Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight
Abstract
1. Introduction
- -
- Large-Artery Atherosclerosis (LAAS) is a subtype that includes strokes due to atherothrombotic occlusion or stenosis of large extracranial or intracranial arteries, most commonly the internal carotid, vertebral, or middle cerebral arteries; the underlying pathophysiology involves plaque rupture, in situ thrombosis, or artery-to-artery embolism originating from an atherosclerotic lesion; diagnostic criteria require ≥ 50% stenosis of the involved cerebral artery, as evidenced by vascular imaging, with a compatible “infarct pattern” on neuroimaging. The lesions frequently exceed 1.5 centimetres in diameter; this subtype is associated with high recurrence risk and is closely linked to modifiable vascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus and smoking.
- -
- Cardioembolic infarct (CEI) is a lesion caused by embolic occlusion of cerebral vessels arising from a cardiac source, often associated with high-risk cardioembolic conditions. These include atrial fibrillation, recent myocardial infarction, left ventricular thrombus, prosthetic heart valves, rheumatic mitral stenosis, infective endocarditis, cardiac tumours (such as atrial myxomas), and patent foramen ovale (PFO) in patients with deep venous thrombosis (DVT) (paradoxical embolism). The embolus typically results in a sudden onset of neurological deficit, accompanied by a large cortical infarct on neuroimaging, often without preceding transient ischemic symptoms. These infarcts are typically cortical, multifocal, or bilateral, and may involve multiple vascular territories, reflecting the embolic nature of the damage. Hemorrhagic transformation is more common in CEI than in other ischemic subtypes, which is attributable to both the size of the infarction and reperfusion injury following embolus migration or fragmentation. Cardioembolic stroke is associated with higher early mortality and recurrence rates. Diagnosis is contingent upon the identification of a plausible cardiac embolic source and the exclusion of significant large-artery disease or small-vessel pathology.
- -
- Small-Vessel Occlusion (SVO), or Lacunar Stroke, refers to infarctions resulting from occlusion of a small penetrating artery that supplies deep brain structures such as the basal ganglia, thalamus, internal capsule, or brain stem pons. The underlying mechanism is usually lipohyalinosis or microatheroma formation in the context of chronic hypertension or diabetes. Clinically, lacunar strokes are associated with classic lacunar syndromes (e.g., pure motor hemiparesis, pure sensory stroke) and typically present with small (<1.5 cm), deep infarcts on neuroimaging. There is no evidence of large-artery stenosis or a cardioembolic source.
- -
- Stroke of Other Determined Etiology (ODE) includes less common causes of ischemic stroke with clear and well-documented pathophysiological mechanisms, such as non-atherosclerotic vasculopathies (e.g., arterial dissection, vasculitis), hematological disorders (e.g., antiphospholipid antibody syndrome, sickle cell disease), and certain genetic or metabolic conditions. The identification of a rare but definitive cause necessitates a comprehensive diagnostic workup beyond routine stroke evaluation.
- -
- Stroke of Undetermined Etiology (UDE) is the category used when a definitive cause cannot be discovered, either due to an absence of comprehensive diagnostic investigations or because there are multiple potential causative factors. It is also pertinent to include cases where the stroke is confirmed by imaging, but the source remains unknown despite thorough diagnostic evaluation [3,4].
2. Molecular Mechanisms of Inflammation in Ischemic Stroke
3. Inflammatory Circulating and Tissue Markers
4. Inflammatory Markers in Relation to Stroke Subtype and Its Severity
5. Clinical Implications: Diagnosis, Prognosis and Treatment
6. New Insights and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.B.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Diseases and Injuries Collaborators Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [CrossRef]
