Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites
Abstract
1. Introduction
2. Results
2.1. Submerged Cultivation
2.2. Determination of Antimicrobial Activity by Agar Well Diffusion Method
2.3. Determination of Extracts’ Minimum Inhibitory Concentrations (MICs)
2.4. Sequencing Results
2.5. Extracts’ High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS)
3. Discussion
3.1. Results Discussion
3.2. Future Work
4. Materials and Methods
4.1. Basidiomycetes Cultures
4.2. Sequencing
4.3. Submerged Cultivation of Basidiomycetes Strains
4.4. Extraction of Culture Liquids and Submerged Mycelia
4.5. Agar Well Diffusion Method
4.6. Minimum Inhibitory Concentration (MIC) Determination
4.7. High-Performance Liquid Chromatography with Tandem Mass Spectrometry (HPLC-MS)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DNA | Deoxyribonucleic acid |
| DMSO | Dimethyl sulfoxide |
| HPLC-MS | High-performance liquid chromatography–mass spectrometry |
| MIC | Minimum inhibitory concentration |
| PDA | Potato dextrose agar |
| RT | Retention time |
| UV | Ultraviolet |
References
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef]
- Medina, E.; Pieper, D.H. Tackling threats and future problems of multidrug-resistant bacteria. In How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33. [Google Scholar]
- Pan, C.; Hassan, S.S.U.; Ishaq, M.; Yan, S.; Jin, H. Marine actinomycetes: A hidden treasure trove for antibacterial discovery. Front. Mar. Sci. 2025, 12, 1558320. [Google Scholar] [CrossRef]
- Mohan, S.; Ajay Krishna, M.S.; Chandramouli, M.; Keri, R.S.; Patil, S.A.; Ningaiah, S.; Somappa, S.B. Antibacterial natural products from microbial and fungal sources: A decade of advances. Mol. Divers. 2023, 27, 517–541. [Google Scholar] [CrossRef] [PubMed]
- He, M.Q.; Cao, B.; Liu, F.; Boekhout, T.; Denchev, T.T.; Schoutteten, N.; Denchev, C.M.; Kemler, M.; Gorjón, S.P.; Begerow, D.; et al. Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Divers. 2024, 126, 127–406. [Google Scholar] [CrossRef]
- Niskanen, T.; Lücking, R.; Dahlberg, A.; Gaya, E.; Suz, L.M.; Mikryukov, V.; Liimatainen, K.; Druzhinina, I.; Westrip, J.R.S.; Gregory, M.; et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 2023, 48, 149–176. [Google Scholar] [CrossRef]
- Levin, S.A. Encyclopedia of Biodiversity, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; 5504p. [Google Scholar]
- Sum, W.C.; Ebada, S.S.; Matasyoh, J.C.; Stadler, M. Recent progress in the evaluation of secondary metabolites from Basidiomycota. Curr. Res. Biotechnol. 2023, 6, 100155. [Google Scholar] [CrossRef]
- Lysakova, V.; Krasnopolskaya, L.; Yarina, M.; Ziangirova, M. Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review. Antibiotics 2024, 13, 1026. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Tidke, G.; Rai, M.K. Biotechnological potential of mushrooms: Drugs and dye production. Int. J. Med. Mushrooms 2006, 8, 351–360. [Google Scholar] [CrossRef]
