim, I.J.; Song, S.H.; Cha, S.K.; Park, K.S.; Kang, J.S.; Chung, C.H. Soluble α-Klotho as a Novel Biomarker in the Early Stage of Nephropathy in Patients with Type 2 Diabetes. PLoS ONE 2014, 9, e0102984. [Google Scholar] [CrossRef]
- Yu, L.X.; Li, S.S.; Sha, M.Y.; Kong, J.W.; Ye, J.M.; Liu, Q.F. The Controversy of Klotho as a Potential Biomarker in Chronic Kidney Disease. Front. Pharmacol. 2022, 13, 931746. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef]
- Kato, M.; Natarajan, R. MicroRNAs in Diabetic Nephropathy: Functions, Biomarkers, and Therapeutic Targets. Ann. N. Y. Acad. Sci. 2015, 1353, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ni, W.J.; Meng, X.M.; Tang, L.Q. MicroRNAs as Regulators of Immune and Inflammatory Responses: Potential Therapeutic Targets in Diabetic Nephropathy. Front. Cell Dev. Biol. 2021, 8, 618536. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kong, L.; Zhou, S.; Cui, W.; Xu, F.; Luo, M.; Li, X.; Tan, Y.; Miao, L. The Role of MicroRNAs in Diabetic Nephropathy. J. Diabetes Res. 2014, 2014, 920134. [Google Scholar] [CrossRef] [PubMed]
- Gholaminejad, A.; Abdul Tehrani, H.; Gholami Fesharaki, M. Identification of Candidate MicroRNA Biomarkers in Diabetic Nephropathy: A Meta-Analysis of Profiling Studies. J. Nephrol. 2018, 31, 813–831. [Google Scholar] [CrossRef]
- Neal, C.S.; Michael, M.Z.; Pimlott, L.K.; Yong, T.Y.; Li, J.Y.Z.; Gleadle, J.M. Circulating MicroRNA Expression Is Reduced in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2011, 26, 3794–3802. [Google Scholar] [CrossRef]
- Chen, N.X.; Kiattisunthorn, K.; O’Neill, K.D.; Chen, X.; Moorthi, R.N.; Gattone, V.H.; Allen, M.R.; Moe, S.M. Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD). PLoS ONE 2013, 8, e0064558. [Google Scholar] [CrossRef]
- He, X.; Kuang, G.; Wu, Y.; Ou, C. Emerging Roles of Exosomal MiRNAs in Diabetes Mellitus. Clin. Transl. Med. 2021, 11, e468. [Google Scholar] [CrossRef]
- Wang, L.; Chopp, M.; Szalad, A.; Lu, X.R.; Zhang, Y.; Wang, X.; Cepparulo, P.; Lu, M.; Li, C.; Zhang, Z.G. Exosomes Derived from Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 2020, 69, 749–759. [Google Scholar] [CrossRef]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal MiRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef]
- Piwkowska, A.; Zdrojewski, Ł.; Heleniak, Z.; Dębska-ślizień, A. Novel Markers in Diabetic Kidney Disease—Current State and Perspectives. Diagnostics 2022, 12, 1205. [Google Scholar] [CrossRef]
- Ngan, D.T.T.; Binh, N.G.; Lan, L.T.H.; Nguyen, C.T.T.; Huong, P.T. Evaluation of Urinary L-FABP as an Early Marker for Diabetic Nephropathy in Type 2 Diabetic Patients. J. Med. Biochem. 2020, 39, 224. [Google Scholar] [CrossRef]
- Perkins, B.A.; Ficociello, L.H.; Silva, K.H.; Finkelstein, D.M.; Warram, J.H.; Krolewski, A.S. Regression of Microalbuminuria in Type 1 Diabetes. N. Engl. J. Med. 2003, 348, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Hotamisligil, G.S. Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.; Sivakumar, S.; Sekar, V.; Umapathy, D.; Kumpatla, S. Clinical Significance of Urinary Liver-Type Fatty Acid Binding Protein at Various Stages of Nephropathy. Indian. J. Nephrol. 2015, 25, 269. [Google Scholar] [CrossRef] [PubMed]
- Panduru, N.M.; Forsblom, C.; Saraheimo, M.; Thorn, L.; Bierhaus, A.; Humpert, P.M.; Groop, P.H. Urinary Liver-Type Fatty Acid-Binding Protein and Progression of Diabetic Nephropathy in Type 1 Diabetes. Diabetes Care 2013, 36, 2077–2083. [Google Scholar] [CrossRef]
