Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges
Abstract
:1. Introduction
2. Background: Identification of Three Sources of Human Hematopoietic Stem and Progenitor Cells for Clinical Hematopoietic Cell Transplants
2.1. Bone Marrow as the Major Residence for Adult Hematopoietic Stem Cells
2.2. The Concept of the Hematopoietic Stem Cell Niche and the Search for an In Vivo Human Hematopoietic Stem Cell Assay
2.3. Further Advances in Human Hematopoietic Cell Transplants and in Identifying Biomarkers for Human Hematopoietic Stem and Progenitor Cells
2.4. Global Clinical Hematopoietic Cell Transplants Now Exceed 1.5 Million
3. Progress and Challenges in Defining Adult Human Hematopoietic Stem and Progenitor Cells in Steady State and Stress-Induced Hematopoiesis
3.1. Daily Turnover of Hematopoietic Cells Under Steady State Conditions as a Reflection of Adult Human Hematopoietic Stem Cell Potential
3.2. Defining Post-Natal Human Hematopoietic Stem Cell Populations
3.2.1. The Hallmarks of Stemness: Not All Human Hematopoietic Stem Cells Are Created Equal
3.2.2. The Challenges of Researching Human Hematopoiesis
3.3. Enriching Post-Natal Human Hematopoietic Stem Cells Using Limited Sets of Biomarkers
3.3.1. CD34 as a Key Human Hematopoietic Stem and Progenitor Cell Biomarker
3.3.2. CD133 Marks Primitive CD34- and CD34+ Human Hematopoietic Stem Cells
3.4. Hierarchical Models of Human Hematopoiesis
3.4.1. Evolution of the Classical Hierarchical Model
3.4.2. Further Heterogeneity of Human Hematopoietic Stem Cells and Their Progeny Revealed with Additional Cell Surface Biomarkers and Single-Cell Genomics
3.4.3. Human Adult BM Hematopoiesis: A Continuum, a Punctuated Continuum, or a Series of Discrete Meta-Stable States?
3.5. Can Lineage Tracing Distinguish Homeostatic from Perturbed or Regenerative Adult Hematopoiesis?
3.5.1. Lineage Tracing in Surrogate Models
3.5.2. Lineage Tracing and Adult Human Hematopoiesis
3.6. Are All BM Sites Created Equal?
3.7. Do Extramedullary Sites Contribute to Adult Human Hematopoiesis Under Physiological Steady State Conditions?
3.8. The Functional Dynamics of Long-Lived Hematopoietic Stem Cells in Young and Aging Adult Bone Marrow
3.8.1. Do Dormant Long-Lived Hematopoietic Stem Cells Contribute to Steady State or Perturbed Hematopoiesis?
3.8.2. Hematopoietic Stem Cell Multipotentiality or Lineage Bias
3.8.3. HSCs and the Effects of Aging
Lineage Bias and Aging
Trained Immunity, Inflammatory Memory, and Aging
Epigenetic and Metabolic Regulation and Quality Control Mechanisms in Hematopoietic Stem Cells and Alterations Associated with Aging
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Bekkum, D.W.; de Vries, M.J. Radiation Chimaeras; Logos Press: Moscow, ID, USA, 1967. [Google Scholar]
- Thomas, E.D. Bone marrow transplantation from the personal viewpoint. Int. J. Hematol. 2005, 81, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Granot, N.; Storb, R. History of hematopoietic cell transplantation: Challenges and progress. Haematologica 2020, 105, 2716–2729. [Google Scholar] [CrossRef]
- Cooper, B. The origins of bone marrow as the seedbed of our blood: From antiquity to the time of Osler. Bayl. Univ. Med. Cent. Proc. 2011, 24, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Maehle, A.H. Ambiguous cells: The emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec. R. Soc. Lond. 2011, 65, 359–378. [Google Scholar] [CrossRef]
- Ramalho-Santos, M.; Willenbring, H. On the origin of the term “stem cell”. Cell Stem Cell 2007, 1, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Osgood, E.E.; Riddle, M.C.; Mathews, T.J. Aplastic anemia treated with daily transfusions and intravenous marrow: A case report. Ann. Intern. Med. 1939, 13, 357–367. [Google Scholar]
- Weissman, I.L.; Shizuru, J.A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008, 112, 3543–3553. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.O.; Simmons, E.L.; Marks, E.K.; Eldredge, J.H. Recovery from radiation injury. Science 1951, 113, 510–511. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, E.; Upiioff, D.; Reiu, T.R.; Ton, E.S. Modification of irradiation injury in mice and guinea pigs by bone marrow infections. J. Natl. Cancer Inst. 1951, 12, 197–201. [Google Scholar]
- Bortin, M.M. A compendium of reported human bone marrow transplants. Transplantation 1970, 9, 571–587. [Google Scholar] [CrossRef]
- Thomas, E.D. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.D.; Lochte, H.L., Jr.; Cannon, J.H.; Sahler, O.D.; Ferrebee, J.W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Investig. 1959, 38, 1709–1716. [Google Scholar] [CrossRef]
- Gorer, P.A. The genetic and antigenic basis of tumour transplantation. J. Pathol. Bacteriol. 1937, 44, 691–697. [Google Scholar] [CrossRef]
- Gorer, P.A. Some reactions of H-2 antibodies in vitro and in vivo. Ann. N. Y. Acad. Sci. 1958, 73, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Snell, G.D. Methods for the study of histocompatibility genes. J. Genet. 1948, 49, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.B.; Ojeda, A.P.; Benacerraf, B. Studies on artificial antigens. III. The genetic control of the immune response to hapten-poly-L-lysine conjugates in guinea pigs. J. Exp. Med. 1963, 118, 953–957. [Google Scholar] [CrossRef]
- McDevitt, H.O.; Chinitz, A. Genetic control of the antibody response: Relationship between immune response and histocompatibility (H-2) type. Science 1969, 163, 1207–1208. [Google Scholar] [CrossRef]
- Lilly, F.; Boyse, E.A.; Old, L.J. Genetic basis of susceptibility to viral leukaemogenesis. Lancet 1964, 2, 1207–1209. [Google Scholar] [CrossRef]
- Doherty, P.C.; Zinkernagel, R.M. A biological role for the major histocompatibility antigens. Lancet 1975, 1, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Dausset, J. Isoleuco anticorps. Acta Haematol. 1958, 20, 156–166. [Google Scholar] [CrossRef] [PubMed]
- van Rood, J.J.; Eernisse, J.G.; van Leeuwen, A. Leucocyte antibodies in sera from pregnant women. Nature 1958, 181, 1735–1736. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.; Rolfs, M.R. Fetomaternal leukocyte incompatibility. J. Clin. Investig. 1958, 37, 1756–1763. [Google Scholar] [CrossRef]
- Crocchiolo, R.; Rombolà, G. Human leucocyte antigen system and selection of unrelated hematopoietic stem cell donors: Impact of patient–donor (mis)matching and new challenges with the current technologies. J. Clin. Med. 2023, 12, 646. [Google Scholar] [CrossRef]
- Bodmer, W. A Historical Perspective on HLA. Immunother. Adv. 2023, 3, ltad014. [Google Scholar] [CrossRef] [PubMed]
- Spellman, S.R. Hematology 2022—What is complete HLA match in 2022? Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Gatti, R.A.; Meuwissen, H.J.; Allen, H.D.; Hong, R.; Good, R.A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968, 292, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- de Koning, J.; Van Bekkum, D.W.; Dicke, K.A.; Dooren, L.J.; Rádl, J.; Van Rood, J.J. Transplantation of bone-marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet 1969, 1, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.H.; Albertini, R.J.; Joo, P.; Anderson, J.L.; Bortin, M.M. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 1968, 292, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Röhlich, K. Über die Beziehungen zwischen der Knochensubstanz und der Blutbildung im Knochenmark. Z. Mikrosk. Anat. Forsch. 1941, 49, 425–464. [Google Scholar]
- Guest, I.; Ilic, Z.; Sell, S. Origin of the stem cell niche concept. Exp. Hematol. 2016, 44, 809–810. [Google Scholar] [CrossRef] [PubMed]
- Watt, S.M. The long and winding road: Homeostatic and disordered haematopoietic microenvironmental niches: A narrative review. Biomater. Transl. 2022, 3, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.; Galli, S.; Nombela-Arrieta, C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024, 8, e133. [Google Scholar] [CrossRef] [PubMed]
- Cain, T.L.; Derecka, M.; McKinney-Freeman, S. The role of the haematopoietic stem cell niche in development and ageing. Nat. Rev. Mol. Cell Biol. 2025, 26, 32–50, Erratum in Nat. Rev. Mol. Cell Biol. 2025, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- Till, J.E.; McCulloch, E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 1961, 14, 213–222. [Google Scholar] [CrossRef]
- Till, J.E.; McCulloch, E.A.; Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 1964, 51, 29–36. [Google Scholar] [CrossRef]
- Becker, A.J.; McCulloch, E.A.; Till, J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963, 197, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Siminovitch, L.; McCulloch, E.A.; Till, J.E. The distribution of colony-forming cells among spleen colonies. J. Cell. Comp. Physiol. 1963, 62, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.L.; Trentin, J.J.; Wolf, N. Hemopoietic spleen colony studies. II. Erythropoiesis. J. Exp. Med. 1967, 125, 703–720. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.L.; Trentin, J.J. Hemopoietic spleen colony studies. IV. Phytohemagglutinin and hemopoietic regeneration. J. Exp. Med. 1967, 126, 819–832. [Google Scholar] [CrossRef]
- Wolf, N.S.; Trentin, J.J. Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentiation of pluripotent stem cells. J. Exp. Med. 1968, 127, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978, 4, 7–25. [Google Scholar] [PubMed]
- Baena, A.R.Y.; Manso, B.A.; Forsberg, E.C. CFU-S assay: A historical single-cell assay that offers modern insight into clonal hematopoiesis. Exp. Hematol. 2021, 104, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.R.; Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 1966, 44, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.R.; Robinson, W.; Metcalf, D. Colony production in vitro by normal polycythaemic and anaemic bone marrow. Nature 1967, 214, 511. [Google Scholar] [CrossRef] [PubMed]
- Pluznik, D.H.; Sachs, L. The cloning of normal “mast” cells in tissue culture. J. Cell. Physiol. 1965, 66, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, Y.; Pluznik, D.H.; Sachs, L. In vitro control of the development of macrophage and granulocyte colonies. Proc. Natl. Acad. Sci. USA 1966, 56, 488–495. [Google Scholar] [CrossRef]
- Iscove, N.N.; Senn, J.S.; Till, J.E.; McCulloch, E.A. Colony formation by normal and leukemic human marrow cells in culture: Effect of conditioned medium from human leukocytes. Blood 1971, 37, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R.; Metcalf, D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc. Natl. Acad. Sci. USA 1977, 74, 3879–3882. [Google Scholar] [CrossRef] [PubMed Central]
- Fauser, A.A.; Messner, H.A. Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood 1978, 52, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, D.D.; GR, G.R.J.; Mandel, T.E. Colony formation in agar by multipotential hemopoietic cells. J. Cell. Physiol. 1979, 98, 401–420. [Google Scholar] [CrossRef]
- Fauser, A.A. Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation. Blood 1979, 54, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Ploemacher, R.E.; van der Sluijs, J.P.; Voerman, J.S.; Brons, N.H. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 1989, 74, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- Breems, D.A.; Blokland, E.A.; Neben, S.; Ploemacher, R.E. Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 1994, 8, 1095–1104. [Google Scholar] [PubMed]
- van Hennik, P.B.; Verstegen, M.M.; Bierhuizen, M.F.; Limón, A.; Wognum, A.W.; Cancelas, J.A.; Barquinero, J.; Ploemacher, R.E.; Wagemaker, G. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice. Blood 1998, 92, 4013–4022. [Google Scholar] [CrossRef]