- Florey, H.W.; Chain, E.; Heatley, N.G.; Jennings, M.A.; Sanders, A.G.; Abraham, E.P.; Florey, M. Antibiotics. A Survey of Penicillin, Streptomycin, and Other Antimicrobial Substances from Fungi, Actinomyeetes, Bacteria, and Plants; Oxford University Press: Oxford, UK, 1949; Volume I. [Google Scholar]
- Ye, Y.; Zeng, Q.; Zeng, Q. Griseococcin (1) from Bovistella radicata (Mont.) Pat and antifungal activity. BMC Microbiol. 2020, 20, 276. [Google Scholar] [CrossRef]
- Ha, L.S.; Ki, D.W.; Kim, J.Y.; Choi, D.C.; Lee, I.K.; Yun, B.S. Dentipellin, a new antibiotic from culture broth of Dentipellis fragilis. J. Antibiot. 2021, 74, 538–541. [Google Scholar] [CrossRef]
- Nime, M.J.; Oguri, Y.; Oku, N.; Igarashi, Y. Structure revision of tricholomenyn B, an antimitotic geranylcyclohexenone rediscovered as a bitter and antibacterial substance, from a basidiomycete Tricholoma japonicum (Shiro-shimeji). J. Antibiot. 2024, 77, 634–637. [Google Scholar] [CrossRef]
- Zhang, S.B.; Huang, Y.; Chen, H.P.; Li, Z.H.; Wu, B.; Feng, T.; Liu, J.K. Confluenines A–F, N-oxidized l-isoleucine derivatives from the edible mushroom Albatrellus confluens. Tetrahedron Lett. 2018, 59, 3262–3266. [Google Scholar] [CrossRef]
- Rodrigues-Costa, F.; Slivinski, J.; Ióca, L.P.; Bertonha, A.F.; de Felício, R.; Da Cunha, M.G.; da Mata Madeira, P.V.; Cauz, A.C.G.; Trindade, D.M.; Freire, V.F.; et al. Merulinic acid C overcomes gentamicin resistance in Enterococcus faecium. Bioorg. Chem. 2020, 100, 103921. [Google Scholar] [CrossRef]
- Clericuzio, M.; Novello, G.; Bivona, M.; Gamalero, E.; Bona, E.; Caramaschi, A.; Massa, N.; Asteggiano, A.; Medana, C. A Study of Metabolites from Basidiomycota and Their Activities against Pseudomonas aeruginosa. Antibiotics 2024, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- Béni, Z.; Dékány, M.; Kovács, B.; Csupor-Löffler, B.; Zomborszki, Z.; Kerekes, E.; Szekeres, A.; Urbán, E.; Hohmann, J.; Ványolós, A. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa. Molecules 2018, 23, 1082. [Google Scholar] [CrossRef]
- Tareq, F.S.; Hasan, C.M.; Rahman, M.M.; Hanafi, M.M.M.; Colombi Ciacchi, L.; Michaelis, M.; Harder, T.; Tebben, J.; Islam, M.T.; Spiteller, P. Anti-staphylococcal calopins from fruiting bodies of Caloboletus radicans. J. Nat. Prod. 2018, 81, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, E.; Krasowska, M.; Kowczyk-Sadowy, M.; Zapora, E. Investigation of the Possible Antibacterial Effects of Corticioid Fungi Against Different Bacterial Species. Int. J. Mol. Sci. 2025, 26, 3292. [Google Scholar] [CrossRef] [PubMed]
- Sandargo, B.; Kaysan, L.; Teponno, R.B.; Richter, C.; Thongbai, B.; Surup, F.; Stadler, M. Analogs of the carotane antibiotic fulvoferruginin from submerged cultures of a Thai Marasmius sp. Beilstein. J. Org. Chem. 2021, 17, 1385–1391. [Google Scholar] [CrossRef]
- Hamamoto, E.; Kimura, N.; Nishino, S.; Ishihara, A.; Otani, H.; Osaki-Oka, K. Antimicrobial activity of the volatile compound 3, 5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J. Appl. Microbiol. 2021, 131, 1431–1439. [Google Scholar] [CrossRef]