- Suh, J.S.; Kim, S.H.; Cho, K.S.; Jung, I.A.; Cho, W.K.; Jeon, Y.J.; Jung, M.H.; Suh, B.K. Urinary Markers in the Early Stage of Nephropathy in Patients with Childhood-Onset Type 1 Diabetes. Pediatr. Nephrol. 2016, 31, 623–631. [Google Scholar] [CrossRef]
- Kamijo, A.; Sugaya, T.; Hikawa, A.; Yamanouchi, M.; Hirata, Y.; Ishimitsu, T.; Numabe, A.; Takagi, M.; Hayakawa, H.; Tabei, F.; et al. Urinary Liver-Type Fatty Acid Binding Protein as a Useful Biomarker in Chronic Kidney Disease. Mol. Cell Biochem. 2006, 284, 175–182. [Google Scholar] [CrossRef]
- Kamijo-Ikemori, A.; Sugaya, T.; Yasuda, T.; Kawata, T.; Ota, A.; Tatsunami, S.; Kaise, R.; Ishimitsu, T.; Tanaka, Y.; Kimura, K. Clinical Significance of Urinary Liver-Type Fatty Acid-Binding Protein in Diabetic Nephropathy of Type 2 Diabetic Patients. Diabetes Care 2011, 34, 691–696. [Google Scholar] [CrossRef]
- Mitsides, N.; Mitra, V.; Saha, A.; Harris, S.; Kalra, P.A.; Mitra, S. Urinary Liver-Type Fatty Acid Binding Protein, a Biomarker for Disease Progression, Dialysis and Overall Mortality in Chronic Kidney Disease. J. Pers. Med. 2023, 13, 1481. [Google Scholar] [CrossRef]
- Song, J.; Yu, J.; Prayogo, G.W.; Cao, W.; Wu, Y.; Jia, Z.; Zhang, A. Understanding Kidney Injury Molecule 1: A Novel Immune Factor in Kidney Pathophysiology. Am. J. Transl. Res. 2019, 11, 1219. [Google Scholar]
- Prud’homme, G.J.; Kurt, M.; Wang, Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front. Aging 2022, 3, 931331. [Google Scholar] [CrossRef]
- Ha, T.-Y. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases. Immune Netw. 2011, 11, 227. [Google Scholar] [CrossRef]
- Alizadeh, M.; Ghasemi, H.; Bazhan, D.; Mohammadi Bolbanabad, N.; Rahdan, F.; Arianfar, N.; Vahedi, F.; Khatami, S.H.; Taheri-Anganeh, M.; Aiiashi, S.; et al. MicroRNAs in Disease States. Clin. Chim. Acta 2025, 569, 120187. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xie, Y.; Shao, X.; Ni, Z.; Mou, S. L-FABP: A Novel Biomarker of Kidney Disease. Clin. Chim. Acta 2015, 445, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fassett, R.G.; Robertson, I.K.; Ball, M.J.; Geraghty, D.P.; Cardinal, J.W.; Coombes, J.S. Effects of Atorvastatin on NGAL and Cystatin C in Chronic Kidney Disease: A Post Hoc Analysis of the LORD Trial. Nephrol. Dial. Transplant. 2012, 27, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Karampatsou, S.I.; Paltoglou, G.; Genitsaridi, S.M.; Kassari, P.; Charmandari, E. The Effect of a Comprehensive Life-Style Intervention Program of Diet and Exercise on Four Bone-Derived Proteins, FGF-23, Osteopontin, NGAL and Sclerostin, in Overweight or Obese Children and Adolescents. Nutrients 2022, 14, 3772. [Google Scholar] [CrossRef]
- Dekkers, C.C.J.; Petrykiv, S.; Laverman, G.D.; Cherney, D.Z.; Gansevoort, R.T.; Heerspink, H.J.L. Effects of the SGLT-2 Inhibitor Dapagliflozin on Glomerular and Tubular Injury Markers. Diabetes Obes. Metab. 2018, 20, 1988–1993. [Google Scholar] [CrossRef]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019, 25, 63. [Google Scholar] [CrossRef]
- Flowers, E.; Won, G.Y.; Fukuoka, Y. MicroRNAs Associated with Exercise and Diet: A Systematic Review. Physiol. Genom. 2015, 47, 1–11. [Google Scholar] [CrossRef]
- Pointner, A.; Krammer, U.D.B.; Tomeva, E.; Magnet, U.; Hippe, B.; Jacob, U.; Haslberger, A.G. Lifestyle-Driven Variations in Nutrimiromic MicroRNA Expression Patterns across and beyond Genders. Life 2024, 14, 390. [Google Scholar] [CrossRef]
Albuminuria (ACR) Categories | |||
---|---|---|---|
A1 Normal to Mildly Increased | A2 Moderately Increased | A3 Severely Increased | |
Albumin excretion rate (mg/24 h) | <30 | 30–300 | >300 |