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of Subtypes of Acute Ischemic Stroke. Definitions for Use in a Multicenter Clinical Trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Amarenco, P.; Bogousslavsky, J.; Caplan, L.R.; Donnan, G.A.; Wolf, M.E.; Hennerici, M.G. The ASCOD Phenotyping of Ischemic Stroke (Updated ASCO Phenotyping). Cerebrovasc. Dis. 2013, 36, 1–5. [Google Scholar] [CrossRef]
- Endres, M.; Moro, M.A.; Nolte, C.H.; Dames, C.; Buckwalter, M.S.; Meisel, A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ. Res. 2022, 130, 1167–1186. [Google Scholar] [CrossRef]
- Alsbrook, D.L.; Di Napoli, M.; Bhatia, K.; Biller, J.; Andalib, S.; Hinduja, A.; Rodrigues, R.; Rodriguez, M.; Sabbagh, S.Y.; Selim, M.; et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr. Neurol. Neurosci. Rep. 2023, 23, 407–431. [Google Scholar] [CrossRef]
- Kumari, S.; Dhapola, R.; Sharma, P.; Nagar, P.; Medhi, B.; HariKrishnaReddy, D. The Impact of Cytokines in Neuroinflammation-Mediated Stroke. Cytokine Growth Factor Rev. 2024, 78, 105–119. [Google Scholar] [CrossRef]
- Lannes, N.; Eppler, E.; Etemad, S.; Yotovski, P.; Filgueira, L. Microglia at Center Stage: A Comprehensive Review about the Versatile and Unique Residential Macrophages of the Central Nervous System. Oncotarget 2017, 8, 114393–114413. [Google Scholar] [CrossRef]
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and Non-Immune Functions. Immunity 2021, 54, 2194–2208. [Google Scholar] [CrossRef]
- Andoh, M.; Koyama, R. Assessing Microglial Dynamics by Live Imaging. Front. Immunol. 2021, 12, 617564. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization from M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, Y.; Zhang, X.; Gu, X.; Mao, Y.; Peng, B. The Origin and Repopulation of Microglia. Dev. Neurobiol. 2022, 82, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Bao, T.; Yang, K.; Zhu, X.; Wang, S.; Xiang, W.; Ge, A.; Zeng, L.; Ge, J. The Mechanism of Microglia-Mediated Immune Inflammation in Ischemic Stroke and the Role of Natural Botanical Components in Regulating Microglia: A Review. Front. Immunol. 2022, 13, 1047550. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, J.; Wang, Y.; Yang, G.-Y. The Biphasic Function of Microglia in Ischemic Stroke. Prog. Neurobiol. 2017, 157, 247–272. [Google Scholar] [CrossRef]
- Al Mamun, A.; Chauhan, A.; Qi, S.; Ngwa, C.; Xu, Y.; Sharmeen, R.; Hazen, A.L.; Li, J.; Aronowski, J.A.; McCullough, L.D.; et al. Microglial IRF5-IRF4 Regulatory Axis Regulates Neuroinflammation after Cerebral Ischemia and Impacts Stroke Outcomes. Proc. Natl. Acad. Sci. USA 2020, 117, 1742–1752. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chen, H.-D.; Ai, Q.; Yang, Y.-T.; Zhang, Z.; Chu, S.-F.; Chen, N.-H. Characteristics and Pathogenesis of Chemokines in the Post-Stroke Stage. Int. Immunopharmacol. 2023, 116, 109781. [Google Scholar] [CrossRef]
- He, Q.; Shi, X.; Zhou, B.; Teng, J.; Zhang, C.; Liu, S.; Lian, J.; Luo, B.; Zhao, G.; Lu, H.; et al. Interleukin 8 (CXCL8)-CXC Chemokine Receptor 2 (CXCR2) Axis Contributes to MiR-4437-Associated Recruitment of Granulocytes and Natural Killer Cells in Ischemic Stroke. Mol. Immunol. 2018, 101, 440–449. [Google Scholar] [CrossRef]
- Klimiec-Moskal, E.; Koceniak, P.; Weglarczyk, K.; Slowik, A.; Siedlar, M.; Dziedzic, T. Circulating Chemokines and Short- and Long-Term Outcomes After Ischemic Stroke. Mol. Neurobiol. 2025, 62, 421–428. [Google Scholar] [CrossRef]
- Lv, H.; Li, J.; Che, Y.-Q. CXCL8 Gene Silencing Promotes Neuroglial Cells Activation While Inhibiting Neuroinflammation through the PI3K/Akt/NF-κB-Signaling Pathway in Mice with Ischemic Stroke. J. Cell. Physiol. 2019, 234, 7341–7355. [Google Scholar] [CrossRef]
- Geng, H.; Chen, L.; Tang, J.; Chen, Y.; Wang, L. The Role of CCL2/CCR2 Axis in Cerebral Ischemia-Reperfusion Injury and Treatment: From Animal Experiments to Clinical Trials. Int. J. Mol. Sci. 2022, 23, 3485. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, O.B.; Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Absence of the Chemokine Receptor CCR2 Protects against Cerebral Ischemia/Reperfusion Injury in Mice. Stroke 2007, 38, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Upregulated C-C Motif Chemokine Ligand 2 Promotes Ischemic Stroke via Chemokine Signaling Pathway—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32422289/ (accessed on 16 August 2025).