- Sutherland, H.J.; Eaves, C.J.; Eaves, A.C.; Dragowska, W.; Lansdorp, P.M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 1989, 74, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, H.J.; Lansdorp, P.M.; Henkelman, D.H.; Eaves, A.C.; Eaves, C.J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 1990, 87, 3584–3588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sutherland, H.J.; Eaves, C.J.; Lansdorp, P.M.; Thacker, J.D.; Hogge, D.E. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 1991, 78, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Suda, J.; Suda, T.T.; Ogawa, M. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood 1984, 64, 393–399. [Google Scholar] [CrossRef]
- Lemieux, M.E.; Rebel, V.I.; Lansdorp, P.M.; Eaves, C.J. Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow “switch” cultures. Blood 1995, 86, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, C.A.; Witte, O.N. Long-term culture of B lymphocytes and their precursors from murine bone marrow (feeder layer/Abelson virus target/hydrocortisone/ immunoglobulin gene expression. Proc. Natl. Acad. Sci. USA 1982, 79, 3608–3612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoshida, H.H.; Hayashi, S.; Kunisada, T.; Ogawa, M.; Nishikawa, S.; Okamura, H.; Sudo, T.; Shultz, L.D.; Nishikawa, S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990, 345, 442–444. [Google Scholar] [CrossRef]
- Kodama, H.; Nose, M.; Niida, S.; Nishikawa, S.; Nishikawa, S. Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp. Hematol. 1994, 22, 979–984. [Google Scholar] [PubMed]
- Schmitt, T.M.; Zúñiga-Pflücker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002, 17, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.C.; Meffre, E.; Pflumio, F.; Katz, A.; Vainchenker, W.; Schiff, C.; Coulombel, L. Individual CD34+CD38lowCD19-CD10- progenitor cells from human cord blood generate B lymphocytes and granulocytes. Blood 1997, 89, 3554–3564. [Google Scholar] [CrossRef]
- Doulatov, S.; Notta, F.; Eppert, K.; Nguyen, L.T.; Ohashi, P.S.; Dick, J.E. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 2010, 11, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Belluschi, S.; Calderbank, E.F.; Ciaurro, V.; Pijuan-Sala, B.; Santoro, A.; Mende, N.; Diamanti, E.; Sham, K.Y.C.; Wang, X.; Lau, W.W.Y.; et al. Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors. Nat. Commun. 2018, 9, 4100–4114. [Google Scholar] [CrossRef] [PubMed]
- Schulte, R.; Wilson, N.K.; Prick, J.C.; Cossetti, C.; Maj, M.K.; Gottgens, B.; Kent, D.G. Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Exp. Hematol. 2015, 43, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Mosier, D.; Gulizia, R.; Baird, S. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988, 335, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Kamel-Reid, S.; Dick, J.E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988, 242, 1706–1709. Available online: www.sciencemag.org (accessed on 8 January 2025). [CrossRef]
- McCune, J.M.; Namikawa, R.; Kaneshima, H.; Shultz, L.D.; Lieberman, M.; Weissman, I.L. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988, 241, 1632–1639. [Google Scholar]
- Zanjani, E.D.; Almeida-Porada, G.; Livingston, A.G.; Zeng, H.; Ogawa, M. Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp. Hematol. 2003, 31, 406–412. [Google Scholar] [CrossRef]
- Lee, B.C.; Moon, C.W.; Choi, W.S.; Kim, Y.M.; Joo, Y.B.; Lee, D.G.; Lee, S.J.; Choi, E.; Ji, J.H.; Suh, D.W.; et al. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024, 31, 455–466.e4. [Google Scholar] [CrossRef]
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant. 2022, 57, 1217–1239. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, E.; Broxmeyer, H.A.; Auerbach, A.D.; Friedman, H.S.; Douglas, G.W.; Devergie, A.; Esperou, H.; Thierry, D.; Socie, G.; Lehn, P.; et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 1989, 321, 1174–1178. [Google Scholar] [CrossRef]
- Kurtzberg, J.; Troy, J.D.; Page, K.M.; El Ayoubi, H.R.; Volt, F.; Maria Scigliuolo, G.; Cappelli, B.; Rocha, V.; Ruggeri, A.; Gluckman, E. Unrelated donor cord blood transplantation in children: Lessons learned over 3 decades. Stem Cells Transl. Med. 2023, 12, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Herzenberg, L.A.; Sweet, R.G.; Herzenberg, L.A. Fluorescence-activated cell sorting. Sci. Am. 1976, 234, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Strauss, C.I.C.L.C.; Brovall, C.; Fackler, M.J.; Schwartz, J.F.; Shaper, J.H. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 1984, 133, 157–165. [Google Scholar] [PubMed]
- Anjos-Afonso, F.; Bonnet, D. Human CD34+ hematopoietic stem cell hierarchy: How far are we with its delineation at the most primitive level? Blood 2023, 142, 509–518. Available online: http://ashpublications.org/blood/article-pdf/142/6/509/2070067/blood_bld-2022-018071-c-main.pdf (accessed on 8 January 2025). [CrossRef]
- Metcalf, D. Hematopoietic cytokines. Blood 2008, 111, 485–491. Available online: http://ashpublications.org/blood/article-pdf/111/2/485/1220613/zh800208000485.pdf (accessed on 8 January 2025). [CrossRef] [PubMed]
- Nagata, S.; Tsuchiya, M.; Asano, S.; Kaziro, Y.; Yamazaki, T.; Yamamoto, O.; Hirata, Y.; Kubota, N.; Oheda, M.; Nomura, H.; et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 1983, 319, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Nicola, N.A. A (selective) history of Australian involvement in cytokine biology. Cytokine Growth Factor Rev. 2013, 24, 179–187. [Google Scholar] [CrossRef]
- Welte, K.; Gabrilove, J.; Bronchud, M.H.; Platzer, E.; Morstyn, G. Filgrastim (r-metHuG-CSF): The First 10 Years. Blood 1996, 88, 1907–1929. Available online: https://ashpublications.org/blood/article-pdf/88/6/1907/621368/1907.pdf (accessed on 8 January 2025). [CrossRef]
- Péault, B.; Weissman, I.L.; Buckle, A.M.; Tsukamoto, A.; Baum, C. Thy-1-expressing CD34+ human cells express multiple hematopoietic potentialities in vitro and in SCID-hu mice. Nouv. Rev. Française D’hématol. 1993, 35, 91–93. [Google Scholar] [PubMed]
- Baum, C.M.; Weissman, I.L.; Tsukamoto, A.S.; Buckle, A.M.; Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 1992, 89, 2804–2808. [Google Scholar] [CrossRef]
- Yin, A.H.; Tsunetsugu-Yokota, Y.; Naito, A.; Kaziro, Y. AC133, a Novel Marker for Human Hematopoietic Stem and Progenitor Cells myelomonocytic, and megakaryocytic repopulation in vivo while the CD34 dim population contains lineage-committed. Blood 1997, 90, 5002–5012. Available online: https://ashpublications.org/blood/article-pdf/90/12/5002/1413575/5002.pdf (accessed on 8 January 2025). [CrossRef]
- Zannettino, A.W.C.; Bühring, H.-J.; Niutta, S.; Watt, S.M.; Benton, M.A.; Simmons, P.J. The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood 1988, 92, 2613–2628. Available online: https://ashpublications.org/blood/article-pdf/92/8/2613/1648051/2613.pdf (accessed on 8 January 2025). [CrossRef]
- Watt, S.M.; Bühring, H.J.; Simmons, P.J.; Zannettino, A.W.C. The stem cell revolution: On the role of CD164 as a human stem cell marker. NPJ Regen. Med. 2021, 6, 33. [Google Scholar] [CrossRef]
- Reisner, Y.; Kapoor, N.; Kirkpatrick, D.; Pollack, M.S.; Dupont, B.; Good, R.A. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981, 2, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Reisner, Y.; Kapoor, N.; Kirkpatrick, D.; Pollack, M.S.; Cunningham-Rundles, S.; Dupont, B.; Hodes, M.Z.; Good, R.A.; O’Reilly, R.J. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 1983, 61, 341–348. Available online: http://ashpublications.org/blood/article-pdf/61/2/341/588486/341.pdf (accessed on 8 January 2025). [CrossRef] [PubMed]
- O’Donnell, P.V.; Jones, R.J. The development of post-transplant cyclophosphamide: Half a century of translational team science. Blood Rev. 2023, 62, 101034. [Google Scholar] [CrossRef]
- Rimando, J.; Mccurdy, S.R.; Luznik, L. How I prevent GVHD in high-risk patients: Posttransplant cyclophosphamide and beyond. Blood 2023, 141, 49–59. Available online: http://ashpublications.org/blood/article-pdf/141/1/49/2073207/blood_bld-2021-015129-main.pdf (accessed on 8 January 2025). [CrossRef]
- Jones, R.J.; Bacigalupo, A. The next horizon now that everyone has a donor: Precision allogeneic transplantation. Blood Rev. 2023, 62, 100990. [Google Scholar] [CrossRef]
- Weinacht, K.G. The rise of haplo: A quest for the perfect graft. Blood 2024, 143, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.A.; Luchsinger, L.L.; Greally, J.M.; Delaney, C.S. Umbilical cord blood: An undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Curr. Opin. Hematol. 2022, 29, 317–326. [Google Scholar] [CrossRef]
- Niederwieser, D.; Baldomero, H.; Bazuaye, N.; Bupp, C.; Chaudhri, N.; Corbacioglu, S.; Elhaddad, A.; Frutos, C.; Galeano, S.; Hamad, N.; et al. One and a half million hematopoietic stem cell transplants: Continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica 2022, 107, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Passweg, J.R.; Baldomero, H.; Ciceri, F.; de la Cámara, R.; Glass, B.; Greco, R.; Hazenberg, M.D.; Kalwak, K.; McLornan, D.P.; Neven, B.; et al. Hematopoietic cell transplantation and cellular therapies in Europe 2022. CAR-T activity continues to grow; transplant activity has slowed: A report from the EBMT. Bone Marrow Transplant. 2024, 59, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Gratwohl, A.; Pasquini, M.C.; Aljurf, M.; Atsuta, Y.; Baldomero, H.; Foeken, L.; Gratwohl, M.; Bouzas, L.; Confer, D.; Frauendorfer, K.; et al. One million haemopoietic stem-cell transplants: A retrospective observational study. Lancet Haematol. 2015, 2, e91–e100. [Google Scholar] [CrossRef]
- Sender, R.; Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 2021, 27, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Nombela-Arrieta, C.; Manz, M.G. Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv. 2017, 1, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, J.; Hustin, L.S.P.; de Boer, R.J.; Perié, L. Hematopoiesis in numbers. Trends Immunol. 2021, 42, 1100–1112. [Google Scholar] [CrossRef]
- Binns, T.C.; Tormey, C.A.; Rinder, H.M. Rossi’s principles of transfusion medicine. In Rossi’s Principles of Transfusion Medicine; Simon, T.L., Gehrie, E.A., McCullough, J., Roback, J.D., Snyder, E.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; Chapter 15; pp. 158–167. [Google Scholar]
- Sender, R.; Weiss, Y.; Navon, Y.; Milo, I.; Azulay, N.; Keren, L.; Fuchs, S.; Ben-Zvi, D.; Noor, E.; Milo, R. The total mass, number, and distribution of immune cells in the human body. Proc. Natl. Acad. Sci. USA 2023, 120, e2308511120. [Google Scholar] [CrossRef] [PubMed]
- Beumer, J.; Clevers, H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024, 31, 7–24. [Google Scholar] [CrossRef]
- Buenrostro, J.D.; Corces, M.R.; Lareau, C.A.; Wu, B.; Schep, A.N.; Aryee, M.J.; Majeti, R.; Chang, H.Y.; Greenleaf, W.J. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 2018, 173, 1535–1548.e16. [Google Scholar] [CrossRef] [PubMed]
- Liggett, L.A.; Sankaran, V.G. Unraveling hematopoiesis through the lens of genomics. Cell 2020, 182, 1384–1400. [Google Scholar] [CrossRef] [PubMed]
- Safina, K.; van Galen, P. New frameworks for hematopoiesis derived from single-cell genomics. Blood 2024, 144, 1039–1047. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 144, 495–497. [Google Scholar] [CrossRef]