- Lysakova, V.S.; Sineva, O.N.; Bychkova, O.P.; Krasnopolskaya, L.M. Screening of Antibacterial and Antifungal Activities of Basidiomycetes Extracts. Antibiot. Chemother. 2024, 69, 11–18. (In Russian) [Google Scholar] [CrossRef]
- Lysakova, V.S.; Sineva, O.N.; Isakova, E.B.; Krasnopolskaya, L.M. Antimicrobial activity of exometabolites from a submerged culture of Fomitopsis betulina. In Proceedings of the VI (XIV) International Botanical Conference of Young Scientists in Saint Petersburg, Saint Petersburg, Russia, 21–25 April 2025; Komarov Botanical Institute of the Russian Academy of Sciences: St. Petersburg, Russia, 2025; p. 120. (In Russian). [Google Scholar]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica 2010, 76, 1479–1491. [Google Scholar] [CrossRef]
- Pandey, V.V.; Varshney, V.K.; Pandey, A. Lovastatin: A journey from ascomycetes to basidiomycetes fungi. J. Biol. Act. Prod. Nat. 2019, 9, 162–178. [Google Scholar] [CrossRef]
- Mahmoud, O.A.; Abdel-Hadi, S.Y. Extraction and purification of lovastatin from the edible mushroom Laetiporus sulphureus and its antioxidant activity. Egypt. J. Bot. 2022, 62, 169–175. [Google Scholar] [CrossRef]
- Burcu, A.; Eskisehir, O.; Mustafa, Y. Screening of Medicinal Higher Basidiomycetes Mushrooms from Turkey for Lovastatin Production. Int. J. Med. Mushrooms 2012, 14, 149–159. [Google Scholar] [CrossRef]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar] [CrossRef]
- Kimura, Y.; Nishibe, M.; Nakajima, H.; Hamasaki, T.; Shimada, A.; Tsuneda, A.; Shigematsu, N. Hericerin, a new pollen growth inhibitor from the mushroom Hericium erinaceum. Agric. Biol. Chem. 1991, 55, 2673–2674. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, B.; Wang, K.; Bao, L.; Wang, Z.; Xie, L.; Guo, C.; Liu, H. A concise total synthesis and PPAR activation activity of hericerin from Hericium erinaceum. J. Antibiot. 2020, 73, 646–649. [Google Scholar] [CrossRef]
- He, J.B.; Tao, J.; Miao, X.S.; Bu, W.; Zhang, S.; Dong, Z.J.; Li, Z.H.; Feng, Y.; Liu, J.K. Seven new drimane-type sesquiterpenoids from cultures of fungus Laetiporus sulphureus. Fitoterapia 2015, 102, 1–6. [Google Scholar] [CrossRef]
- Wittstein, K.; Rascher, M.; Rupcic, Z.; Löwen, E.; Winter, B.; Köster, R.W.; Stadler, M. Corallocins A–C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J. Nat. Prod. 2016, 79, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Vallavan, V.; Krishnasamy, G.; Zin, N.M.; Abdul Latif, M. A Review on Antistaphylococcal Secondary Metabolites from Basidiomycetes. Molecules 2020, 25, 5848. [Google Scholar] [CrossRef]
- Heinzelmann, R.; Prospero, S.; Rigling, D. Virulence and stump colonization ability of Armillaria borealis on Norway spruce seedlings in comparison to sympatric Armillaria species. Plant Dis. 2017, 101, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Akulova, V.S.; Sharov, V.V.; Aksyonova, A.I.; Putintseva, Y.A.; Oreshkova, N.V.; Feranchuk, S.I.; Kuzmin, D.A.; Pavlov, I.N.; Litovka, Y.A.; Krutovsky, K.V. De novo sequencing, assembly and functional annotation of Armillaria borealis genome. BMC Genom. 2020, 21 (Suppl. 7), 534. [Google Scholar] [CrossRef]