- Andres, R.H.; Choi, R.; Pendharkar, A.V.; Gaeta, X.; Wang, N.; Nathan, J.K.; Chua, J.Y.; Lee, S.W.; Palmer, T.D.; Steinberg, G.K.; et al. The CCR2/CCL2 Interaction Mediates the Transendothelial Recruitment of Intravascularly Delivered Neural Stem Cells to the Ischemic Brain. Stroke 2011, 42, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, X.; Liu, K.J.; Liu, W. Matrix Metalloproteinase-2-Mediated Occludin Degradation and Caveolin-1-Mediated Claudin-5 Redistribution Contribute to Blood-Brain Barrier Damage in Early Ischemic Stroke Stage. J. Neurosci. 2012, 32, 3044–3057. [Google Scholar] [CrossRef]
- Yang, Y.; Rosenberg, G.A. Blood-Brain Barrier Breakdown in Acute and Chronic Cerebrovascular Disease. Stroke 2011, 42, 3323–3328. [Google Scholar] [CrossRef]
- Zheng, X.; Ren, B.; Gao, Y. Tight Junction Proteins Related to Blood-Brain Barrier and Their Regulatory Signaling Pathways in Ischemic Stroke. Biomed. Pharmacother. 2023, 165, 115272. [Google Scholar] [CrossRef]
- Guo, X.; Liu, R.; Jia, M.; Wang, Q.; Wu, J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem. Res. 2023, 48, 2320–2334. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Wang, S.; Sun, Y.; Du, Y.; Zhang, S.; Yao, J.; Wu, J.; Xie, D. Single-Cell RNA Sequencing Reveals S100A8/A9hi Neutrophils-Induced Endothelial Cell Death and Lymphocyte Infiltration after Ischemic Stroke. Biochem. Biophys. Res. Commun. 2024, 741, 151023. [Google Scholar] [CrossRef]
- Lehmann, J.; Härtig, W.; Seidel, A.; Füldner, C.; Hobohm, C.; Grosche, J.; Krueger, M.; Michalski, D. Inflammatory Cell Recruitment after Experimental Thromboembolic Stroke in Rats. Neuroscience 2014, 279, 139–154. [Google Scholar] [CrossRef]
- Arias, E.; Nadkarni, N.; Fang, R.; Haynes, M.; Batra, A.; Muller, W.; Sullivan, D. Inhibition of PECAM-1 Significantly Delays Leukocyte Extravasation into the Subcortex Post-Stroke. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Otxoa-de-Amezaga, A.; Gallizioli, M.; Pedragosa, J.; Justicia, C.; Miró-Mur, F.; Salas-Perdomo, A.; Díaz-Marugan, L.; Gunzer, M.; Planas, A.M. Location of Neutrophils in Different Compartments of the Damaged Mouse Brain After Severe Ischemia/Reperfusion. Stroke 2019, 50, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bonilla, L.; Shahanoor, Z.; Sciortino, R.; Nazarzoda, O.; Racchumi, G.; Iadecola, C.; Anrather, J. Analysis of Brain and Blood Single-Cell Transcriptomics in Acute and Subacute Phases after Experimental Stroke. Nat. Immunol. 2024, 25, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Miró-Mur, F.; Pérez-de-Puig, I.; Ferrer-Ferrer, M.; Urra, X.; Justicia, C.; Chamorro, A.; Planas, A.M. Immature Monocytes Recruited to the Ischemic Mouse Brain Differentiate into Macrophages with Features of Alternative Activation. Brain Behav. Immun. 2016, 53, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Liu, H.; Gao, Y. The Role of Peripheral Monocytes and Macrophages in Ischemic Stroke. Neurol. Sci. 2020, 41, 3589–3607. [Google Scholar] [CrossRef]
- Brain-Associated Innate Leukocytes Display Diverse Inflammatory States Following Experimental Stroke—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35706327/ (accessed on 16 August 2025).
- Neutrophil Heterogeneity and Its Roles in the Inflammatory Network After Ischemic Stroke—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35794770/ (accessed on 16 August 2025).
- Shi, F.-D.; Yong, V.W. Neuroinflammation across neurological diseases. Science 2025, 388, eadx0043. [Google Scholar] [CrossRef]
- Thorsdottir, S.; Henriques-Normark, B.; Iovino, F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front. Microbiol. 2019, 10, 576. [Google Scholar] [CrossRef]
- Matsuo, R.; Ago, T.; Hata, J.; Wakisaka, Y.; Kuroda, J.; Kuwashiro, T.; Kitazono, T.; Kamouchi, M. Fukuoka Stroke Registry Investigators Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study. PLoS ONE 2016, 11, e0156790. [Google Scholar] [CrossRef]
- Den Hertog, H.M.; van Rossum, J.A.; van der Worp, H.B.; van Gemert, H.M.A.; de Jonge, R.; Koudstaal, P.J.; Dippel, D.W.J. PAIS investigators C-Reactive Protein in the Very Early Phase of Acute Ischemic Stroke: Association with Poor Outcome and Death. J. Neurol. 2009, 256, 2003–2008. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Yang, C.; Wang, Y.; Hou, B. The Role of High-Sensitivity C-Reactive Protein Serum Levels in the Prognosis for Patients with Stroke: A Meta-Analysis. Front. Neurol. 2023, 14, 1199814. [Google Scholar] [CrossRef]