- Link, H.; Arseniev, L.; Bähre, O.; Kadar, J.G.; Diedrich, H.; Poliwoda, H. Transplantation of allogeneic CD34+ blood Cells. Blood 1996, 87, 4903–4909. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.P.; Bader, P.; Schumm, M.; Feuchtinger, T.; Einsele, H.; Führer, M.; Weinstock, C.; Handgretinger, R.; Kuci, S.; Martin, D.; et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br. J. Haematol. 2004, 124, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.; Motta, M.R.; Tani, M.; Terragna, C.; Zinzani, P.; Curti, A.; Rizzi, S.; Taioli, S.; Giudice, V.; D’Addio, A.; et al. Positive selection and transplantation of autologous highly purified CD133+ stem cells in resistant/relapsed chronic lymphocytic leukemia patients results in rapid hematopoietic reconstitution without an adequate leukemic cell purging. Biol. Blood Marrow Transplant. 2007, 13, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Thrasher, A.J.; Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 2021, 22, 216–234. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, L.M.O.; Lankester, A.C.; Staal, F.J.T. Advances in gene therapy for inborn errors of immunity. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.O.; Azul, M.; Bhoopalan, S.V.; Abraham, A.; Bertaina, A.; Bidgoli, A.; Bonfim, C.; DeZern, A.; Li, J.; Louis, C.U.; et al. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024, 26, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Magnani, A.; Semeraro, M.; Adam, F.; Booth, C.; Dupré, L.; Morris, E.C.; Gabrion, A.; Roudaut, C.; Borgel, D.; Toubert, A.; et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome. Nat. Med. 2022, 28, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Scala, S.; Ferrua, F.; Basso-Ricci, L.; Dionisio, F.; Omrani, M.; Quaranta, P.; Jofra Hernandez, R.; Del Core, L.; Benedicenti, F.; Monti, I.; et al. Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy. Nat. Commun. 2023, 14, 3068. [Google Scholar] [CrossRef]
- Biffi, A. Gene therapy goes the distance in Wiskott–Aldrich syndrome. Nat. Med. 2022, 28, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Cavazzana, M.; Frangoul, H.; de la Fuente, J.; Algeri, M.; Meisel, R. Autologous gene therapy for hemoglobinopathies: From bench to patient’s bedside. Mol. Ther. 2024, 32, 1202–1218. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L. Genetic engineering of hematopoiesis: Current stage of clinical translation and future perspectives. EMBO Mol. Med. 2019, 11, e9958. [Google Scholar] [CrossRef]
- Biasco, L.; Pellin, D.; Scala, S.; Dionisio, F.; Basso-Ricci, L.; Leonardelli, L.; Scaramuzza, S.; Baricordi, C.; Ferrua, F.; Cicalese, M.P.; et al. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state re-constitution phases. Cell Stem Cell 2016, 19, 107–119. [Google Scholar] [CrossRef]
- Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Pajno, R.; Barzaghi, F.; Giannelli, S.; Dionisio, F.; Brigida, I.; Bonopane, M.; Casiraghi, M.; et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 2016, 128, 45–54. [Google Scholar] [CrossRef]
- Scala, S.; Basso-Ricci, L.; Dionisio, F.; Pellin, D.; Giannelli, S.; Salerio, F.A.; Leonardelli, L.; Cicalese, M.P.; Ferrua, F.; Aiuti, A.; et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 2018, 24, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Six, E.; Guilloux, A.; Denis, A.; Lecoules, A.; Magnani, A.; Vilette, R.; Male, F.; Cagnard, N.; Delville, M.; Magrin, E.; et al. Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 2020, 135, 1219–1231. Available online: http://ashpublications.org/blood/article-pdf/135/15/1219/1723220/bloodbld2019002350.pdf (accessed on 8 January 2025). [CrossRef]
- Cloarec-Ung, F.M.; Beaulieu, J.; Suthananthan, A.; Lehnertz, B.; Sauvageau, G.; Sheppard, H.M.; Knapp, D.J.H.F. Near-perfect precise on-target editing of human hematopoietic stem and progenitor cells. eLife 2023, 12, RP91288. [Google Scholar] [CrossRef]
- Pacesa, M.; Pelea, O.; Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 2024, 187, 1076–1100. [Google Scholar] [CrossRef] [PubMed]
- Schapira, M.; Koury, M.J.; Roberts, I. Sickle cell disease today: A 75-year journey from “first molecular disease” to “first gene-editing therapy”. Swiss Med. Wkly. 2024, 154, 3829. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Roy, N.; de la Fuente, J.; Wang, G.; Thongjuea, S.; Clark, K.; Roy, A.; Psaila, B.; Ashley, N.; Harrington, Y.; et al. Single-cell analysis of bone marrow-derived CD34+ cells from children with sickle cell disease and thalassemia. Blood 2019, 134, 2111–2115. [Google Scholar] [CrossRef] [PubMed]
- Cavazzana, M.; Calvo, C. A new step toward non-genotoxic conditioning prior to hematopoietic stem cell transplantation. Mol. Ther. 2024, 32, 1604–1605. [Google Scholar] [CrossRef] [PubMed]
- Gorur, V.; Kranc, K.R.; Ganuza, M.; Telfer, P. Haematopoietic stem cell health in sickle cell disease and its implications for stem cell therapies and secondary haematological disorders. Blood Rev. 2024, 63, 101137. [Google Scholar] [CrossRef]
- Kent, D.G. He shoots, he scores: Navigating the complex world of transcriptomic scores in the age of artificial intelligence. Hemasphere 2024, 8, e53. [Google Scholar] [CrossRef] [PubMed]
- Doulatov, S.; Notta, F.; Laurenti, E.; Dick, J.E. Hematopoiesis: A human perspective. Cell Stem Cell 2012, 10, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Notta, F.; Zandi, S.; Takayama, N.; Dobson, S.; Gan, O.I.; Wilson, G.; Kaufmann, K.B.; McLeod, J.; Laurenti, E.; Dunant, C.F.; et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016, 351, aab2116. [Google Scholar] [CrossRef]
- Anjos-Afonso, F.; Currie, E.; Palmer, H.G.; Foster, K.E.; Taussig, D.C.; Bonnet, D. CD34- cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 2013, 13, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Anjos-Afonso, F.; Buettner, F.; Mian, S.A.; Rhys, H.; Perez-Lloret, J.; Garcia-Albornoz, M.; Rastogi, N.; Ariza-McNaughton, L.; Bonnet, D. Single cell analyses identify a highly regenerative and homogenous human CD34+ hematopoietic stem cell population. Nat. Commun. 2022, 13, 2048. [Google Scholar] [CrossRef]
- Pellin, D.; Loperfido, M.; Baricordi, C.; Wolock, S.L.; Montepeloso, A.; Weinberg, O.K.; Biffi, A.; Klein, A.M.; Biasco, L. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat. Commun. 2019, 10, 2395. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, Y. Human CD34-negative hematopoietic stem cells: The current understanding of their biological nature. Exp. Hematol. 2021, 96, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Hester, J.; Adigbli, G.; Li, R.; Psaila, B.; Roy, A.; Bataille, C.J.R.; Wynne, G.M.; Jackson, T.; Milne, T.A.; et al. The BET inhibitor CPI203 promotes ex vivo expansion of cord blood long-term repopulating HSCs and megakaryocytes. Blood 2020, 136, 2410–2415. [Google Scholar] [CrossRef]
- Meaker, G.A.; Wilkinson, A.C. Ex vivo hematopoietic stem cell expansion technologies: Recent progress, applications, and open questions. Exp. Hematol. 2024, 130, 104136. [Google Scholar] [CrossRef]
- Johnson, C.S.; Williams, M.; Sham, K.; Belluschi, S.; Ma, W.; Wang, X.; Lau, W.W.Y.; Kaufmann, K.B.; Krivdova, G.; Calderbank, E.F.; et al. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024, 144, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Adigbli, G.; Hua, P.; Uchiyama, M.; Roberts, I.; Hester, J.; Watt, S.M.; Issa, F. Development of LT-HSC-reconstituted non-irradiated NBSGW mice for the study of human hematopoiesis in vivo. Front. Immunol. 2021, 12, 642198. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Ohno, Y.; Mu, Y.; Ka, Y.; Ito, S.; Emi-Sugie, M.; Mochizuki, M.; Kawai, K.; Goto, M.; Ogura, T.; et al. Improvement of multilineage hematopoiesis in hematopoietic stem cell-transferred c-kit mutant NOG-EXL humanized mice. Stem Cell Res. Ther. 2024, 15, 182. [Google Scholar] [CrossRef]
- Choo, S.; Wolf, C.B.; Mack, H.M.; Egan, M.J.; Kiem, H.P.; Radtke, S. Choosing the right mouse model: Comparison of humanized NSG and NBSGW mice for in vivo HSC gene therapy. Blood Adv. 2024, 8, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Liao, A.; Shaw, M.; Silva, S.; Vetharoy, W.; Rico, D.L.; Kirby, I.; Zammarchi, F.; Havenith, K.; de Haan, L.; et al. Anti-CD45 PBD-based antibody-drug conjugates are effective targeted conditioning agents for gene therapy and stem cell transplant. Mol. Ther. 2024, 32, 1672–1686. [Google Scholar] [CrossRef]
- Martinov, T.; McKenna, K.M.; Tan, W.H.; Collins, E.J.; Kehret, A.R.; Linton, J.D.; Olsen, T.M.; Shobaki, N.; Rongvaux, A. Building the next generation of humanized hemato-lymphoid system mice. Front. Immunol. 2021, 12, 643852. [Google Scholar] [CrossRef] [PubMed]
- Mian, S.A.; Ariza-McNaughton, L.; Anjos-Afonso, F.; Guring, R.; Jackson, S.; Kizilors, A.; Gribben, J.; Bonnet, D. Influence of donor–recipient sex on engraftment of normal and leukemia stem cells in xenotransplantation. Hemasphere 2024, 8, e80. [Google Scholar] [CrossRef] [PubMed]
- Konturek-Ciesla, A.; Bryder, D. Stem cells, hematopoiesis and lineage tracing: Transplantation-centric views and beyond. Front. Cell Dev. Biol. 2022, 10, 903528. [Google Scholar] [CrossRef]
- O’Byrne, S.; Elliott, N.; Rice, S.; Buck, G.; Fordham, N.; Garnett, C.; Godfrey, L.; Crump, N.T.; Wright, G.; Inglott, S.; et al. Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. Blood 2019, 134, 1059–1071. [Google Scholar] [CrossRef]
- Popescu, D.M.; Botting, R.A.; Stephenson, E.; Green, K.; Webb, S.; Jardine, L.; Calderbank, E.F.; Polanski, K.; Goh, I.; Efremova, M.; et al. Decoding human fetal liver haematopoiesis. Nature 2019, 574, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Jardine, L.; Webb, S.; Goh, I.; Quiroga Londoño, M.; Reynolds, G.; Mather, M.; Olabi, B.; Stephenson, E.; Botting, R.A.; Horsfall, D.; et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 2021, 598, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Wang, G.; Iskander, D.; O’Byrne, S.; Elliott, N.; O’Sullivan, J.; Buck, G.; Heuston, E.F.; Wen, W.X.; Meira, A.R.; et al. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep. 2021, 36, 109698. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, K.; Villacorta-Martin, C.; Lindstrom-Vautrin, J.; Wang, Z.; Garcia-Beltran, W.F.; Vrbanac, V.; Parsons, D.; Lam, E.C.; Matte, T.M.; Dowrey, T.W.; et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat. Commun. 2022, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, V.; Mikkola, H.K.A. The genesis of human hematopoietic stem cells. Blood 2023, 142, 519–532. [Google Scholar] [CrossRef]
- Dmytrus, J.; Matthes-Martin, S.; Pichler, H.; Worel, N.; Geyeregger, R.; Frank, N.; Frech, C.; Fritsch, G. Multi-color immune-phenotyping of CD34 subsets reveals unexpected differences between various stem cell sources. Bone Marrow Transpl. 2016, 51, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Psaila, B.; Mead, A.J. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 2019, 133, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Laurenti, E.; Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018, 553, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Notta, F.; Doulatov, S.; Laurenti, E.; Poeppl, A.; Jurisica, I.; Dick, J.E. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011, 333, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Handgretinger, R.; Kuçi, S. CD133-positive hematopoietic stem cells: From biology to medicine. Adv. Exp. Med. Biol. 2013, 777, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Londoño, A.P.; Robles-Flores, M. Functional roles of CD133: More than stemness associated factor egulated by the microenvironment. Stem Cell Rev. Rep. 2024, 20, 25–51. [Google Scholar] [CrossRef] [PubMed]
- Pleskač, P.; Fargeas, C.A.; Veselska, R.; Corbeil, D.; Skoda, J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cel. Mol. Biol. Lett. 2024, 29, 41. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, S.; Godfrey, W.; Yin, A.; Atkins, K.; Warnke, R.; Holden, J.T.; Bray, R.A.; Waller, E.K.; Buck, D.W. A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood 1997, 90, 5013–5021. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Flint, A.; Dvorin, E.L.; Bischoff, J. AC133-2, a novel isoform of human AC133 stem cell antigen. J. Biol. Chem. 2002, 277, 20711–20716. [Google Scholar] [CrossRef] [PubMed]