Albumin/creatinine ratio (mg/g) | <30 | 30–300 | >300 |
Albumin/creatinine ratio (mg/mmol) | <3 | 3–30 | >30 |
Cystatin C | Creatinine | |
---|---|---|
Advantages | - endogenous substance rises faster than creatinine not dependent on muscle mass, physical activity or protein intake | endogenous substance low cost low intra-individual variability |
Factors influencing concentration | ethnicity thyroid dysfunction medications (corticosteroids, cyclosporine) | age gender physical activity muscle mass medications (cimetidine) diet |
Biomarker | Importance in Kidney Diseases | Mechanisms Linking with Fetuin-A | References |
---|---|---|---|
NGAL | Parallel changes in acute kidney injury (AKI): NGAL increases in AKI, fetuin-A may decrease in inflammation/severe AKI/CKD. | Both NGAL and fetuin-A respond to inflammation and tubular damage; IL-6 and other cytokines can decrease fetuin-A and simultaneously increase NGAL. | [5,115,121] |
KIM-1 | KIM-1 increases in proximal tubule injury; may correlate with fetuin-A in AKI/CKD. | KIM-1 and fetuin-A share a common context of renal injury and inflammation; perhaps the decrease in fetuin-A level is associated with increased markers of tubular damage. | [114,122] |
α-Klotho | Both proteins are associated with disturbances in mineral homeostasis and vascular calcification. Clinical studies have observed co-dysregulation of these proteins in advanced CKD. | Common pathways regulating phosphorus/calcium homeostasis and processes leading to vascular calcification; fetuin-A acts as a calcification inhibitor and α-Klotho has a role in mineral metabolism—together influence the risk of calcification and CKD progression. | [116,123] |
MicroRNA | MicroRNA can regulate genes associated with inflammation, fibrosis, and markers of kidney damage. | MicroRNAs (miR-27a-3p, miR-27b-3p) can modulate the expression of AHSG and other genes (profibrotic, inflammatory, and injury markers). This suggests a possible direct association of microRNAs with fetuin-A. | [118,119,120] |
L-FABP | L-FABP is used as a marker of nephron damage; in kidney diseases, correlations between markers of damage and liver metabolic markers (such as fetuin-A) are often observed. | L-FABP and fetuin-A levels may change in parallel in response to renal injury and metabolic disturbances. There is no clear evidence of a regulatory relationship. | [117,124] |
Biomarker | Importance in Kidney Diseases | Mechanisms Linking with HO-1 | References |
---|---|---|---|
NGAL | NGAL levels increases in AKI, and HO-1 is strongly induced by oxidative stress and hemoproteins in AKI. In animal models, early induction of HO-1 can reduce NGAL expression in the later phase of injury. | Both NGAL and HO-1 participate in the regulation of iron metabolism. HO-1 degrades heme into bilirubin, CO, and iron, and also reduces oxidative stress. NGAL is induced by, among other factors, oxidative stress damage and free iron. | [127,128] |
KIM-1 | KIM-1 levels are increased in AKI. Preclinical studies have shown that induction of HO-1 reduces tubular damage and downregulates KIM-1 expression. | The anti-inflammatory and antioxidant effects of HO-1 limit the activation of proximal tubular cells, which may secondarily reduce KIM-1 expression. | [125,129] |
α-Klotho | α-Klotho levels are decreased in CKD. Klotho may promote the kidney transcription of HO-1. | HO-1 and α-Klotho reduce oxidative stress and inhibit fibrosis. Furthermore, α-Klotho can be induced by the products of the HO-1-mediated reaction. | [130,131,132] |