- Kalu, A.U.; Chinenye, O.A.; Lydia, E.A.; Jude, O.U. In vitro antimicrobial activity of Armillaria mellea against pathogenic organisms. Int. J. Biotech. Microbiol. 2022, 4, 39–44. [Google Scholar]
- Li, J.; Li, Z.; Duan, Y.; Liu, C.; Yan, M. Secondary Metabolites of Fomitopsis betulina: Chemical Structures, Biological Activity and Application Prospects. J. Fungi 2024, 10, 616. [Google Scholar] [CrossRef]
- Marcus, S. Antibacterial activity of the triterpenoid acid (polyporenic acid C) and of ungulinic acid, metabolic products of Polyporus benzoinus (Wahl). Fr. Biochem. J. 1952, 50, 516–517. [Google Scholar] [CrossRef]
- Alresly, Z.; Lindequist, U.; Lalk, M.; Porzel, A.; Arnold, N.; Wessjohann, L.A. Bioactive Triterpenes from the Fungus Piptoporus betulinus. Rec. Nat. Prod. 2015, 10, 103–108. [Google Scholar]
- Schlegel, B.; Luhmann, U.; Härtl, A.; Gräfe, U. Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1. J. Antibiot. 2000, 53, 973–974. [Google Scholar] [CrossRef]
- Rösecke, J.; Pietsch, M.; König, W.A. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 2000, 54, 747–750. [Google Scholar] [CrossRef]
- Saroj, A.; Pragadheesh, V.S.; Palanivelu; Yadav, A.; Singh, S.C.; Samad, A.; Negi, A.S.; Chanotiya, C.S. Anti-phytopathogenic activity of Syzygium cumini essential oil, hydrocarbon fractions and its novel constituents. Ind. Crop. Prod. 2015, 74, 327–335. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Spirovic-Trifunovic, B.; Miletic, S.; Lazic, V.; Zizak, Z.; Vunduk, J. Bioprospecting of Selected Species of Polypore Fungi from the Western Balkans. Molecules 2024, 29, 314. [Google Scholar] [CrossRef]
- Zahid, M.T.; Idrees, M.; Ying, W.; Zaki, A.H.; Abdullah, I.; Haiying, B. Review of chemical constituents and pharmacology of brown-rot fungus Fomitopsis pinicola. Cellulose 2020, 10, 1. [Google Scholar] [CrossRef]
- Badalyan, S.M.; Shnyreva, A.V.; Barkhudaryan, A. Antimicrobial activity of different collections of medicinal polypore fungus Fomitopsis pinicola (Agaricomycetes). Int. J. Med. Mushrooms 2024, 26, 33–48. [Google Scholar] [CrossRef]
- Bragina, O.; Kuhtinskaja, M.; Elisashvili, V.; Asatiani, M.; Kulp, M. Antibacterial Properties of Submerged Cultivated Fomitopsis pinicola, Targeting Gram-Negative Pathogens, Including Borrelia burgdorferi. Sci 2025, 7, 104. [Google Scholar] [CrossRef]
- Liu, X.T.; Winkler, A.L.; Schwan, W.R.; Volk, T.J.; Rott, M.; Monte, A. Antibacterial compounds from mushrooms II: Lanostane triterpenoids and an ergostane steroid with activity against Bacillus cereus isolated from Fomitopsis pinicola. Planta Medica 2010, 76, 464–466. [Google Scholar] [CrossRef]
- Duan, Y.; Qi, J.; Gao, J.M.; Liu, C. Bioactive components of Laetiporus species and their pharmacological effects. Appl. Microbiol. Biotechnol. 2022, 106, 5929–5944. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gaascht, F.; Schmidt-Dannert, C.; Salomon, C.E. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules 2020, 25, 963. [Google Scholar] [CrossRef]