- Kemper, K.; Sprick, M.R.; de Bree, M.; Scopelliti, A.; Vermeulen, L.; Hoek, M.; Zeilstra, J.; Pals, S.T.; Mehmet, H.; Stassi, G.; et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010, 70, 719–729. [Google Scholar] [CrossRef]
- Gallacher, L.; Murdoch, B.; Wu, D.M.; Karanu, F.N.; Keeney, M.; Bhatia, M. Isolation and characterization of human CD34-Lin- and CD34+Lin- hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000, 95, 2813–2820. [Google Scholar] [CrossRef]
- Watt, S.M.; Butler, L.H.; Tavian, M.; Bühring, H.J.; Rappold, I.; Simmons, P.J.; Zannettino, A.C.; Buck, D.; Fuchs, A.; Doyonnas, R.; et al. Functionally defined CD164 epitopes are expressed on CD34+ cells throughout ontogeny but display distinct distribution patterns in adult hematopoietic and nonhematopoietic tissues. Blood 2000, 95, 3113–3124. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Görgens, A.; Kordelas, L.; Schmidt, M.; Kimmig, K.R.; Köninger, A.; Horn, P.A.; Giebel, B. CD133 allows elaborated discrimination and quantification of haematopoietic progenitor subsets in human haematopoietic stem cell transplants. Br. J. Haematol. 2015, 169, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Cimato, T.R.; Conway, A.; Nichols, J.; Wallace, P.K. CD133 expression in circulating hematopoietic progenitor cells. Cytom. Part B: Clin. Cytom. 2019, 96, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, V.; Capellera-Garcia, S.; Ma, F.; Fares, I.; Liebscher, S.; Ng, E.S.; Ekstrand, S.; Aguadé-Gorgorió, J.; Vavilina, A.; Lefaudeux, D.; et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 2022, 604, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Bonnet, D.; Murdoch, B.; Gan, O.I.; Dick, J.E. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 1998, 4, 1038–1045. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yasui, K.; Yamashita, N.; Horie, Y.; Yamada, T.; Tani, Y.; Shibata, H.; Nakano, T. In vitro proliferation potential of AC133 positive cells in peripheral blood. Stem Cells 2000, 18, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Sumide, K.; Matsuoka, Y.; Kawamura, H.; Nakatsuka, R.; Fujioka, T.; Asano, H.; Takihara, Y.; Sonoda, Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat. Commun. 2018, 9, 2202. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Sumide, K.; Sonoda, Y. One-Year observation of the SCID-repopulating cell activities of human cord blood-derived CD34-positive and negative hematopoietic stem cells. Stem Cell Rev. Rep. 2019, 15, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Matsuoka, Y.; Sumide, K.; Nakatsuka, R.; Fujioka, T.; Kohno, H.; Sasaki, Y.; Matsui, K.; Asano, H.; Kaneko, K.; et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 2014, 28, 1308–1315. [Google Scholar] [CrossRef]
- Corbeil, D.; Röper, K.; Hellwig, A.; Tavian, M.; Miraglia, S.; Watt, S.M.; Simmons, P.J.; Peault, B.; Buck, D.W.; Huttner, W.B. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J. Biol. Chem. 2000, 275, 5512–5520. [Google Scholar] [CrossRef] [PubMed]
- McGuckin, C.P.; Pearce, D.; Forraz, N.; Tooze, J.A.; Watt, S.M.; Pettengell, R. Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur. J. Haematol. 2003, 71, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Prashad, S.L.; Calvanese, V.; Yao, C.Y.; Kaiser, J.; Wang, Y.; Sasidharan, R.; Crooks, G.; Magnusson, M.; Mikkola, H.K. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 2015, 16, 80–87. [Google Scholar] [CrossRef]
- Al-Amoodi, A.S.; Kai, J.; Li, Y.; Malki, J.S.; Alghamdi, A.; Al-Ghuneim, A.; Saera-Vila, A.; Habuchi, S.; Merzaban, J.S. α1,3-fucosylation treatment improves cord blood CD34 negative hematopoietic stem cell navigation. iScience 2024, 27, 108882. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.E.W.; Nerlov, C. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 2019, 21, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Swann, J.W.; Olson, O.C.; Passegué, E. Made to order: Emergency myelopoiesis and demand-adapted innate immune cell production. Nat. Rev. Immunol. 2024, 24, 596–613. [Google Scholar] [CrossRef] [PubMed]
- Majeti, R.; Park, C.Y.; Weissman, I.L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 2007, 1, 635–645. [Google Scholar] [CrossRef]
- Goardon, N.; Marchi, E.; Atzberger, A.; Quek, L.; Schuh, A.; Soneji, S.; Woll, P.; Mead, A.; Alford, K.A.; Rout, R.; et al. Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia. Cancer Cell 2011, 19, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Purton, L.E. Adult murine hematopoietic stem cells and progenitors: An update on their identities, functions, and assays. Exp. Hematol. 2022, 116, 1–14. [Google Scholar] [CrossRef]
- Watcham, S.; Kucinski, I.; Gottgens, B. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 2019, 133, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Karamitros, D.; Stoilova, B.; Aboukhalil, Z.; Hamey, F.; Reinisch, A.; Samitsch, M.; Quek, L.; Otto, G.; Repapi, E.; Doondeea, J.; et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat. Immunol. 2018, 19, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Velten, L.; Haas, S.F.; Raffel, S.; Blaszkiewic, S.; Islam, S.; Hennig, B.P.; Hirche, C.; Lutz, C.; Buss, E.C.; Nowak, D.; et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 2017, 19, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Quesenberry, P.J.; Williams, R. The continuum model of marrow stem cell regulation. Curr. Opin. Hematol. 2006, 13, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.J.H.F.; Hammond, C.A.; Hui, T.; van Loenhout, M.T.J.; Wang, F.; Aghaeepour, N.; Miller, P.H.; Moksa, M.; Rabu, G.M.; Beer, P.A.; et al. Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential. Nat. Cell Biol. 2018, 20, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Fares, I.; Chagraoui, J.; Lehnertz, B.; MacRae, T.; Mayotte, N.; Tomellini, E.; Aubert, L.; Roux, P.P.; Sauvageau, G. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 2017, 129, 3344–3351. [Google Scholar] [CrossRef]
- Subramaniam, A.; Talkhoncheh, M.S.; Magnusson, M.; Larsson, J. Endothelial protein C receptor (EPCR) expression marks human fetal liver hematopoietic stem cells. Haematologica 2019, 104, e47–e50. [Google Scholar] [CrossRef]
- Liang, K.L.; Laurenti, E.; Taghon, T. Circulating IRF8-expressing CD123+CD127+ lymphoid progenitors: Key players in human hematopoiesis. Trends Immunol. 2023, 44, 678–692. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Mess, J.; Aizarani, N.; Mishra, P.; Johnson, C.; Romero-Mulero, M.C.; Rettkowski, J.; Schönberger, K.; Obier, N.; Jäcklein, K.; et al. Hyaluronic acid–GPRC5C signalling promotes dormancy in haematopoietic stem cells. Nat. Cell Biol. 2022, 24, 1038–1048. [Google Scholar] [CrossRef]
- Ediriwickrema, A.; Nakauchi, Y.; Fan, A.C.; Köhnke, T.; Hu, X.; Luca, B.A.; Kim, Y.; Ramakrishnan, S.; Nakamoto, M.; Karigane, D.L.; et al. A single cell framework identifies functionally and molecularly distinct multipotent progenitors in adult human hematopoiesis. bioRxiv 2024, pre-print. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef]
- Giladi, A.; Paul, F.; Herzog, Y.; Lubling, Y.; Weiner, A.; Yofe, I.; Jaitin, D.; Cabezas-Wallscheid, N.; Dress, R.; Ginhoux, F.; et al. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 2018, 20, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, B.; Carlino, M.J.; Li, G.; Ferchen, K.; Chen, M.; Thompson, E.N.; Kain, B.N.; Schnell, D.; Thakkar, K.; et al. An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors. Nat. Immunol. 2024, 25, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Bernt, K.M. Mapping human hematopoiesis. Nat. Immunol. 2024, 25, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Shang, F.; Wang, X.; Fanti, A.K.; Greco, A.; Busch, K.; Klapproth, K.; Zhang, Q.; Quedenau, C.; Sauer, S.; et al. Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding. Cell Stem Cell 2020, 27, 383–395.e8. [Google Scholar] [CrossRef] [PubMed]
- Bowling, S.; Sritharan, D.; Osorio, F.G.; Nguyen, M.; Cheung, P.; Rodriguez-Fraticelli, A.; Patel, S.; Yuan, W.C.; Fujiwara, Y.; Li, B.E.; et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 2020, 181, 1410–1422.e27. [Google Scholar] [CrossRef]
- Kester, L.; van Oudenaarden, A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 2018, 23, 166–179. [Google Scholar] [CrossRef]
- Busch, K.; Klapproth, K.; Barile, M.; Flossdorf, M.; Holland-Letz, T.; Schlenner, S.M.; Reth, M.; Höfer, T.; Rodewald, H.R. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 2015, 518, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Barile, M.; Chapple, R.H.; Tseng, Y.J.; Nakada, D.; Busch, K.; Fanti, A.K.; Säwén, P.; Bryder, D.; Höfer, T.; et al. Reconciling flux experiments for quantitative modeling of normal and malignant hematopoietic stem/progenitor dynamics. Stem Cell Rep. 2021, 16, 741–753. [Google Scholar] [CrossRef] [PubMed]
- VanHorn, S.; Morris, S.A. Next-generation lineage tracing and fate mapping to interrogate development. Dev. Cell 2021, 56, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Carrelha, J.; Mazzi, S.; Winroth, A.; Hagemann-Jensen, M.; Ziegenhain, C.; Högstrand, K.; Seki, M.; Brennan, M.S.; Lehander, M.; Wu, B.; et al. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. Nat. Immunol. 2024, 25, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Jang, G.; Esteva, E.; Adams, N.M.; Jin, H.; Reizis, B. Clonal barcoding of endogenous adult hematopoietic stem cells reveals a spectrum of lineage contributions. Proc. Natl. Acad. Sci. USA 2024, 121, e2317929121. [Google Scholar] [CrossRef] [PubMed]
- Kucinski, I.; Campos, J.; Barile, M.; Severi, F.; Bohin, N.; Moreira, P.N.; Allen, L.; Lawson, H.; Haltalli, M.L.R.; Kinston, S.J.; et al. A time- and single-cell-resolved model of murine bone marrow hematopoiesis. Cell Stem Cell 2024, 31, 244–259.e10. [Google Scholar] [CrossRef]
- Lin, D.S.; Zhang, S.; Schreuder, J.; Tran, J.; Sargeant, T.; Metcalf, D.; Ng, A.P.; Weber, T.S.; Naik, S.H. A multi-track landscape of haematopoiesis informed by cellular barcoding and agent-based modelling. bioRxiv 2024, pre-print. [Google Scholar] [CrossRef]
- Lu, R.; Czechowicz, A.; Seita, J.; Jiang, D.; Weissman, I.L. Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proc. Natl. Acad. Sci. USA 2019, 116, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bowling, S.; McGeary, S.E.; Yu, Q.; Lemke, B.; Alcedo, K.; Jia, Y.; Liu, X.; Ferreira, M.; Klein, A.M.; et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 2023, 186, 5183–5199.e22. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Fujiwara, K.; Saitou, M.; Tsukiyama, T. Non-human primates as a model for human development. Stem Cell Rep. 2021, 16, 1093–1103. [Google Scholar] [CrossRef]
- Tarantal, A.F.; Noctor, S.C.; Hartigan-O’Connor, D.J. Nonhuman primates in translational research. Annu. Rev. Anim. Biosci. 2022, 10, 441–468. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Enstrom, M.; Pande, D.; Duke, E.R.; Cardozo-Ojeda, E.F.; Madhu, R.; Owen, S.; Kanestrom, G.; Cui, M.; Perez, A.M.; et al. Stochastic fate decisions of HSCs after transplantation: Early contribution, symmetric expansion, and pool formation. Blood 2023, 142, 33–43. Available online: http://ashpublications.org/blood/article-pdf/142/1/33/2061901/blood_bld-2022-018564-main.pdf (accessed on 8 January 2025). [CrossRef] [PubMed]
- Nitsch, L.; Lareau, C.A.; Ludwig, L.S. Mitochondrial genetics through the lens of single-cell multi-omics. Nat. Genet. 2024, 56, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Coorens, T.H.H.; Uddin, M.M.; Ardlie, K.G.; Lennon, N.; Natarajan, P. Genetic variation across and within individuals. Nat. Rev. Genet. 2024, 25, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.E.; Klein, A.M. Lineage tracing meets single-cell omics: Opportunities and challenges. Nat. Rev. Genet. 2020, 21, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liao, Y.; Peng, G. Connecting past and present: Single-cell lineage tracing. Protein Cell 2022, 13, 790–807. [Google Scholar] [CrossRef]