MicroRNA | Several miRNAs (miR-217, miR-377, miR-155) regulate HO-1 expression. In turn, HO-1 influences the miRNA profile in renal cells. Some HO-1-related miRNAs participate in the regulation of markers of renal injury. | miRNAs control HO-1 translation, and HO-1 can modulate miRNA expression by reducing oxidative stress and altering the activity of transcription factors (Nrf2). | [133,134] |
L-FABP | Oxidative stress increases L-FABP levels. In models of nephrotoxicity, induction of HO-1 reduces damage and lowers L-FABP levels. | HO-1 reduces ROS generation and lipid peroxidation, which reduces L-FABP release. | [135,136] |
Biomarker | Examples of Comorbidities That May Affect the Concentrations of Biomarkers | Examples of Medications That May Affect the Concentrations of Biomarkers | Examples of Lifestyle Factors That May Affect the Concentrations of Biomarkers | References |
---|---|---|---|---|
NGAL | Inflammation Arterial hypertension Obesity Diabetes Metabolic complications Cancers Cardiovascular diseases Sepsis | Atorvastatin (lowers plasma NGAL levels) | Exercise Diet | [144,150,206,207] |
KIM-1 | Immune diseases (asthma, allergies, ectopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus) Diabetes Kidney damage | Dapagliflozin treatment (significantly reduces KIM-1 levels) | Exercise (high-intensity interval training) | [122,201,208] |
α-Klotho | Renal failure Diabetes Neurodegenerative diseases Cardiovascular diseases Chronic obstructive pulmonary disease Cancers | Renin–angiotensin system inhibitors (losartan, valsartan) Statin (fluvastatin) mTOR inhibitors (rapamycin, everolimus) Vitamin D and pentoxifylline Supplements and traditional medicines (astaxanthin, cordycepin, curcumin, resveratrol, ligustilide) | Exercise and sport activity Ageing | [202] |
MicroRNA | Diabetes Kidney diseases Cardiovascular diseases Autoimmune disorders Infectious diseases Neurological diseases Cancers | Epigallocatechin-3-gallate (EGCG) and quercetin (upregulate miR-29) | Exercise Diet Smoking | [203,204,209,210,211] |
L-FABP | Diabetes Kidney damage Acute kidney injury Chronic kidney disease | Combination therapy with the ARB olmesartan and the ACE inhibitor temocapril (significantly reduces elevated urinary L-FABP levels) | Sport activity | [198,205,206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król-Kulikowska, M.; Przyborska, A.; Miernikiewicz, E.; Roszykiewicz, P.; Roszykiewicz, W.; Banasik, M.; Kepinska, M. Fetuin-A and Heme Oxygenase 1 as Potential New Markers in the Diagnosis of Diabetic Kidney Disease. Int. J. Mol. Sci. 2025, 26, 9862. https://doi.org/10.3390/ijms26209862
Król-Kulikowska M, Przyborska A, Miernikiewicz E, Roszykiewicz P, Roszykiewicz W, Banasik M, Kepinska M. Fetuin-A and Heme Oxygenase 1 as Potential New Markers in the Diagnosis of Diabetic Kidney Disease. International Journal of Molecular Sciences. 2025; 26(20):9862. https://doi.org/10.3390/ijms26209862
Chicago/Turabian StyleKról-Kulikowska, Magdalena, Agata Przyborska, Emilia Miernikiewicz, Patrycja Roszykiewicz, Wiktoria Roszykiewicz, Mirosław Banasik, and Marta Kepinska. 2025. "Fetuin-A and Heme Oxygenase 1 as Potential New Markers in the Diagnosis of Diabetic Kidney Disease" International Journal of Molecular Sciences 26, no. 20: 9862. https://doi.org/10.3390/ijms26209862
APA StyleKról-Kulikowska, M., Przyborska, A., Miernikiewicz, E., Roszykiewicz, P., Roszykiewicz, W., Banasik, M., & Kepinska, M. (2025). Fetuin-A and Heme Oxygenase 1 as Potential New Markers in the Diagnosis of Diabetic Kidney Disease. International Journal of Molecular Sciences, 26(20), 9862. https://doi.org/10.3390/ijms26209862