- Finck, T.; Sperl, P.; Hernandez-Petzsche, M.; Boeckh-Behrens, T.; Maegerlein, C.; Wunderlich, S.; Zimmer, C.; Kirschke, J.; Berndt, M. Inflammation in Stroke: Initial CRP Levels Can Predict Poor Outcomes in Endovascularly Treated Stroke Patients. Front. Neurol. 2023, 14, 1167549. [Google Scholar] [CrossRef]
- Singh, V.; Roth, S.; Veltkamp, R.; Liesz, A. HMGB1 as a Key Mediator of Immune Mechanisms in Ischemic Stroke. Antioxid. Redox Signal. 2016, 24, 635–651. [Google Scholar] [CrossRef]
- Kim, S.Y.; Son, M.; Lee, S.E.; Park, I.H.; Kwak, M.S.; Han, M.; Lee, H.S.; Kim, E.S.; Kim, J.-Y.; Lee, J.E.; et al. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front. Immunol. 2018, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Li, J.; Zhao, H.; Ma, Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl. Stroke Res. 2025, 16, 990–1015. [Google Scholar] [CrossRef] [PubMed]
- Du, O.; Yan, Y.-L.; Yang, H.-Y.; Yang, Y.-X.; Wu, A.-G.; Guo, Y.-K.; Li, K.; Qiao, G.; Du, J.-R.; Long, F.-Y. ALPK1 Signaling Pathway Activation by HMGB1 Drives Microglial Pyroptosis and Ferroptosis and Brain Injury after Acute Ischemic Stroke. Int. Immunopharmacol. 2025, 149, 114229. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Jin, X.; Kim, H.; Koh, S.; Cho, H.J.; Kim, B.G. High Mobility Group Box 1 as an Autocrine Chemoattractant for Oligodendrocyte Lineage Cells in White Matter Stroke. Stroke 2023, 54, 575–586. [Google Scholar] [CrossRef]
- Morimoto, M.; Nakano, T.; Egashira, S.; Irie, K.; Matsuyama, K.; Wada, M.; Nakamura, Y.; Shigemori, Y.; Ishikura, H.; Yamashita, Y.; et al. Haptoglobin Regulates Macrophage/Microglia-Induced Inflammation and Prevents Ischemic Brain Damage Via Binding to HMGB1. J. Am. Heart Assoc. 2022, 11, e024424. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, G.; Yang, B.; Zhang, B.; Zhang, L.; Ni, Y.; Liu, C.; Luo, Y. Neopterin as a Predictor of Functional Outcome and Mortality in Chinese Patients with Acute Ischemic Stroke. Mol. Neurobiol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef]
- Meng, L.-L.; Cao, L. Serum Neopterin Levels and Their Role in the Prognosis of Patients with Ischemic Stroke: A Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2021, 92, 55–60. [Google Scholar] [CrossRef]
- Chen, S.; Pan, J.; Gong, Z.; Wu, M.; Zhang, X.; Chen, H.; Yang, D.; Qi, S.; Peng, Y.; Shen, J. Hypochlorous Acid Derived from Microglial Myeloperoxidase Could Mediate High-Mobility Group Box 1 Release from Neurons to Amplify Brain Damage in Cerebral Ischemia-Reperfusion Injury. J. Neuroinflammation 2024, 21, 70. [Google Scholar] [CrossRef]
- Li, P.; Niu, C.; Du, X.; Zhao, M.; Wang, H.; Yang, D.; Li, Y.; Jing, W. Myeloperoxidase to High-Density Lipoprotein Ratio: Potential Predictor of Severity and Outcome in Patients with Acute Ischemic Stroke. Brain Res. 2024, 1833, 148883. [Google Scholar] [CrossRef]
- Maestrini, I.; Tagzirt, M.; Gautier, S.; Dupont, A.; Mendyk, A.-M.; Susen, S.; Tailleux, A.; Vallez, E.; Staels, B.; Cordonnier, C.; et al. Analysis of the Association of MPO and MMP-9 with Stroke Severity and Outcome: Cohort Study. Neurology 2020, 95, e97–e108. [Google Scholar] [CrossRef]
- Orion, D.; von Landenberg, P.; Itsekson-Hayosh, Z.; Schwammenthal, Y.; Tsabari, R.; Merzeliak, O.; Chapman, J.; Tanne, D. Plasma Myeloperoxidase Levels in Acute Brain Ischaemia and High Grade Carotid Stenosis. Eur. J. Neurol. 2020, 27, 1604–1611. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y.; Xu, Q.; Wang, R.; Sun, L.; Guo, D.; Shi, M.; Yang, P.; Wang, Y.; Liu, F.; et al. Association between Myeloperoxidase and the Risks of Ischemic Stroke, Heart Failure, and Atrial Fibrillation: A Mendelian Randomization Study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 210–218. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Xu, H.; Shen, Y.; Liu, B.; Ma, Y.; Jiang, C.; Wang, S.; Li, Q.; Lu, Y.; et al. Novel Hypochlorous Acid-Activated Near-Infrared Probe Monitors the Dynamic Changes of Myeloperoxidase Activity in Ischemic Brain. J. Med. Chem. 2025, 68, 5382–5399. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Wei, Y.; Wojtkiewicz, G.R.; Lee, J.Y.; Moskowitz, M.A.; Chen, J.W. Reducing Myeloperoxidase Activity Decreases Inflammation and Increases Cellular Protection in Ischemic Stroke. J. Cereb. Blood Flow. Metab. 2019, 39, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Eyileten, C.; Jakubik, D.; Shahzadi, A.; Gasecka, A.; van der Pol, E.; De Rosa, S.; Siwik, D.; Gajewska, M.; Mirowska-Guzel, D.; Kurkowska-Jastrzebska, I.; et al. Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 4530. [Google Scholar] [CrossRef] [PubMed]