- Kim, I.S. DNA barcoding technology for lineage recording and tracing to resolve cell fate determination. Cells 2023, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Lee-Six, H.; Øbro, N.F.; Shepherd, M.S.; Grossmann, S.; Dawson, K.; Belmonte, M.; Osborne, R.J.; Huntly, B.J.P.; Martincorena, I.; Anderson, E.; et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018, 561, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Osorio, F.G.; Rosendahl Huber, A.; Oka, R.; Verheul, M.; Patel, S.H.; Hasaart, K.; de la Fonteijne, L.; Varela, I.; Camargo, F.D.; van Boxtel, R. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 2018, 25, 2308–2316.e4. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.; Spencer Chapman, M.; Williams, N.; Dawson, K.J.; Mende, N.; Calderbank, E.F.; Jung, H.; Mitchell, T.; Coorens, T.H.H.; Spencer, D.H.; et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022, 606, 343–350. [Google Scholar] [CrossRef]
- Fabre, M.A.; de Almeida, J.G.; Fiorillo, E.; Mitchell, E.; Damaskou, A.; Rak, J.; Orrù, V.; Marongiu, M.; Chapma, M.S.; Vijayabaskar, M.S.; et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 2022, 606, 335–342. [Google Scholar] [CrossRef]
- Fabre, M.A.; Vassiliou, G.S. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024, 143, 573–581. [Google Scholar] [CrossRef]
- Bernstein, N.; Spencer Chapman, M.; Nyamondo, K.; Chen, Z.; Williams, N.; Mitchell, E.; Campbell, P.J.; Cohen, R.L.; Nangalia, J. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat. Genet. 2024, 56, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Rodriguez, S. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes 2024, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Yu, F.; Yang, D.; Poeschla, M.; Liggett, L.A.; Jones, M.G.; Qiu, X.; Wahlster, L.; Caulier, A.; Hussmann, J.A.; et al. Deciphering cell states and genealogies of human haematopoiesis. Nature 2024, 627, 389–398. [Google Scholar] [CrossRef]
- Campbell, P.; Chapman, M.; Przybilla, M.; Lawson, A.; Mitchell, E.; Dawson, K.; Williams, N.; Harvey, L.; Ranzoni, A.; Cvejic, A.; et al. Mitochondrial mutation, drift and selection during human development and ageing. Res. Sq. 2023, pre-print. [Google Scholar] [CrossRef]
- Scherer, M.; Singh, I.; Braun, M.; Szu-Tu, C.; Kardorff, M.; Rühle, J.; Frömel, R.; Beneyto-Calabuig, S.; Raffel, S.; Rodriguez-Fraticelli, A.; et al. Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the 1 murine and human lifespan 2. bioRxiv 2024, pre-print. [Google Scholar] [CrossRef]
- Kandarakov, O.; Belyavsky, A.; Semenova, E. Bone marrow niches of hematopoietic stem and progenitor cells. Int. J. Mol. Sci. 2022, 23, 4462. [Google Scholar] [CrossRef]
- Hofmann, J.; Kokkaliaris, K.D. Bone marrow niches for hematopoietic stem cells: Life span dynamics and adaptation to acute stress. Blood 2024, 144, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.S.; Maryanovich, M. Systemic and local regulation of hematopoietic homeostasis in health and disease. Nat. Cardiovasc. Res. 2024, 3, 651–665. [Google Scholar] [CrossRef]
- Verovskaya, E.; Broekhuis, M.J.; Zwart, E.; Weersing, E.; Ritsema, M.; Bosman, L.J.; van Poele, T.; de Haan, G.; Bystrykh, L.V. Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. J. Exp. Med. 2014, 211, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.R.; Pronk, C.J.H.; Bryder, D. Probing hematopoietic stem cell function using serial transplantation: Seeding characteristics and the impact of stem cell purification. Exp. Hematol. 2015, 43, 812–817.e1. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, J.; Kumar, S.; Shen, S.; Kincaid, M.; Johnson, C.B.; Zhang, Y.S.; Turcotte, R.; Alt, C.; Ito, K.; et al. Resilient anatomy and local plasticity of naive and stress haematopoiesis. Nature 2024, 627, 839–846. [Google Scholar] [CrossRef]
- Kent, D.D.G. Different roles for different bones—Location matters for blood production. Hemasphere 2024, 8, e127. [Google Scholar] [CrossRef] [PubMed]
- Koh, B.I.; Mohanakrishnan, V.; Jeong, H.W.; Park, H.; Kruse, K.; Choi, Y.J.; Nieminen-Kelhä, M.; Kumar, R.; Pereira, R.S.; Adams, S.; et al. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir. Nature 2024, 636, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Niizuma, K.; Morikawa, S.; Gars, E.; Xiang, J.; Matsubara-Takahashi, T.; Saito, R.; Takematsu, E.; Wang, Y.; Xu, H.; Wakimoto, A.; et al. Elevated hematopoietic stem cell frequency in mouse alveolar bone marrow. Stem Cell Rep. 2024, 20, 102374. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Duffy, M.P.; Ahn, K.J.; Sussman, J.H.; Pang, M.; Smith, D.; Duncan, G.; Zhang, I.; Huang, J.; Lin, Y.; et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 2024, 187, 3120–3140.e29. [Google Scholar] [CrossRef]
- Mende, N.; Laurenti, E. Hematopoietic stem and progenitor cells outside the bone marrow: Where, when, and why. Exp. Hematol. 2021, 104, 9–16. [Google Scholar] [CrossRef]
- Gallagher, P.G. Extramedullary hematopoietic stem cells. Blood 2022, 139, 3353–3354. [Google Scholar] [CrossRef]
- Conrad, C.; Magnen, M.; Tsui, J.; Wismer, H.; Naser, M.; Venkataramani, U.; Samad, B.; Cleary, S.J.; Qiu, L.; Tian, J.J.; et al. Decoding functional hematopoietic progenitor cells in the adult human lung. Res. Sq. 2024, pre-print. [Google Scholar] [CrossRef]
- Quaranta, P.; Basso-Ricci, L.; Jofra Hernandez, R.; Pacini, G.; Naldini, M.M.; Barcella, M.; Seffin, L.; Pais, G.; Spinozzi, G.; Benedicenti, F.; et al. Circulating hematopoietic stem/progenitor cell subsets contribute to human hematopoietic homeostasis. Blood 2024, 143, 1937–1952. [Google Scholar] [CrossRef] [PubMed]
- Morales-Hernández, A. Patrolling progenitors: A first responder team. Blood 2024, 143, 1883–1884. [Google Scholar] [CrossRef] [PubMed]
- Mende, N.; Bastos, H.P.; Santoro, A.; Mahbubani, K.T.; Ciaurro, V.; Calderbank, E.F.; Quiroga Londoño, M.; Sham, K.; Mantica, G.; Morishima, T.; et al. Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood 2022, 139, 3387–3401. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Lavu, S.; Hanson, C.A.; Tefferi, A. Extramedullary hematopoiesis in the absence of myeloproliferative neoplasm: Mayo Clinic case series of 309 patients. Blood Cancer J. 2018, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Miwa, Y.; Abe-Suzuki, S.; Abe, S.; Kirimura, S.; Onishi, I.; Kitagawa, M.; Kurata, M. Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review). Mol. Med. Rep. 2016, 13, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Barisas, D.A.G.; Choi, K. Extramedullary hematopoiesis in cancer. Exp. Mol. Med. 2024, 56, 549–558. [Google Scholar] [CrossRef]
- Nie, Y.; Han, Y.C.; Zou, Y.R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med. 2008, 205, 777–783. [Google Scholar] [CrossRef]
- Larochelle, A.; Gillette, J.M.; Desmond, R.; Ichwan, B.; Cantilena, A.; Cerf, A.; Barrett, A.J.; Wayne, A.S.; Lippincott-Schwartz, J.; Dunbar, C.E. Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain. Blood 2012, 119, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Cordes, M.; Canté-Barrett, K.; van den Akker, E.B.; Moretti, F.A.; Kiełbasa, S.M.; Vloemans, S.A.; Garcia-Perez, L.; Teodosio, C.; van Dongen, J.J.M.; Pike-Overzet, K.; et al. Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus. Sci. Immunol. 2022, 7, eade0182. [Google Scholar] [CrossRef] [PubMed]
- Cordes, M.; Pike-Overzet, K.; Van Den Akker, E.B.; Staal, F.J.T.; Canté-Barrett, K. Multi-omic analyses in immune cell development with lessons learned from T cell development. Front. Cell Dev. Biol. 2023, 11, 1163529. [Google Scholar] [CrossRef]
- Park, J.E.; Botting, R.A.; Domínguez Conde, C.; Popescu, D.M.; Lavaert, M.; Kunz, D.J.; Goh, I.; Stephenson, E.; Ragazzini, R.; Tuck, E.; et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020, 367, eaay3224. [Google Scholar] [CrossRef]
- Shaban, D.; Najm, N.; Droin, L.; Nijnik, A. Hematopoietic stem cell fates and the cellular hierarchy of mammalian hematopoiesis: From transplantation models to new insights from in situ analyses. Stem Cell Rev. Rep. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Laurenti, E.; Oser, G.; van der Wath, R.C.; Blanco-Bose, W.; Jaworski, M.; Offner, S.; Dunant, C.F.; Eshkind, L.; Bockamp, E.; et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008, 135, 1118–2119, Erratum in Cell 2009, 138, 209. [Google Scholar] [CrossRef] [PubMed]
- Trumpp, A.; Essers, M.; Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 2010, 10, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Cheshier, S.H.; Morrison, S.J.; Liao, X.; Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 1999, 96, 3120–3315. [Google Scholar] [CrossRef]
- Passegué, E.; Wagers, A.J.; Giuriato, S.S.; Anderson, W.C.; Weissman, I.L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 2005, 202, 1599–1611. [Google Scholar] [CrossRef]
- Foudi, A.A.; Hochedlinger, K.; Van Buren, D.; Schindler, J.W.; Jaenisch, R.; Carey, V.; Hock, H. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 2009, 27, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, P.; Frelin, C.; Janmohamed, S.; Barbara, M.; Herrington, R.; Hyam, D.D.; Iscove, N.N. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010, 6, 48–58. [Google Scholar] [CrossRef]
- Copley, M.R.; Beer, P.A.; Eaves, C.J. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 2012, 10, 690–697. [Google Scholar] [CrossRef]
- Treichel, S.; Filippi, M.D. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev. Biol. 2023, 11, 1231735. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, B.B.; Kent, D.; Bowie, M.; McCaffrey, L.; Hamilton, M.; Lyons, K.; Lee, S.J.; Brinkman, R.; Eaves, C. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2007, 1, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Kasbekar, M.; Mitchell, C.A.; Proven, M.A.; Passegué, E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023, 30, 1403–1420. [Google Scholar] [CrossRef] [PubMed]
- Kiel, M.J.; Yilmaz, O.H.; Iwashita, T.T.; Yilmaz, O.H.; Terhorst, C.; Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005, 121, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Osawa, M.M.; Nakamura, K.; Nishi, N.; Takahasi, N.; Tokuomoto, Y.; Inoue, H.; Nakauchi, H. In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J. Immunol. 1996, 156, 3207–3214. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, J.; Borge, O.J.; Bryder, D.; Theilgaard-Mönch, K.; Astrand-Grundström, I.; Sitnicka, E.; Sasaki, Y.; Jacobsen, S.E. Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 2001, 15, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Kent, D.G.; Coupley, M.R.; Benz, C.; Wöhrer, S.; Dykstra, B.J.; Ma, E.; Cheyne, J.; Zhao, Y.; Bowie, M.B.; Zhao, Y.; et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 2009, 113, 6342–6350. [Google Scholar] [CrossRef] [PubMed]
- Kent, D.G.; Dykstra, B.J.; Eaves, C.J. Isolation and assessment of single long-term reconstituting hematopoietic stem cells from adult mouse bone marrow. Curr. Protoc. Stem Cell Biol. 2016, 38, 2A.4.1–2A.4.24. [Google Scholar] [CrossRef]
- Engelhard, S.; Estruch, M.; Qin, S.; Engelhard, C.A.; Rodriguez-Gonzalez, F.G.; Drilsvik, M.; Martin-Gonzalez, J.; Lu, J.W.; Bryder, D.; Nerlov, C.; et al. Endomucin marks quiescent long-term multi-lineage repopulating hematopoietic stem cells and is essential for their transendothelial migration. Cell Rep. 2024, 43, 114475. [Google Scholar] [CrossRef] [PubMed]