- Darmasiwi, S.; Aramsirirujiwet, Y.; Kimkong, I. Antibiofilm activity and bioactive phenolic compounds of ethanol extract from the Hericium erinaceus basidiome. J. Adv. Pharm. Technol. Res. 2022, 13, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, M.S.; Shawkat, M.S. Antibaterial activity of (Hericium erinaceus) extract on some clinical pathogenic isolates. Iraqi J. Agric. Sci. 2023, 54, 691–699. [Google Scholar] [CrossRef]
- Narmuratova, Z.; Bisko, N.; Mustafin, K.; Al-Maali, G.; Kerner, A.; Bondaruk, S.; Suleimenova, Z.; Kalieva, A.; Akhmetsadykov, N.; Zhakipbekova, A.; et al. Screening of medicinal mushroom strains with antimicrobial activity and polysaccharides production. Turk. J. Biochem. 2023, 48, 290–297. [Google Scholar] [CrossRef]
- Mustafin, K.; Suleimenova, Z.; Akhmetsadykov, N.; Bisko, N.; Zhakipbekova, A. Study of antimicrobial properties of Hericium fungal extracts. Sci. Horiz. 2025, 28, 77–88. [Google Scholar] [CrossRef]
- Starr, A.M.; Zabet-Moghaddam, M.; San Francisco, M. Identification of a novel secreted metabolite cyclo(phenylalanyl-prolyl) from Batrachochytrium dendrobatidis and its effect on Galleria mellonella. BMC Microbiol. 2022, 22, 293. [Google Scholar] [CrossRef]
- Ahmed, E.F.; Rateb, M.E.; Abou El-Kassem, L.T.; Hawas, U.W. Anti-HCV protease of diketopiperazines produced by the Red Sea sponge-associated fungus Aspergillus versicolor. Appl. Biochem. Microbiol. 2017, 53, 101–106. [Google Scholar] [CrossRef]
- Teregulova, G.A.; Manucharova, N.A.; Urazbakhtina, N.A.; Zhemchuzhina, N.S.; Yevtushenko, L.I.; Stepanov, A.L. Antimicrobial Activity of Specialized Metabolites of Soil Chitinolytic Streptomycetes. Moscow Univ. Soil Sci. Bull. 2024, 79, 47–55. [Google Scholar] [CrossRef]
- Bing, H.; Qi, C.; Gu, J.; Zhao, T.; Yu, X.; Cai, Y.; Zhang, Y.; Li, A.; Wang, X.; Zhao, J.; et al. Isolation identification of NEAU-CP5: Aseed-endophytic strain of B. velezensis that controls tomato bacterial wilt. Microb. Pathog. 2024, 192, 106707. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.S.; Song, Y.; Sakuno, E.; Nakajima, H.; Nakagawa, H.; Yabe, K. Cyclo(L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70, 7466–7473. [Google Scholar] [CrossRef]
- Gowrishankar, S.; Sivaranjani, M.; Kamaladevi, A.; Ravi, A.V.; Balamurugan, K.; Karutha Pandian, S. Cyclic dipeptide cyclo(l-leucyl-l-prolyl) from marine Bacillus amyloliquefaciens mitigates biofilm formation and virulence in Listeria monocytogenes. Pathog. Dis. 2016, 74, 17. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation prosedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Krasnopolskaya, L.M.; Belitsky, I.V.; Fedorova, G.B.; Katrukha, G.S. Pleurotus djamor: Cultivation methods and antimicrobial properties. Mic Phytopathol. 2001, 35, 62–67. (In Russian) [Google Scholar]