- Aldous, E.K.; Toor, S.M.; Parray, A.; Al-Sarraj, Y.; Diboun, I.; Abdelalim, E.M.; Arredouani, A.; El-Agnaf, O.; Thornalley, P.J.; Akhtar, N.; et al. Identification of Novel Circulating miRNAs in Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 3387. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Y.; Sit, B.H.M.; Jian, R.X.; Malki, Y.; Zhang, Y.; Ong, C.C.Y.; Li, Q.; Lam, R.P.K.; Rainer, T.H. Cell-Free Nucleic Acids for Early Diagnosis of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 1530. [Google Scholar] [CrossRef]
- Angerfors, A.; Brännmark, C.; Lagging, C.; Tai, K.; Månsby Svedberg, R.; Andersson, B.; Jern, C.; Stanne, T.M. Proteomic Profiling Identifies Novel Inflammation-Related Plasma Proteins Associated with Ischemic Stroke Outcome. J. Neuroinflammation 2023, 20, 224. [Google Scholar] [CrossRef]
- Huang, X.; Wan, M.; Yang, Q.; Ding, X.; Zhou, Z. The Stromal Cell-Derived Factor-1 α (SDF-1α)/Cysteine-X-Cysteine Chemokine Receptor 4 (CXCR4) Axis: A Possible Prognostic Indicator of Acute Ischemic Stroke. J. Int. Med. Res. 2019, 47, 1897–1907. [Google Scholar] [CrossRef]
- Oblitas, C.-M.; Sampedro-Viana, A.; Fernández-Rodicio, S.; Rodríguez-Yáñez, M.; López-Dequidt, I.; Gonzalez-Quintela, A.; Mosqueira, A.J.; Porto-Álvarez, J.; Martínez Fernández, J.; González-Simón, I.; et al. Molecular and Neuroimaging Profile Associated with the Recurrence of Different Types of Strokes: Contribution from Real-World Data. J. Clin. Med. 2025, 14, 1460. [Google Scholar] [CrossRef] [PubMed]
- Srisujikul, P.; Thiankhaw, K.; Tanprawate, S.; Soontornpun, A.; Wantaneeyawong, C.; Teekaput, C.; Sirimaharaj, N.; Nudsasarn, A. Serum NT-proBNP Level for Predicting Functional Outcomes after Acute Ischemic Stroke. Sci. Rep. 2023, 13, 13903. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Mei, P.; Tung, T.-H.; Wu, G.; Wang, F.; Wang, E.; Ni, H.; Zhu, X.; He, Z.; et al. High Interleukin-6 Levels Are Associated with Large-Artery Atherosclerotic Stroke. Neurologist 2023, 28, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Kamtchum-Tatuene, J.; Saba, L.; Heldner, M.R.; Poorthuis, M.H.F.; de Borst, G.J.; Rundek, T.; Kakkos, S.K.; Chaturvedi, S.; Topakian, R.; Polak, J.F.; et al. Interleukin-6 Predicts Carotid Plaque Severity, Vulnerability, and Progression. Circ. Res. 2022, 131, e22–e33. [Google Scholar] [CrossRef]
- McCabe, J.J.; Walsh, C.; Gorey, S.; Harris, K.; Hervella, P.; Iglesias-Rey, R.; Jern, C.; Li, L.; Miyamoto, N.; Montaner, J.; et al. C-Reactive Protein, Interleukin-6, and Vascular Recurrence According to Stroke Subtype: An Individual Participant Data Meta-Analysis. Neurology 2024, 102, e208016. [Google Scholar] [CrossRef]
- Jia, W.-L.; Jiang, Y.-Y.; Jiang, Y.; Meng, X.; Li, H.; Zhao, X.-Q.; Wang, Y.-L.; Wang, Y.-J.; Gu, H.-Q.; Li, Z.-X. Associations between Admission Levels of Multiple Biomarkers and Subsequent Worse Outcomes in Acute Ischemic Stroke Patients. J. Cereb. Blood Flow Metab. 2024, 44, 742–756. [Google Scholar] [CrossRef]
- Meisinger, C.; Freuer, D.; Schmitz, T.; Ertl, M.; Zickler, P.; Naumann, M.; Linseisen, J. Inflammation Biomarkers in Acute Ischemic Stroke According to Different Etiologies. Eur. J. Neurol. 2024, 31, e16006. [Google Scholar] [CrossRef]
- Guo, W.; Xu, M.; Song, X.; Cheng, Y.; Deng, Y.; Liu, M. Association of Serum Macrophage Migration Inhibitory Factor with 3-Month Poor Outcome and Malignant Cerebral Edema in Patients with Large Hemispheric Infarction. Neurocrit. Care 2024, 41, 558–567. [Google Scholar] [CrossRef]
- Pacinella, G.; Ciaccio, A.M.; Casuccio, A.; Daidone, M.; Pecoraro, R.; Di Bona, D.; Del Cuore, A.; Puleo, M.G.; Di Raimondo, D.; Di Chiara, T.; et al. Genetic Polymorphisms and Cytokine Levels in Ischemic Stroke: Associations with Subtypes and Prognosis. Expert Rev. Clin. Immunol. 2025, 21, 961–976. [Google Scholar] [CrossRef]