- Ibneeva, I.; Singh, S.P.; Sinha, A.; Eski, S.E.; Wehner, R.; Rupp, L.; Kovtun, I.; Pérez-Valencia, J.A.; Gerbaulet, A.; Reinhardt, S.; et al. CD38 promotes hematopoietic stem cell dormancy. PLoS Biol. 2024, 22, e3002517. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Trumpp, A.; Milsom, M.D. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 2018, 22, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Ema, H.; Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 2010, 207, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Wilkinson, A.C.; Nakauchi, H. Changing concepts in hematopoietic stem cells. Science 2018, 362, 895–896. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.S.; Trumpp, A. Differential expression of endothelial protein C receptor (EPCR) in hematopoietic stem and multipotent progenitor cells in young and old mice. Cells Dev. 2023, 174, 203843. [Google Scholar] [CrossRef]
- Osawa, M.; Hanada, K.; Hamada, H.; Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996, 273, 242–245. [Google Scholar] [CrossRef] [PubMed]
- van der Wath, R.C.; Wilson, A.; Laurenti, E.; Trumpp, A.; Liò, P. Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS ONE 2009, 4, e6972. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Laurenti, E.; Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 2009, 19, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Nerlov, C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol. 2024. [Google Scholar] [CrossRef]
- Sawai, C.M.; Babovic, S.; Upadhaya, S.; Knapp, D.J.H.F.; Lavin, Y.; Lau, C.M.; Goloborodko, A.; Feng, J.; Fujisaki, J.; Ding, L.; et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 2016, 45, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Chapple, R.H.; Tseng, Y.J.; Hu, T.; Kitano, A.; Takeichi, M.; Hoegenauer, K.A.; Nakada, D. Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis. Blood Adv. 2018, 2, 1220–1228. [Google Scholar] [CrossRef]
- Säwen, P.; Eldeeb, M.; Erlandsson, E.; Kristiansen, T.A.; Laterza, C.; Kokaia, Z.; Karlsson, G.; Yuan, J.; Soneji, S.; Mandal, P.K.; et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. eLife 2018, 7, e41258. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ramos, A.; Chapman, B.; Johnnidis, J.B.; Le, L.; Ho, Y.J.; Klein, A.; Hofmann, O.; Camargo, F.D. Clonal dynamics of native haematopoiesis. Nature 2014, 514, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Pietras, E.M.; Reynaud, D.; Kang, Y.A.; Carlin, D.; Calero-Nieto, F.J.; Leavitt, A.D.; Stuart, J.M.; Göttgens, B.; Passegué, E. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 2015, 17, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Schoedel, K.B.; Morcos, M.N.F.; Zerjatke, T.; Roeder, I.; Grinenko, T.; Voehringer, D.; Göthert, J.R.; Waskow, C.; Roers, A.; Gerbaulet, A. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 2016, 128, 2285–2296. [Google Scholar] [CrossRef]
- Fanti, A.K.; Busch, K.; Greco, A.; Wang, X.; Cirovic, B.; Shang, F.; Nizharadze, T.; Frank, L.; Barile, M.; Feyerabend, T.B.; et al. Flt3- and Tie2-Cre tracing identifies regeneration in sepsis from multipotent progenitors but not hematopoietic stem cells. Cell Stem Cell 2023, 30, 207–218.e7. [Google Scholar] [CrossRef]
- Munz, C.M.; Dressel, N.; Chen, M.; Grinenko, T.; Roers, A.; Gerbaulet, A. Regeneration after blood loss and acute inflammation proceeds without contribution of primitive HSCs. Blood 2023, 141, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Nizharadze, T.; Busch, K.; Fanti, A.K.; Rodewald, H.R.; Höfer, T. Differentiation tracing identifies hematopoietic regeneration from multipotent progenitors but not stem cells. Cells Dev. 2023, 175, 203861. [Google Scholar] [CrossRef]
- Dingli, D.; Pacheco, J.M. Allometric scaling of the active hematopoietic stem cell pool across mammals. PLoS ONE 2006, 1, e2. [Google Scholar] [CrossRef] [PubMed]
- Abkowitz, J.L.; Catlin, S.N.; McCallie, M.T.; Guttorp, P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002, 100, 2665–2667. [Google Scholar] [CrossRef]
- Abkowitz, J.L.; Golinelli, D.; Harrison, D.E.; Guttorp, P. In vivo kinetics of murine hemopoietic stem cells. Blood 2000, 96, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Bowie, M.B.; McKnight, K.D.; Kent, D.G.; McCaffrey, L.; Hoodless, P.A.; Eaves, C.J. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Investig. 2006, 116, 2808–2816. [Google Scholar] [CrossRef]
- Hur, J.; Choi, J.I.; Lee, H.; Nham, P.; Kim, T.W.; Chae, C.W.; Yun, J.Y.; Kang, J.A.; Kang, J.; Lee, S.E.; et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 2016, 18, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Wallscheid, N.; Buettner, F.; Sommerkamp, P.; Klimmeck, D.; Ladel, L.; Thalheimer, F.B.; Pastor-Flores, D.; Roma, L.P.; Renders, S.; Zeisberger, P.; et al. Vitamin A-retinoic ccid signaling regulates hematopoietic stem cell dormancy. Cell 2017, 169, 807–823.e19. [Google Scholar] [CrossRef] [PubMed]
- Walter, D.D.; Lier, A.; Geiselhart, A.; Thalheimer, F.B.; Huntscha, S.; Sobotta, M.C.; Moehrle, B.; Brocks, D.; Bayindir, I.; Kaschutnig, P.; et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015, 520, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Essers, M.A.; Offner, S.; Blanco-Bose, W.E.; Waibler, Z.; Kalinke, U.; Duchosal, M.A.; Trumpp, A. IFN alpha activates dormant haematopoietic stem cells in vivo. Nature 2009, 458, 904–908. [Google Scholar] [CrossRef]
- Kaufmann, K.B.; Zeng, A.G.X.; Coyaud, E.; Garcia-Prat, L.; Papalexi, E.; Murison, A.; Laurenti, E.M.N.; Chan-Seng-Yue, M.; Gan, O.I.; Pan, K.; et al. A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nat. Immunol. 2021, 22, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Calabria, A.; Spinozzi, G.; Cesana, D.; Buscaroli, E.; Benedicenti, F.; Pais, G.; Gazzo, F.; Scala, S.; Lidonnici, M.R.; Scaramuzza, S.; et al. Long-term lineage commitment in hematopoietic stem cell gene therapy. Nature 2024, 636, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.; Lansdorp, P.M.; Edelstein-Keshet, L. Predicting the number of lifetime divisions for hematopoietic stem cells from telomere length measurements. iScience 2023, 26, 107053. [Google Scholar] [CrossRef] [PubMed]
- Catlin, S.N.; Busque, L.; Gale, R.E.; Guttorp, P.; Abkowitz, J.L. The replication rate of human hematopoietic stem cells in vivo. Blood 2011, 117, 4460–4466. [Google Scholar] [CrossRef] [PubMed]
- Su, T.Y.; Hauenstein, J.; Somuncular, E.; Dumral, Ö.; Leonard, E.; Gustafsson, C.; Tzortzis, E.; Forlani, A.; Johansson, A.S.; Qian, H.; et al. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. Nat. Commun. 2024, 15, 7966. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Carrelha, J.; Drissen, R.; Ren, X.; Zhang, B.; Gambardella, A.; Valletta, S.; Thongjuea, S.; Jacobsen, S.E.; Nerlov, C. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat. Cell Biol. 2023, 25, 812–822. [Google Scholar] [CrossRef]
- Sanjuan-Pla, A.; Macaulay, I.C.; Jensen, C.T.; Woll, P.S.; Luis, T.C.; Mead, A.; Moore, S.; Carella, C.; Matsuoka, S.; Bouriez Jones, T.; et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013, 502, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Morita, Y.; Ooehara, J.; Hamanaka, S.; Onodera, M.; Rudolph, K.L.; Ema, H.; Nakauchi, H. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013, 154, 1112–1126. [Google Scholar] [CrossRef]
- Shin, J.Y.; Hu, W.; Naramura, M.; Park, C.Y. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J. Exp. Med. 2014, 211, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Morcos, M.N.F.; Li, C.; Munz, C.M.; Greco, A.; Dressel, N.; Reinhardt, S.; Sameith, K.; Dahl, A.; Becker, N.B.; Roers, A.; et al. Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis. Nat. Commun. 2022, 13, 4504. [Google Scholar] [CrossRef] [PubMed]
- Carrelha, J.; Meng, Y.; Kettyle, L.M.; Luis, T.C.; Norfo, R.; Alcolea, V.; Boukarabila, H.; Grasso, F.; Gambardella, A.; Grover, A.; et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018, 554, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fraticelli, A.E.; Wolock, S.L.; Weinreb, C.S.; Panero, R.; Patel, S.H.; Jankovic, M.; Sun, J.; Calogero, R.A.; Klein, A.M.; Camargo, F.D. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018, 553, 212–216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muller-Sieburg, C.E.; Cho, R.H.; Karlsson, L.; Huang, J.F.; Sieburg, H.B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 2004, 103, 4111–4118. [Google Scholar] [CrossRef] [PubMed]
- Sieburg, H.B.; Cho, R.H.; Dykstra, B.; Uchida, N.; Eaves, C.J.; Muller-Sieburg, C.E. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006, 107, 2311–2316. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.K.; Kent, D.G.; Buettner, F.; Shehata, M.; Macaulay, I.C.; Calero-Nieto, F.J.; Sánchez Castillo, M.; Oedekoven, C.A.; Diamanti, E.; Schulte, R.; et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 2015, 16, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Prins, D.D.; Park, H.J.; Watcham, S.; Li, J.; Vacca, M.; Bastos, H.P.; Gerbaulet, A.; Vidal-Puig, A.; Göttgens, B.; Green, A.R. The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. Sci. Adv. 2020, 6, eabd3139. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.B.; Myers, L.M.; Noh, J.J.; Collins, M.M.; Carmody, A.B.; Messer, R.J.; Dhuey, E.; Hasenkrug, K.J.; Weissman, I.L. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024, 628, 162–170. [Google Scholar] [CrossRef]
- Beerman, I.; Bhattacharya, D.; Zandi, S.; Sigvardsson, M.; Weissman, I.L.; Bryder, D.; Rossi, D.J. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl. Acad. Sci. USA 2010, 107, 5465–5470. [Google Scholar] [CrossRef] [PubMed]
- Aksöz, M.; Gafencu, G.A.; Stoilova, B.; Buono, M.; Zhang, Y.; Turkalj, S.; Meng, Y.; Jakobsen, N.A.; Metzner, M.; Clark, S.A.; et al. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci. Immunol. 2024, 9, eadk3469. [Google Scholar] [CrossRef] [PubMed]
- Manso, B.A.; Baena, A.R.Y.; Forsberg, E.C. From hematopoietic stem cells to platelets: Unifying differentiation pathways identified by lineage tracing mouse models. Cells 2024, 13, 704. [Google Scholar] [CrossRef]
- Weng, C.; Weissman, J.S.; Sankaran, V.G. Robustness and reliability of single-cell regulatory multi-omics with deep mitochondrial mutation profiling. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Oguro, H.; Ding, L.; Morrison, S.J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 2013, 13, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Eaves, C.J. Hematopoietic stem cells: Concepts, definitions, and the new reality. Blood 2015, 125, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Challen, G.A.; Boles, N.C.; Chambers, S.M.; Goodell, M.A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 2010, 6, 265–278. [Google Scholar] [CrossRef]
- Somuncular, E.; Hauenstein, J.; Khalkar, P.; Johansson, A.S.; Dumral, Ö.; Frengen, N.S.; Gustafsson, C.; Mocci, G.; Su, T.Y.; Brouwer, H.; et al. CD49b identifies functionally and epigenetically distinct subsets of lineage-biased hematopoietic stem cells. Stem Cell Rep. 2022, 17, 1546–1560. [Google Scholar] [CrossRef] [PubMed]
- Yokomizo, T.; Oshima, M.; Iwama, A. Epigenetics of hematopoietic stem cell aging. Curr. Opin. Hematol. 2024, 31, 207–216. [Google Scholar] [CrossRef]
- Yanai, H.; McNeely, T.; Ayyar, S.; Leone, M.; Zong, L.; Park, B.; Beerman, I. DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress. Geroscience 2024. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.W.; Price, E.A.; Sahoo, D.; Beerman, I.; Maloney, W.J.; Rossi, D.J.; Schrier, S.L.; Weissman, I.L. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. USA 2011, 108, 20012–20017. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulou, F.; Rodriguez-Correa, E.; Dussiau, C.; Milsom, M.D. Reconsidering the usual suspects in age-related hematologic disorders: Is stem cell dysfunction a root cause of aging? Exp. Hematol. 2024, 104698. [Google Scholar] [CrossRef] [PubMed]