- Russian Guidelines. Determination of Microorganism Susceptibility to Antimicrobial Agents, Versiya 2025-01; MAKMAKH, SSU: Smolensk, Russia, 2025; p. 208. (In Russian) [Google Scholar]




| Strain | Cultivation Day | Culture Liquid pH | Dry Biomass Yield, g/L | Strain | Cultivation Day | Culture Liquid pH | Dry Biomass Yield, g/L |
|---|---|---|---|---|---|---|---|
| Armillaria borealis 1 | 6 | 4.67 ± 0.23 | 3.26 ± 0.14 | Hericium erinaceus 9 | 7 | 4.62 ± 0.16 | 2.77 ± 0.08 |
| Fomes fomentarius 1 | 5 | 2.63 ± 0.15 | 4.14 ± 0.13 | Hericium erinaceus 17 | 6 | 4.30 ± 0.05 | 9.41 ± 0.21 |
| Fomitopsis betulina 3 | 5 | 1.34 ± 0.02 | 3.83 ± 0.03 | Hypsizygus marmoreus 1 | 5 | 5.28 ± 0.12 | 6.75 ± 0.07 |
| Fomitopsis pinicola 2 | 6 | 2.87 ± 0.23 | 3.28 ± 0.08 | Hypsizygus ulmarius 1 | 5 | 6.54 ± 0.06 | 11.92 ± 0.06 |
| Grifola frondosa 9 | 5 | 5.36 ± 0.12 | 1.40 ± 0.15 | Laetiporus sulphureus 4 | 6 | 2.55 ± 0.24 | 1.14 ± 0.25 |
| Hericium coralloides 1 | 6 | 4.91 ± 0.15 | 5.98 ± 0.12 | Pleurotus eryngii 29 | 6 | 4.23 ± 0.13 | 6.45 ± 0.14 |
| Hericium coralloides 4 | 7 | 4.56 ± 0.04 | 6.14 ± 0.46 | Pleurotus ostreatus Ls | 6 | 4.69 ± 0.15 | 5.36 ± 0.09 |
| Hericium coralloides 18 | 7 | 4.55 ± 0.04 | 8.79 ± 0.17 | Pleurotus pulmonarius 1 | 5 | 5.13 ± 0.14 | 13.31 ± 0.06 |
| Hericium erinaceus 1 | 6 | 4.96 ± 0.32 | 6.23 ± 0.23 | Trametes versicolor 1 | 6 | 5.15 ± 0.15 | 1.27 ± 0.11 |
| Strain | Extract | Inhibition Zone, mm | ||||||
|---|---|---|---|---|---|---|---|---|
| S. aureus ATCC 43300 | M. luteus ATCC 9341 | B. subtilis ATCC 6633 | P. aeruginosa ATCC 27853 | C. albicans ATCC 14053 | F. oxysporum VKPM F-890 | A. niger ATCC 16404 | ||
| Armillaria borealis 1 | Cul. liquid * | 15.0 ± 1.0 | 12.3 ± 0.6 | 12.7 ± 1.2 | / ** | 12.7 ± 0.6 | 11.3 ± 1.5 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Hypsizygus marmoreus 1 | Cul. liquid | / | / | 14.7 ± 1.2 | / | / | 15.3 ± 1.1 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Hypsizygus ulmarius 1 | Cul. liquid | / | 16.3 ± 1.2 | 13.7 ± 0.6 | 14.3 ± 0.6 | / | 13.0 ± 1.0 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Pleurotus eryngii 29 | Cul. liquid | / | / | 12.7 ± 0.6 | / | / | 12.3 ± 1.5 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Pleurotus ostreatus Ls | Cul. liquid | 12.0 ± 1.0 | 15.7 ± 1.5 | / | / | / | 13.3 ± 0.6 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Pleurotus pulmonarius 1 | Cul. liquid | / | / | / | / | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Strain | Extract | Inhibition Zone, mm | ||||||
|---|---|---|---|---|---|---|---|---|
| S. aureus ATCC 43300 | M. luteus ATCC 9341 | B. subtilis ATCC 6633 | P. aeruginosa ATCC 27853 | C. albicans ATCC 14053 | F. oxysporum VKPM F-890 | A. niger ATCC 16404 | ||
| Fomes fomentarius 1 | Cul. liquid * | 21.3 ± 1.5 | 27.7 ± 1.1 | 16.7 ± 0.6 | 21.7 ± 1.5 | / ** | / | / |
| Mycelium | 12.7 ± 0.6 | 15.3 ± 2.5 | 14.0 ± 1.0 | 11.3 ± 1.5 | / | / | / | |
| Fomitopsis betulina 3 | Cul. liquid | 29.0 ± 1.0 | 30.3 ± 1.5 | 21.7 ± 1.5 | 23.7 ± 0.6 | / | 13.7 ± 0.6 | / |
| Mycelium | 14.7 ± 1.5 | 18.3 ± 0.6 | 15.0 ± 1.0 | 13.0 ± 1.7 | / | / | / | |