- Bustamante, A.; Sobrino, T.; Giralt, D.; García-Berrocoso, T.; Llombart, V.; Ugarriza, I.; Espadaler, M.; Rodríguez, N.; Sudlow, C.; Castellanos, M.; et al. Prognostic Value of Blood Interleukin-6 in the Prediction of Functional Outcome after Stroke: A Systematic Review and Meta-Analysis. J. Neuroimmunol. 2014, 274, 215–224. [Google Scholar] [CrossRef]
- Licata, G.; Tuttolomondo, A.; Di Raimondo, D.; Corrao, S.; Di Sciacca, R.; Pinto, A. Immuno-Inflammatory Activation in Acute Cardio-Embolic Strokes in Comparison with Other Subtypes of Ischaemic Stroke. Thromb. Haemost. 2009, 101, 929–937. [Google Scholar] [PubMed]
- Markus, A.; Valerie, S.; Mira, K. Promising Biomarker Candidates for Cardioembolic Stroke Etiology. A Brief Narrative Review and Current Opinion. Front. Neurol. 2021, 12, 624930. [Google Scholar] [CrossRef] [PubMed]
- Ciconte, G.; Conti, M.; Evangelista, M.; Pappone, C. Atrial Fibrillation in Autoimmune Rheumatic Diseases: From Pathogenesis to Treatment. Rev. Recent Clin. Trials 2018, 13, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Kim, D.J.; Kang, D.-W.; Yang, W.; Jeong, H.-Y.; Kim, J.-M.; Ko, S.-B.; Lee, S.-H.; Yoon, B.-W.; Cho, J.-Y.; et al. Targeted Metabolomic Biomarkers for Stroke Subtyping. Transl. Stroke Res. 2024, 15, 422–432. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Yu, F.; Feng, X.; Luo, Y.; Liu, Z.; Zhao, T.; Xia, J. The Untargeted Metabolomics Reveals Differences in Energy Metabolism in Patients with Different Subtypes of Ischemic Stroke. Mol. Neurobiol. 2024, 61, 5308–5319. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-T.; Lee, J.S.; Kim, B.J.; Kang, J.; Lee, K.-J.; Park, J.-M.; Kang, K.; Lee, S.J.; Kim, J.G.; et al. Stroke of Other Determined Etiology: Results from the Nationwide Multicenter Stroke Registry. Stroke 2022, 53, 2597–2606. [Google Scholar] [CrossRef]
- Fu, X.; Shi, X.; Yin, R.; Xing, C.; Ma, A. The Association between Variation of Neutrophil-to-Lymphocyte Ratio and Post-Thrombolysis Early Neurological Outcomes in Patients with Stroke of Different TOAST Classification. Sci. Rep. 2025, 15, 6517. [Google Scholar] [CrossRef]
- Li, Y.; Chen, K.; Wang, L.; Zhao, L.; Lei, C.; Gu, Y.; Zhu, X.; Deng, Q. Values of Lymphocyte-Related Ratios in Predicting the Clinical Outcome of Acute Ischemic Stroke Patients Receiving Intravenous Thrombolysis Based on Different Etiologies. Front. Neurol. 2025, 16, 1542889. [Google Scholar] [CrossRef]
- Hou, D.; Wang, C.; Luo, Y.; Ye, X.; Han, X.; Feng, Y.; Zhong, P.; Wu, D. Systemic Immune-Inflammation Index (SII) but Not Platelet-Albumin-Bilirubin (PALBI) Grade Is Associated with Severity of Acute Ischemic Stroke (AIS). Int. J. Neurosci. 2021, 131, 1203–1208. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Q.; Zhou, Z.; Yang, X.; Zheng, D.; He, Z.; Liu, Y.; Xu, T.; Yin, Y.; Wei, W.; et al. Systemic Immune-Inflammation Index Is Associated with Clinical Outcome of Acute Ischemic Stroke Patients after Intravenous Thrombolysis Treatment. PLoS ONE 2025, 20, e0319920. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Yin, X.-S.; Li, Z.-P. Association of the Systemic Immune-Inflammation Index (SII) and Clinical Outcomes in Patients with Stroke: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 1090305. [Google Scholar] [CrossRef]
- Barba, L.; Vollmuth, C.; Abu-Rumeileh, S.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Kollikowski, A.M.; Schultz, C.; Wolf, J.; Pham, M.; et al. Serum β-Synuclein, Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Prognostic Biomarkers in Moderate-to-Severe Acute Ischemic Stroke. Sci. Rep. 2023, 13, 20941. [Google Scholar] [CrossRef] [PubMed]
- Jauch, E.C.; Lindsell, C.; Broderick, J.; Fagan, S.C.; Tilley, B.C.; Levine, S.R. NINDS rt-PA Stroke Study Group Association of Serial Biochemical Markers with Acute Ischemic Stroke: The National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study. Stroke 2006, 37, 2508–2513. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Zhu, Z.; Wang, A.; Xu, T.; Bu, X.; Peng, H.; Yang, J.; Han, L.; Chen, J.; Xu, T.; et al. Multiple Biomarkers Covering Distinct Pathways for Predicting Outcomes after Ischemic Stroke. Neurology 2019, 92, e295–e304. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, C.; Hatsukami, T.; Zhao, X.; Gao, P.; Sui, B.; Zhao, X. Incremental Value of Serum Inflammatory Biomarkers to Carotid Atherosclerotic Plaque Burden for Prediction of Ipsilateral Ischemic Stroke Recurrence. Acta Radiol. 2025, 66, 2841851251340607. [Google Scholar] [CrossRef]