- Florian, M.C.; Dörr, K.; Niebel, A.; Daria, D.; Schrezenmeier, H.; Rojewski, M.; Filippi, M.D.; Hasenberg, A.; Gunzer, M.; Scharffetter-Kochanek, K.; et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Nourse, C.; Helgason, G.V.; Kirschner, K. Unraveling heterogeneity in the aging hematopoietic stem cell compartment: An insight from single-cell approaches. Hemasphere 2023, 7, e895. [Google Scholar] [CrossRef] [PubMed]
- Bogeska, R.; Mikecin, A.M.; Kaschutnig, P.; Fawaz, M.; Büchler-Schäff, M.; Le, D.; Ganuza, M.; Vollmer, A.; Paffenholz, S.V.; Asada, N.; et al. Inflammatory exposure drives long lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022, 29, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Nogalska, A.; Eerdeng, J.; Akre, S.; Vergel-Rodriguez, M.; Lee, Y.; Bramlett, C.; Chowdhury, A.Y.; Wang, B.; Cess, C.G.; Finley, S.D.; et al. Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells. Cell. Mol. Immunol. 2024, 21, 1459–1473. [Google Scholar] [CrossRef] [PubMed]
- Grover, A.; Sanjuan-Pla, A.; Thongjuea, S.; Carrelha, J.; Giustacchini, A.; Gambardella, A.; Macaulay, I.; Mancini, E.; Luis, T.C.; Mead, A.; et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 2016, 7, 11075. [Google Scholar] [CrossRef] [PubMed]
- Poscablo, D.M.; Worthington, A.K.; Smith-Berdan, S.; Rommel, M.G.E.; Manso, B.A.; Adili, R.; Mok, L.; Reggiardo, R.E.; Cool, T.; Mogharrab, R.; et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 2024, 187, 3090–3107. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.E.W. Preservation of a youthful path to evergreen platelets? Cell Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sudo, K.; Ema, H.; Morita, Y.; Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 2000, 192, 1273–1280. [Google Scholar] [CrossRef]
- Nikolich-Žugich, J. The twilight of immunity: Emerging concepts in aging of the immune system. Nat. Immunol. 2018, 19, 10–19, Erratum in Nat. Immunol. 2018, 19, 1146. [Google Scholar] [CrossRef]
- Yamamoto, R.; Nakauchi, H. In vivo clonal analysis of aging hematopoietic stem cells. Mech. Ageing Dev. 2020, 192, 111378. [Google Scholar] [CrossRef] [PubMed]
- Montecino-Rodriguez, E.; Berent-Maoz, B.; Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013, 123, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Mehta, A.; de Boer, C.G.; Kowalczyk, M.S.; Lee, K.; Haldeman, P.; Rogel, N.; Knecht, A.R.; Farouq, D.; Regev, A.; et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 2018, 25, 2992–3005. [Google Scholar] [CrossRef]
- Connors, J.; Cusimano, G.; Mege, N.; Woloszczuk, K.; Konopka, E.; Bell, M.; Joyner, D.; Marcy, J.; Tardif, V.; Kutzler, M.A.; et al. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity. Hum. Vaccines Immunother. 2023, 19, 2267295. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Quintin, J.; van der Meer, J.W. Trained immunity: A memory for innate host defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef]
- Vuscan, P.; Kischkel, B.; Joosten, L.A.B.; Netea, M.G. Trained immunity: General and emerging concepts. Immunol. Rev. 2024, 323, 164–185. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.; Bono, C.; Sobén, M.; Guiu, A.; Cheng, Q.J.; Gil, M.L.; Yáñez, A. GM-CSF receptor expression determines opposing innate memory phenotypes at different stages of myelopoiesis. Blood 2024, 143, 2763–2777. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, D. GM-CSF brings (good) memories. Blood 2024, 143, 2683–2684. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.S.; Quintin, J.; Kerstens, H.H.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345, 1251086. [Google Scholar] [CrossRef]
- Mitroulis, I.; Ruppova, K.; Wang, B.; Chen, L.S.; Grzybek, M.; Grinenko, T.; Eugster, A.; Troullinaki, M.; Palladini, A.; Kourtzelis, I.; et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 2018, 172, 147–161. [Google Scholar] [CrossRef] [PubMed]
- de Laval, B.; Maurizio, J.; Kandalla, P.K.; Brisou, G.; Simonnet, L.; Huber, C.; Gimenez, G.; Matcovitch-Natan, O.; Reinhardt, S.; David, E.; et al. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 2020, 26, 657–674, Erratum in Cell Stem Cell 2020, 26, 793; Erratum in Cell Stem Cell 2023, 30, 112. [Google Scholar] [CrossRef] [PubMed]
- Kain, B.N.; Tran, B.T.; Luna, P.N.; Cao, R.; Le, D.T.; Florez, M.A.; Maneix, L.; Toups, J.D.; Morales-Mantilla, D.E.; Koh, S.; et al. Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models. iScience 2023, 26, 107596. [Google Scholar] [CrossRef] [PubMed]
- Fanucchi, S.; Mhlanga, M.M. Lnc-ing trained immunity to chromatin architecture. Front. Cell Dev. Biol. 2019, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Riksen, N.P.; Netea, M.G. Trained immunity: Reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 2021, 39, 667–693. [Google Scholar] [CrossRef] [PubMed]
- Divangahi, M.; Aaby, P.; Khader, S.A.; Barreiro, L.B.; Bekkering, S.; Chavakis, T.; van Crevel, R.; Curtis, N.; DiNardo, A.R.; Dominguez-Andres, J.; et al. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nat. Immunol. 2021, 22, 2–6, Erratum in Nat. Immunol. 2021, 22, 928. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Aguirre-Gamboa, R.; de Bree, L.C.J.; Sanz, J.; Dumaine, A.; van der Velden, W.J.F.M.; Joosten, L.A.B.; Khader, S.; Divangahi, M.; Netea, M.G.; et al. BCG vaccination alters the epigenetic landscape of progenitor cells in human bone marrow to influence innate immune responses. Immunity 2024, 57, 2095–2107. [Google Scholar] [CrossRef]
- Kaufmann, E.; Sanz, J.; Dunn, J.L.; Khan, N.; Mendonça, L.E.; Pacis, A.; Tzelepis, F.; Pernet, E.; Dumaine, A.; Grenier, J.C.; et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 2018, 172, 176–190. [Google Scholar] [CrossRef]
- Mitroulis, I.; Kalafati, L.; Hajishengallis, G.; Chavakis, T. Myelopoiesis in the context of innate immunity. J. Innate Immun. 2018, 10, 365–372. [Google Scholar] [CrossRef]
- Garly, M.L.; Martins, C.L.; Balé, C.; Baldé, M.A.; Hedegaard, K.L.; Gustafson, P.; Lisse, I.M.; Whittle, H.C.; Aaby, P. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine 2003, 21, 2782–2790. [Google Scholar] [CrossRef]
- Butkeviciute, E.; Jones, C.E.; Smith, S.G. Heterologous effects of infant BCG vaccination: Potential mechanisms of immunity. Future Microbiol. 2018, 13, 1193–1208. [Google Scholar] [CrossRef]
- Becher, B.; Tugues, S.; Greter, M. GM-CSF: From growth factor to central mediator of tissue inflammation. Immunity 2016, 45, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Chang, J.; Lartigue, L.; Bolen, C.R.; Haddad, F.; Gaudilliere, B.; Ganio, E.A.; Fragiadakis, G.K.; Spitzer, M.H.; Douchet, I.; et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 2017, 23, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A storm is raging. J. Clin. Investig. 2020, 130, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.X.; Zeng, A.G.X.; Nagree, M.S.; Jakobsen, N.A.; Shah, S.; Murison, A.; Cheong, J.-G.; Turkalj, S.; Lim, I.; Jin, L.; et al. Identification of a human hematopoietic stem cell subset that retains memory of inflammatory stress. bioRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Jakobsen, N.A.; Turkalj, S.; Zeng, A.G.X.; Stoilova, B.; Metzner, L.; Rahmig, S.; Nagree, M.S.; Shah, S.; Moore, R.; Usukhbayar, B.; et al. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 2024, 31, 1127–1144. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.S.; Kapur, R. Turning the clock forward: Inflammation accelerates the aging of hematopoietic stem cells. Cell Stem Cell 2022, 9, 1156–1158. [Google Scholar] [CrossRef]
- McClatchy, J.; Strogantsev, R.; Wolfe, E.; Lin, H.Y.; Mohammadhosseini, M.; Davis, B.A.; Eden, C.; Goldman, D.; Fleming, W.H.; Conley, P.; et al. Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells. Nat. Commun. 2023, 14, 8102. [Google Scholar] [CrossRef] [PubMed]
- Avagyan, S.; Henninger, J.E.; Mannherz, W.P.; Mistry, M.; Yoon, J.; Yang, S.; Weber, M.C.; Moore, J.L.; Zon, L.I. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 2021, 374, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Bowman, R.L.; Busque, L.; Levine, R.L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018, 22, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Köhnke, T.; Karigane, D.; Hilgart, E.; Fan, A.C.; Kayamori, K.; Miyauchi, M.; Collins, C.T.; Suchy, F.P.; Rangavajhula, A.; Feng, Y.; et al. DNMT3AR882H is not required for disease maintenance in primary human AML, but is associated with increased leukemia stem cell frequency. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Assmus, B.; Cremer, S.; Kirschbaum, K.; Culmann, D.; Kiefer, K.; Dorsheimer, L.; Rasper, T.; Abou-El-Ardat, K.; Herrmann, E.; Berkowitsch, A.; et al. Clonal haematopoiesis in chronic ischaemic heart failure: Prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur. Heart J. 2021, 42, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Oren, O.; Small, A.M.; Libby, P. Clonal hematopoiesis and atherosclerosis. J. Clin. Investig. 2024, 134, e180066. [Google Scholar] [CrossRef]
- Walsh, K. The emergence of clonal hematopoiesis as a disease determinant. J. Clin. Investig. 2024, 134, e180063. [Google Scholar] [CrossRef] [PubMed]
- Pendse, S.; Loeffler, D. Decoding clonal hematopoiesis: Emerging themes and novel mechanistic insights. Cancers 2024, 16, 2634. [Google Scholar] [CrossRef]
- Rodrigues, C.P.; Shvedunova, M.; Akhtar, A. Epigenetic regulators as the gatekeepers of hematopoiesis. Trends Genet. 2020, 37, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Schönberger, K.; Cabezas-Wallscheid, N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J. 2023, 42, e112348. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.W.; Krietsch, J.; Reggiardo, R.; Sousae, R.; Kim, D.H.; Forsberg, E.C. Chromatin accessibility maps provide evidence of multilineage gene priming in hematopoietic stem cells. Epigenetics Chromatin 2021, 14, 2. [Google Scholar] [CrossRef]
- Martin, E.W.; Rodriguez, Y.; Baena, A.; Reggiardo, R.E.; Worthington, A.K.; Mattingly, C.S.; Poscablo, D.M.; Krietsch, J.; McManus, M.T.; Carpenter, S.; et al. Dynamics of chromatin accessibility during hematopoietic stem cell differentiation into progressively lineage-committed progeny. Stem Cells 2023, 41, 520–539. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, N.; Oshima, M.; Koide, S.; Takayama, N.; Kuribayashi, W.; Nakajima-Takagi, Y.; Aoyama, K.; Yamazaki, S.; Yamaguchi, K.; Furukawa, Y.; et al. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat. Commun. 2022, 13, 2691. [Google Scholar] [CrossRef] [PubMed]
- Mansell, E.; Lin, D.S.; Loughran, S.J.; Milsom, M.D.; Trowbridge, J.J. New insight into the causes, consequences, and correction of hematopoietic stem cell aging. Exp. Hematol. 2023, 125–126, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Beerman, I.; Bock, C.; Garrison, B.S.; Smith, Z.D.; Gu, H.; Meissner, A.; Rossi, D.J. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013, 12, 413–425. [Google Scholar] [CrossRef]
- Sun, D.; Luo, M.; Jeong, M.; Rodriguez, B.; Xia, Z.; Hannah, R.; Wang, H.; Le, T.; Faull, K.F.; Chen, R.; et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014, 14, 673–688. [Google Scholar] [CrossRef] [PubMed]
- Adelman, E.R.; Huang, H.T.; Roisman, A.; Olsson, A.; Colaprico, A.; Qin, T.; Lindsley, R.C.; Bejar, R.; Salomonis, N.; Grimes, H.L.; et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 2019, 9, 1080–1101. [Google Scholar] [CrossRef] [PubMed]
- Soto-Feliciano, Y.M.; Bartlebaugh, J.M.E.; Liu, Y.; Sánchez-Rivera, F.J.; Bhutkar, A.; Weintraub, A.S.; Buenrostro, J.D.; Cheng, C.S.; Regev, A.; Jacks, T.E.; et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev. 2017, 31, 973–989. [Google Scholar] [CrossRef] [PubMed]
- McRae, H.M.; Garnham, A.L.; Hu, Y.; Witkowski, M.T.; Corbett, M.A.; Dixon, M.P.; May, R.E.; Sheikh, B.N.; Chiang, W.; Kueh, A.J.; et al. PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood 2019, 133, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, P. PHF6: It is written in the stem cells. Blood 2019, 133, 2461–2462. [Google Scholar] [CrossRef]