| Fomitopsis pinicola 2 | Cul. liquid | 35.7 ± 1.7 | 33.3 ± 2.1 | 23.0 ± 0.0 | 25.7 ± 1.5 | / | 13.0 ± 1.0 | / |
| Mycelium | / | 11.0 ± 1.0 | 12.3 ± 1.3 | / | / | / | / | |
| Grifola frondosa 9 | Cul. liquid | 10.3 ± 0.7 | 13.3 ± 1.5 | 12.0 ± 2.0 | 12.0 ± 1.0 | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Laetiporus sulphureus 4 | Cul. liquid | 33.7 ± 1.3 | 25.3 ± 1.3 | 26.7 ± 1.5 | 15.5 ± 2.5 | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Trametes versicolor 1 | Cul. liquid | 12.0 ± 2.0 | 11.3 ± 0.7 | 11.3 ± 0.7 | / | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Strain | Extract | Inhibition Zone, mm | ||||||
|---|---|---|---|---|---|---|---|---|
| S. aureus ATCC 43300 | M. luteus ATCC 9341 | B. subtilis ATCC 6633 | P. aeruginosa ATCC 27853 | C. albicans ATCC 14053 | F. oxysporum VKPM F-890 | A. niger ATCC 16404 | ||
| Hericium coralloides 1 | Cul. liquid * | 24.0 ± 1.0 | 18.3 ± 0.7 | 20.7 ± 1.1 | / ** | / | 12.0 ± 2.0 | 11.7 ± 0.3 |
| Mycelium | / | / | / | / | / | / | / | |
| Hericium coralloides 4 | Cul. liquid | 28.3 ± 2.1 | 26.6 ± 0.3 | 26.0 ± 1.0 | 12.7 ± 1.1 | / | 15.0 ± 2.0 | 13.3 ± 1.5 |
| Mycelium | 25.0 ± 1.0 | 25.7 ± 0.8 | 21.7 ± 2.1 | / | / | 11.0 ± 1.0 | 11.0 ± 2.0 | |
| Hericium coralloides 18 | Cul. liquid | 23.7 ± 0.7 | 18.0 ± 2.0 | 17.3 ± 1.5 | 13.0 ± 1.0 | / | 13.7 ± 0.3 | / |
| Mycelium | / | / | / | / | / | / | / | |
| Hericium erinaceus 1 | Cul. liquid | 20.6 ± 1.5 | 14.7 ± 0.3 | 13.7 ± 1.5 | / | / | 15.0 ± 1.0 | 10.7 ± 1.5 |
| Mycelium | / | / | / | / | / | / | / | |
| Hericium erinaceus 9 | Cul. liquid | / | / | / | / | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Hericium erinaceus 17 | Cul. liquid | 20.0 ± 2.0 | 18.3 ± 0.7 | 12.0 ± 1.0 | / | / | / | / |
| Mycelium | / | / | / | / | / | / | / | |
| Test Cultures | MIC, µg/mL | |||||
|---|---|---|---|---|---|---|
| Fomes fomentarius 1 | Fomitopsis betulina 3 | Fomitopsis pinicola 2 | Hericium erinaceus 1 | Hericium coralloides 4 | Laetiporus sulphureus 4 | |
| Gram-positive bacteria | ||||||
| Staphylococcus aureus 25923 ATCC | >1280 | 640 | 640 | 640 | 80 | 320 |
| Staphylococcus aureus 10 * | >1280 | 640 | 1280 | 640 | 320 | 320 |
| Staphylococcus epidermidis 533 * | 640 | 640 | 640 | 320 | 160 | 320 |
| Staphylococcus haemoliticus 585 * | 640 | 640 | 640 | 320 | 160 | 320 |
| Enterococcus faecium 569 * | 1280 | 1280 | 1280 | 320 | 320 | 640 |
| Gram-positive bacteria | ||||||
| Acinetobacter baumanii 5696 ATCC | 640 | 640 | 640 | 320 | >1280 | 640 |
| Escherichia coli 25922 ATCC | 640 | 640 | 640 | 640 | >1280 | 1280 |
| Klebsiella pneumoniae 13883 ATCC | >1280 | 640 | 640 | 640 | >1280 | 1280 |
| Salmonella cholerasuis 14028 ATCC | >1280 | 640 | >1280 | 640 | >1280 | 1280 |
| Proteus vulgaris 13315 ATCC | >1280 | 1280 | 1280 | 640 | 640 | 640 |
| Basidiomycete strain: Fomitopsis betulina 3 | ||||||
| Peak | RT, min | UV absorbance: RT min, % | Fluorescence: RT min, mAU em. 230 nm exc. 460 nm | MS data, EIC: m/z (intensity at RT, %) | ||