- Soldozy, S.; Yağmurlu, K.; Norat, P.; Elsarrag, M.; Costello, J.; Farzad, F.; Sokolowski, J.D.; Sharifi, K.A.; Elarjani, T.; Burks, J.; et al. Biomarkers Predictive of Long-Term Outcome After Ischemic Stroke: A Meta-Analysis. World Neurosurg. 2022, 163, e1–e42. [Google Scholar] [CrossRef]
- Xu, J.; Mo, J.; Zhang, X.; Chen, Z.; Pan, Y.; Yan, H.; Meng, X.; Wang, Y. Nontraditional Risk Factors for Residual Recurrence Risk in Patients with Ischemic Stroke of Different Etiologies. Cerebrovasc. Dis. 2022, 51, 630–638. [Google Scholar] [CrossRef]
- Yu, J.-W.; Zhao, D.-L.; Li, R.-Y.; Wu, Y.; Chen, X.-H.; Ge, H.; Li, C.; Ju, S. Association of Culprit Plaque Enhancement Ratio, Hypoperfusion and HbA1c with Recurrent Ischemic Stroke in Patients with Atherosclerotic Stenosis of the Middle Cerebral Artery. Eur. J. Radiol. 2023, 168, 111107. [Google Scholar] [CrossRef]
- Quan, G.; Wang, X.; Liu, Y.; Gao, L.; Gao, G.; Tan, G.; Yuan, T. Refined Imaging Features of Culprit Plaques Improve the Prediction of Recurrence in Intracranial Atherosclerotic Stroke within the Middle Cerebral Artery Territory. Neuroimage Clin. 2023, 39, 103487. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, B.; Miao, X.; Zhang, S.; Li, J.; Liu, Q.; Zeng, M.; Lin, J.; Lu, J.; Wang, H. High-Risk Characteristics of Recurrent Ischemic Stroke after Intensive Medical Management for 6-Month Follow-up: A Histogram Study on Vessel Wall MRI. Eur. Radiol. 2025, 35, 1313–1324. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, C.; Wang, J.; Ye, Y.; Li, Y.; Xu, Q.; Kang, X.; Gu, L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol. Neurobiol. 2023, 60, 5117–5136. [Google Scholar] [CrossRef]
- Pawluk, H.; Kołodziejska, R.; Grześk, G.; Kozakiewicz, M.; Woźniak, A.; Pawluk, M.; Kosinska, A.; Grześk, M.; Wojtasik, J.; Kozera, G. Selected Mediators of Inflammation in Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 10614. [Google Scholar] [CrossRef]
- Naik, A.; Adeleye, O.; Koester, S.W.; Winkler, E.A.; Hartke, J.N.; Karahalios, K.; Mihaljevic, S.; Rani, A.; Raikwar, S.; Rulney, J.D.; et al. Cerebrospinal Fluid Biomarkers for Diagnosis and the Prognostication of Acute Ischemic Stroke: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 10902. [Google Scholar] [CrossRef]
- Lambertsen, K.L.; Finsen, B.; Clausen, B.H. Post-Stroke Inflammation-Target or Tool for Therapy? Acta Neuropathol. 2019, 137, 693–714. [Google Scholar] [CrossRef]
- Liberale, L.; Ministrini, S.; Carbone, F.; Camici, G.G.; Montecucco, F. Cytokines as Therapeutic Targets for Cardio- and Cerebrovascular Diseases. Basic Res. Cardiol. 2021, 116, 23. [Google Scholar] [CrossRef]
- Zohdy, Y.M.; Garzon-Muvdi, T.; Grossberg, J.A.; Barrow, D.L.; Howard, B.M.; Pradilla, G.; Kobeissy, F.H.; Tomlinson, S.; Alawieh, A.M. Complement Inhibition Targets a Rich-Club within the Neuroinflammatory Network after Stroke to Improve Radiographic and Functional Outcomes. J. Neuroinflammation 2025, 22, 1. [Google Scholar] [CrossRef]
- MARVEL Trial Authors for the MARVEL Investigators; Yang, Q.; Guo, C.; Yue, C.; Song, J.; Yang, J.; Peng, Z.; Yu, N.; Huang, J.; Li, L.; et al. Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke: The MARVEL Randomized Clinical Trial. JAMA 2024, 331, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Boltze, J.; Perez-Pinzon, M.A. Focused Update on Stroke Neuroimmunology: Current Progress in Preclinical and Clinical Research and Recent Mechanistic Insight. Stroke 2022, 53, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Pacinella, G.; Ciaccio, A.M.; Tuttolomondo, A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int. J. Mol. Sci. 2022, 23, 15722. [Google Scholar] [CrossRef]
- Khassafi, N.; Tameh, A.A.; Mirzaei, H.; Rafat, A.; Barati, S.; Khassafi, N.; Vahidinia, Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp. Neurol. 2024, 373, 114655. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Weng, W.T.; Scofield, B.A.; Paraiso, H.C.; Yu, I.I.; Yen, J.J. Ischemia-induced endogenous Nrf2/HO-1 axis activation modulates microglial polarization and restrains ischemic brain injury. Front. Immunol. 2024, 15, 1440592. [Google Scholar] [CrossRef]