- Miyagi, S.; Sroczynska, P.; Kato, Y.; Nakajima-Takagi, Y.; Oshima, M.; Rizq, O.; Takayama, N.; Saraya, A.; Mizuno, S.; Sugiyama, F.; et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood 2019, 133, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Wendorff, A.A.; Aidan Quinn, S.; Alvarez, S.; Brown, J.A.; Biswas, M.; Gunning, T.; Palomero, T.; Ferrando, A.A. Epigenetic reversal of hematopoietic stem cell aging in Phf6-knockout mice. Nat. Aging 2022, 2, 1008–1023. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- de Morree, A.; Rando, T.A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat. Rev. Mol. Cell Biol. 2023, 24, 334–354. [Google Scholar] [CrossRef]
- Jackson, B.T.; Finley, L.W.S. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024, 31, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Morganti, C.; Bonora, M.; Ito, K. Metabolism and HSC fate: What NADPH is made for. Trends Cell Biol. 2024. [Google Scholar] [CrossRef]
- Coller, H.A. The paradox of metabolism in quiescent stem cells. FEBS Lett. 2019, 593, 2817–2839. [Google Scholar] [CrossRef] [PubMed]
- Morganti, C.; Cabezas-Wallscheid, N.; Ito, K. Metabolic regulation of hematopoietic stem cells. Hemasphere 2022, 6, e740. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.J.; Luchsinger, L.L.; Corrigan, D.J.; Williams, L.J.; Snoeck, H.W. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 2017, 21, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Simsek, T.; Kocabas, F.; Zheng, J.; Deberardinis, R.J.; Mahmoud, A.I.; Olson, E.N.; Schneider, J.W.; Zhang, C.C.; Sadek, H.A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7, 380–390. [Google Scholar] [CrossRef]
- Signer, R.A.; Magee, J.A.; Salic, A.; Morrison, S.J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 2014, 509, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ito, K. Hematopoietic stem cell fate through metabolic control. Exp. Hematol. 2018, 64, 1–11. [Google Scholar] [CrossRef]
- Liang, R.R.; Arif, T.; Kalmykova, S.; Kasianov, A.; Lin, M.; Menon, V.; Qiu, J.; Bernitz, J.M.; Moore, K.; Lin, F.; et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 2020, 26, 359–376. [Google Scholar] [CrossRef]
- Bartram, J.; Filippi, M.D. The new metabolic needs of hematopoietic stem cells. Curr. Opin. Hematol. 2022, 29, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Gjini, J.J.; Arif, T.; Moore, K.; Lin, M.; Ghaffari, S. Using mitochondrial activity to select for potent human hematopoietic stem cells. Blood Adv. 2021, 5, 1605–1616. [Google Scholar] [CrossRef]
- Laurenti, E.; Frelin, C.; Xie, S.; Ferrari, R.; Dunant, C.F.; Zandi, S.; Neumann, A.; Plumb, I.; Doulatov, S.; Chen, J.; et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 2015, 16, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Grinenko, T.; Eugster, A.; Thielecke, L.; Ramasz, B.; Krüger, A.; Dietz, S.; Glauche, I.; Gerbaulet, A.; von Bonin, M.; Basak, O.; et al. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat. Commun. 2018, 9, 1898. [Google Scholar] [CrossRef] [PubMed]
- Fares, I.; Calvanese, V.; Mikkola, H.K.A. Decoding human hematopoietic stem cell self-renewal. Curr. Stem Cell Rep. 2022, 8, 93–106. [Google Scholar] [CrossRef]
- Mayer, I.M.; Doma, E.; Klampfl, T.; Prchal-Murphy, M.; Kollmann, S.; Schirripa, A.; Scheiblecker, L.; Zojer, M.; Kunowska, N.; Gebrail, L.; et al. Kinase-inactivated CDK6 preserves the long-term functionality of adult hematopoietic stem cells. Blood 2024, 144, 156–170. [Google Scholar] [CrossRef]
- Ugale, A.; Shunmugam, D.; Pimpale, L.G.; Rebhan, E.; Baccarini, M. Signaling proteins in HSC fate determination are unequally segregated during asymmetric cell division. J. Cell Biol. 2024, 223, e202310137. [Google Scholar] [CrossRef] [PubMed]
- Takubo, K.; Nagamatsu, G.; Kobayashi, C.I.; Nakamura-Ishizu, A.; Kobayashi, H.; Ikeda, E.; Goda, N.; Rahimi, Y.; Johnson, R.S.; Soga, T.; et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Mahesula, S.; Mathews, T.P.; Martin-Sandoval, M.S.; Zhao, Z.; Piskounova, E.; Agathocleous, M. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 2021, 33, 1777–1792. [Google Scholar] [CrossRef]
- Bonora, M.; Morganti, C.; van Gastel, N.; Ito, K.; Calura, E.; Zanolla, I.; Ferroni, L.; Zhang, Y.; Jung, Y.; Sales, G.; et al. A mitochondrial NADPH-cholesterol axis regulates extracellular vesicle biogenesis to support hematopoietic stem cell fate. Cell Stem Cell 2024, 31, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.; Paul, A.; Reyes, A.; Cassidy, D.; Leach, A.; Kim, D.; Muh, S.; Grabowski, G.; Hoxhaj, G.; Zhao, Z.; et al. Different effects of fatty acid oxidation on hematopoietic stem cells based on age and diet. Cell Stem Cell 2024, 32, 1–13. [Google Scholar] [CrossRef]
- Cao, J.; Yao, Q.J.; Wu, J.; Chen, X.; Huang, L.; Liu, W.; Qian, K.; Wan, J.J.; Zhou, B.O. Deciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution. Cell Metab. 2024, 36, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Hirao, A.; Arai, F.; Takubo, K.; Matsuoka, S.; Miyamoto, K.; Ohmura, M.; Naka, K.; Hosokawa, K.; Ikeda, Y.; et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 2006, 12, 446–451, Erratum in Nat. Med. 2010, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Mohrin, M.; Shin, J.; Liu, Y.; Brown, K.; Luo, H.; Xi, Y.; Haynes, C.M.; Chen, D. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 2015, 347, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Mohrin, M.; Widjaja, A.; Liu, Y.; Luo, H.; Chen, D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell 2018, 17, e12756. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.; Soilleux, E.J.; Djordjevic, G.; Tripp, R.; Lutteropp, M.; Sadighi-Akha, E.; Stranks, A.J.; Glanville, J.; Knight, S.; Jacobsen, S.E.; et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.; Warr, M.R.; Adelman, E.R.; Lansinger, O.M.; Flach, J.; Verovskaya, E.V.; Figueroa, M.E.; Passegué, E. Autophagy maintains the metabolism and function of young and old stem cells. Nature 2017, 543, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Turcotte, R.; Cui, J.; Zimmerman, S.E.; Pinho, S.; Mizoguchi, T.; Arai, F.; Runnels, J.M.; Alt, C.; Teruya-Feldstein, J.; et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 2016, 354, 1156–1160. [Google Scholar] [CrossRef]
- Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021, 40, e104705. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013, 20, 31–42. [Google Scholar] [CrossRef]
- García-Prat, L.; Kaufmann, K.B.; Schneiter, F.; Voisin, V.; Murison, A.; Chen, J.; Chan-Seng-Yue, M.; Gan, O.I.; McLeod, J.L.; Smith, S.A.; et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 2021, 28, 1838–1850. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, D.; Wehling, A.; Schneiter, F.; Zhang, Y.; Müller-Bötticher, N.; Hoppe, P.S.; Hilsenbeck, O.; Kokkaliaris, K.D.; Endele, M.; Schroeder, T. Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature 2019, 573, 426–429. [Google Scholar] [CrossRef]
- Vannini, N.; Campos, V.; Girotra, M.; Trachsel, V.; Rojas-Sutterlin, S.; Tratwal, J.; Ragusa, S.; Stefanidis, E.; Ryu, D.; Rainer, P.Y.; et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 2019, 24, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Katajisto, P.; Döhla, J.; Chaffer, C.L.; Pentinmikko, N.; Marjanovic, N.; Iqbal, S.; Zoncu, R.; Chen, W.; Weinberg, R.A.; Sabatini, D.M. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 2015, 348, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Ramirez, E.; Geiger, H.; Florian, M.C. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum. Mol. Genet. 2020, 29, R248–R254. [Google Scholar] [CrossRef]
- Florian, M.C.; Klose, M.; Sacma, M.; Jablanovic, J.; Knudson, L.; Nattamai, K.J.; Marka, G.; Vollmer, A.; Soller, K.; Sakk, V.; et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018, 16, e2003389. [Google Scholar] [CrossRef] [PubMed]
- Girotra, M.; Chiang, Y.H.; Charmoy, M.; Ginefra, P.; Hope, H.C.; Bataclan, C.; Yu, Y.R.; Schyrr, F.; Franco, F.; Geiger, H.; et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 2023, 3, 1057–1066. [Google Scholar] [CrossRef]
- Dellorusso, P.V.; Proven, M.A.; Calero-Nieto, F.J.; Wang, X.; Mitchell, C.A.; Hartmann, F.; Amouzgar, M.; Favaro, P.; DeVilbiss, A.; Swann, J.W.; et al. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 2024, 31, 1020–1037. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, Q.; Kao, Y.R.; Diaz, A.; Tasset, I.; Kaushik, S.; Thiruthuvanathan, V.; Zintiridou, A.; Nieves, E.; Dzieciatkowska, M.; et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 2021, 591, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Balch, W.E.; Morimoto, R.I.; Dillin, A.; Kelly, J.W. Adapting proteostasis for disease intervention. Science 2008, 319, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Jarzebowski, L.; Le Bouteiller, M.; Coqueran, S.; Raveux, A.; Vandormael-Pournin, S.; David, A.; Cumano, A.; Cohen-Tannoudji, M. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 2018, 24, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jia, Y.; Mahmut, D.; Deik, A.A.; Jeanfavre, S.; Clish, C.B.; Sankaran, V.G. Human hematopoietic stem cell vulnerability to ferroptosis. Cell 2023, 186, 732–747. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.R.; Chen, J.; Kumari, R.; Ng, A.; Zintiridou, A.; Tatiparthy, M.; Ma, Y.; Aivalioti, M.M.; Moulik, D.; Sundaravel, S.; et al. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024, 31, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.A.; Lennan, C.J.; Sunshine, M.J.; Dreifke, D.; Chawla, A.; Bennett, E.J.; Signer, R.A.J. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 2023, 30, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Kruta, M.M.; Sunshine, M.J.; Chua, B.A.; Fu, Y.; Chawla, A.; Dillingham, C.H.; Hidalgo San Jose, L.; De Jong, B.; Zhou, F.J.; Signer, R.A.J. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell Stem Cell 2021, 28, 1950–1965. [Google Scholar] [CrossRef] [PubMed]
- San Jose, L.H.; Sunshine, M.J.; Dillingham, C.H.; Chua, B.A.; Kruta, M.; Hong, Y.; Hatters, D.M.; Signer, R.A.J. Modest declines in proteome quality impair hematopoietic stem cell self-renewal. Cell Rep. 2020, 30, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Hartl, F.U. Interplay of proteostasis capacity and protein aggregation: Implications for cellular function and disease. J. Mol. Biol. 2024, 436, 168615. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef]
- Maneix, L.L.; Iakova, P.; Lee, C.G.; Moree, S.E.; Lu, X.; Datar, G.K.; Hill, C.T.; Spooner, E.; King, J.C.K.; Sykes, D.B.; et al. Cyclophilin A supports translation of intrinsically disordered proteins and affects haematopoietic stem cell ageing. Nat. Cell Biol. 2024, 26, 593–603. [Google Scholar] [CrossRef]
- Tartiere, A.G.; Freije, J.M.P.; López-Otín, C. The hallmarks of aging as a conceptual framework for health and longevity research. Front. Aging 2024, 5, 1334261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watt, S.M.; Roubelakis, M.G. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int. J. Mol. Sci. 2025, 26, 671. https://doi.org/10.3390/ijms26020671
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. International Journal of Molecular Sciences. 2025; 26(2):671. https://doi.org/10.3390/ijms26020671
Chicago/Turabian StyleWatt, Suzanne M., and Maria G. Roubelakis. 2025. "Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges" International Journal of Molecular Sciences 26, no. 2: 671. https://doi.org/10.3390/ijms26020671
APA StyleWatt, S. M., & Roubelakis, M. G. (2025). Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. International Journal of Molecular Sciences, 26(2), 671. https://doi.org/10.3390/ijms26020671