| 280 nm | 210 nm | MS (+) | MS (−) | |||
| 1 | 1.8 | 1.8 (100%) | 1.7 (67%) | |||
| 2 | 2.2 | 2.2 (47%) | - | 225; 227 | ||
| 3 | 3.5 | - | 3.5 (33%) | 3.6 (100%) | 303; 325 | |
| 4 | 3.9 | 211 | ||||
| 5 | 10.5 | - | 10.5 (68%) | - | - | 527 |
| Basidiomycete strain: Fomitopsis pinicola 2 | ||||||
| Peak | RT, min | UV absorbance: RT min, % | Fluorescence: RT min, mAU em. 230 nm exc. 460 nm | MS data, EIC: m/z (intensity at RT, %) | ||
| 280 nm | 210 nm | MS (+) | MS (−) | |||
| 1 | 1.7 | 1.7 (67%) | 201; 313 | |||
| 2 | 2.2 | 2.2 (100%) | 225; 227 | |||
| 3 | 3.5 | 3.5 (73%) | 277 | 303; 393 | ||
| 4 | 3.9 | 211 | ||||
| 5 | 4.2 | 4.2 (27%) | 245 | |||
| 6 | 4.8 | 4.8 (100%) | 267; 359 | |||
| Basidiomycete strain: Laetiporus sulphureus 4 | ||||||
| Peak | RT, min | UV absorbance: RT min, % | Fluorescence: RT min, mAU em. 230 nm exc. 460 nm | MS data, EIC: m/z (intensity at RT, %) | ||
| 280 nm | 210 nm | MS (+) | MS (−) | |||
| 1 | 4.2 | 4.2 (100%) | 245 | 269 | ||
| 2 | 4.8 | 4.8 (100%) | ||||
| 3 | 6 | 5.1 | 5.1 (65%) | |||
| 4 | 7 | 5.5 | 5.5 (37%) | 255 | ||
| 5 | 10.5 | 10.5 (100%) | 280 | |||
| Basidiomycete strain: Hericium coralloides 4 | ||||||
| Peak | RT, min | UV absorbance: RT min, % | Fluorescence: RT min, mAU em. 230 nm exc. 460 nm | MS data, EIC: m/z (intensity at RT, %) | ||
| 280 nm | 210 nm | MS (+) | MS (−) | |||
| 1 | 1.7 | 1.7 (100%) | 225 | |||
| 2 | 4.6 | 4.6 (82%) | ||||
| 3 | 8.0 | 8.0 (74%) | 564 | |||
| 4 | 9.5 | 9.5 (83%) | 256; 511 | 540 | ||
| 5 | 10.5 | 10.5 (100%) | 282; 565 | |||
| Basidiomycete strain: Hericium erinaceus 1 | ||||||
| Peak | RT, min | UV absorbance: RT min, % | Fluorescence: RT min, mAU em. 230 nm exc. 460 nm | MS data, EIC: m/z (intensity at RT, %) | ||
| 280 nm | 210 nm | MS (+) | MS (−) | |||
| 1 | 3.7 | 3.5(26%) | 246; 476 | 227; 455 | ||
| 2 | 4.5 | 4.5 (24%) | 378; 420 | 376; 418 | ||
| 3 | 4.8 | 4.8(16%) | ||||
| 4 | 5.7 | 5.7 (100%) | 293; 587 | |||
| 5 | 11.1 | 11.1 (66%) | 11.3(100%) | 280; 296 | 358 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysakova, V.; Streletskiy, A.; Sineva, O.; Isakova, E.; Krasnopolskaya, L. Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites. Int. J. Mol. Sci. 2025, 26, 9802. https://doi.org/10.3390/ijms26199802
Lysakova V, Streletskiy A, Sineva O, Isakova E, Krasnopolskaya L. Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites. International Journal of Molecular Sciences. 2025; 26(19):9802. https://doi.org/10.3390/ijms26199802
Chicago/Turabian StyleLysakova, Valeria, Aleksey Streletskiy, Olga Sineva, Elena Isakova, and Larissa Krasnopolskaya. 2025. "Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites" International Journal of Molecular Sciences 26, no. 19: 9802. https://doi.org/10.3390/ijms26199802
APA StyleLysakova, V., Streletskiy, A., Sineva, O., Isakova, E., & Krasnopolskaya, L. (2025). Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites. International Journal of Molecular Sciences, 26(19), 9802. https://doi.org/10.3390/ijms26199802