- Fan, W.; Chen, H.; Li, M.; Fan, X.; Jiang, F.; Xu, C.; Wang, Y.; Wei, W.; Song, J.; Zhong, D.; et al. NRF2 activation ameliorates blood-brain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation. Sci. Rep. 2024, 14, 5300. [Google Scholar] [CrossRef] [PubMed]
- Sadrkhanloo, M.; Entezari, M.; Orouei, S.; Zabolian, A.; Mirzaie, A.; Maghsoudloo, A.; Raesi, R.; Asadi, N.; Hashemi, M.; Zarrabi, A.; et al. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci. 2022, 300, 120561. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, X.; Bi, Y.; Liu, Q.; Qiu, L.; Zhao, H.; Wang, C.; Zhu, W.; Zeng, T. Nrf2 alleviates acute ischemic stroke induced ferroptosis via regulating xCT/GPX4 pathway. Free Radic. Biol. Med. 2025, 231, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Nuszkiewicz, J.; Kukulska-Pawluczuk, B.; Piec, K.; Jarek, D.J.; Motolko, K.; Szewczyk-Golec, K.; Woźniak, A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J. Clin. Med. 2024, 13, 4258. [Google Scholar] [CrossRef] [PubMed]
- Golenia, A.; Olejnik, P. The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota. Antioxidants 2025, 14, 542. [Google Scholar] [CrossRef]
- Xie, W.; Yan, X.; Yang, X.; Sun, H.; Zhang, W. The regulation of neuroinflammatory response after stroke by intestinal flora microorganisms. Front. Cell. Infect. Microbiol. 2025, 15, 1594834. [Google Scholar] [CrossRef]
Subtype | Pathophysiological Mechanism | Diagnostic Criteria | Etiology | Clinical/Imaging Features |
---|---|---|---|---|
Large-Artery Atherosclerosis (LAAS) | Artery-to-artery embolism or in situ thrombosis due to atherosclerosis | ≥50% stenosis or occlusion of a large extracranial/intracranial artery | Atherosclerosis of carotid, vertebral, or cerebral arteries | Cortical or subcortical infarcts, often wedge-shaped; history of vascular risk factors; recurrent transient ischemic attacks (TIAs) |
Cardioembolism (CEI) | Embolism from a cardiac source | High-risk cardiac source identified; absence of significant large-artery disease and lacunar pattern | Atrial fibrillation, recent MI, LV thrombus, valvular disease, cardiac tumours, PFO with DVT | Sudden onset; large cortical infarcts; hemorrhagic transformation common; multiple territory infarcts |
Small-Vessel Occlusion (SVO) | Lipohyalinosis or microatheroma of small penetrating arteries | Classic lacunar syndrome; infarct <1.5 cm in deep brain structures; exclusion of CEI and LAAS | Hypertensive arteriopathy, diabetes-related small vessel disease | Pure motor or sensory stroke; internal capsule, thalamus, basal ganglia infarcts; absence of cortical signs |
Stroke of Other Determined Etiology (ODE) | Uncommon or rare causes with known mechanisms | Specific cause identified through focused diagnostic testing | Dissection, vasculitis, prothrombotic conditions, genetic/metabolic disorders, infective endocarditis | Variable, depending on the aetiology; often seen in younger patients; requires an extensive diagnostic workup. |
Stroke of Undetermined Etiology (UDE) | Unknown or competing mechanisms | No identified cause after complete diagnostic workup; >1 potential cause | Paroxysmal AF not detected, silent atherosclerosis, unrecognized hypercoagulable state | Heterogeneous presentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacinella, G.; Bona, M.M.; Todaro, F.; Ciaccio, A.M.; Daidone, M.; Tuttolomondo, A. Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight. Int. J. Mol. Sci. 2025, 26, 9801. https://doi.org/10.3390/ijms26199801
Pacinella G, Bona MM, Todaro F, Ciaccio AM, Daidone M, Tuttolomondo A. Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight. International Journal of Molecular Sciences. 2025; 26(19):9801. https://doi.org/10.3390/ijms26199801
Chicago/Turabian StylePacinella, Gaetano, Mariarita Margherita Bona, Federica Todaro, Anna Maria Ciaccio, Mario Daidone, and Antonino Tuttolomondo. 2025. "Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight" International Journal of Molecular Sciences 26, no. 19: 9801. https://doi.org/10.3390/ijms26199801
APA StylePacinella, G., Bona, M. M., Todaro, F., Ciaccio, A. M., Daidone, M., & Tuttolomondo, A. (2025). Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight. International Journal of Molecular Sciences, 26(19), 9801. https://doi.org/10.3390/ijms26199801