Molecular Landscape of Prostate Cancer Across Age Groups: Impact on Prognosis and Treatment Outcomes
Abstract
1. Introduction
2. Clinical and Pathological Characteristics
2.1. Incidence and Epidemiology: A Rising Tide in Younger Men
2.2. Disease Presentation and Prognosis: The Clinical Paradox
2.3. Diagnostic Challenges and Long-Term Implications
2.4. The Extended Burden of Treatment
3. Molecular and Genetic Landscape
3.1. Divergent Evolutionary Trajectories: The Genomic Blueprint
3.2. Inherited Genetic Predisposition (Germline Mutations)
3.3. Acquired Somatic Alterations
3.4. The Epigenetic Clock and Transcriptional Reprogramming
4. A Comparative View on the Tumor Microenvironment and Cellular Plasticity
4.1. The Epithelial–Mesenchymal Transition (EMT)
4.2. The Tumor Microenvironment (TME)
4.3. The Notch Axis: A Central Integrator of Age-Dependent Phenotypes
5. Clinical Implications and Therapeutic Strategies
5.1. Risk Stratification and Clinical Management
5.2. Personalized Medicine and Targeted Therapy
6. Future Directions and Knowledge Gaps
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADT | Androgen deprivation therapy |
APOE | Apolipoprotein E |
AR | Androgen receptor |
AREAS | Areas of epigenetic susceptibility |
BCR | Biochemical recurrence |
BPH | Benign prostate hyperplasia |
CAFs | Cancer-associated fibroblasts |
CGA | Comprehensive geriatric assessment |
COPD | Chronic obstructive pulmonary disease |
DDR | DNA damage response |
ECM | Extracellular matrix |
EMT | Epithelial-to-mesenchymal transition |
EO-PC | Early-onset prostate cancer |
ER | Estrogen receptor |
GENIE | Genomics Evidence Neoplasia Information Exchange |
GSIs | Gamma secretase inhibitors |
HR | Homologous recombination |
ICIs | Immune checkpoint inhibitors |
LO-PC | Late-onset prostate cancer |
mCRPC | Metastatic castration-resistant prostate cancer |
MDSCs | Myeloid-derived suppressor cells |
PARPi | Poly (ADP-ribose) polymerase inhibitor |
PC | Prostate cancer |
PCSM | Prostate cancer-specific mortality |
PFS | Progression-free survival |
PRS | Polygenic risk score |
PSA | Prostate-specific antigen |
ROS | Reactive oxygen species |
SASP | Senescence-associated secretory phenotype |
SIR | Standardized incidence ratio |
TAMs | Tumor-associated macrophages |
TMB | Tumor mutational burden |
TME | Tumor microenvironment |
References
- Sharma, R. Global, regional, national burden of breast cancer in 185 countries: Evidence from GLOBOCAN 2018. Breast Cancer Res. Treat. 2021, 187, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, H. The global, regional, and national prostate cancer burden and trends from 1990 to 2021, results from the global burden of disease study 2021. Front. Public Health 2025, 13, 1553747. [Google Scholar] [CrossRef]
- Riveros, C.; Al-Toubat, M.; Chalfant, V.; Elshafei, A.; Feibus, A.; Forero, A.; Balaji, K.C. The impact of socioeconomic status on the survival of men with early-onset prostate cancer. Am. J. Clin. Exp. Urol. 2023, 11, 146–154. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, L.; Xin, J.; Ben, S.; Chen, S.; Li, H.; Zhao, L.; Wang, M.; Cheng, G.; Du, M. An early-onset specific polygenic risk score optimizes age-based risk estimate and stratification of prostate cancer: Population-based cohort study. J. Transl. Med. 2024, 22, 366. [Google Scholar] [CrossRef]
- Bleyer, A.; Spreafico, F.; Barr, R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2020, 126, 46–57. [Google Scholar] [CrossRef]
- Shih, H.; Fang, S.; An, L.; Shao, Y.J. Early-onset prostate cancer is associated with increased risks of disease progression and cancer-specific mortality. Prostate 2021, 81, 118–126. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Hall, R.; Bancroft, E.; Pashayan, N.; Kote-Jarai, Z.; Eeles, R.A. Genetics of prostate cancer: A review of latest evidence. J. Med. Genet. 2024, 61, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Garmo, H.; Beckmann, K.; Bratt, O.; Akre, O.; Stattin, P.; Gedeborg, R. Prostate cancer characteristics in fathers and risk of early onset high-risk prostate cancer in sons. Int. J. Cancer, 2025; early view. [Google Scholar] [CrossRef]
- Salinas, C.A.; Tsodikov, A.; Ishak-Howard, M.; Cooney, K.A. Prostate cancer in young men: An important clinical entity. Nat. Rev. Urol. 2014, 11, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Haritha, V.S.; Rawat, S.; Tiwari, M.; Verma, R.R. Prostate cancer in a 16-year old—Is there a new shift? IJMPO 2022, 8, 46–48. [Google Scholar] [CrossRef]
- Giri, V.N.; Beebe-Dimmer, J.L. Familial prostate cancer. Semin. Oncol. 2016, 43, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bergh, R.C.v.D.; Briers, E.; Broeck, T.V.D.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Spans, L.; Clinckemalie, L.; Helsen, C.; Vanderschueren, D.; Boonen, S.; Lerut, E.; Joniau, S.; Claessens, F. The genomic landscape of prostate cancer. Int. J. Mol. Sci. 2013, 14, 10822–10851. [Google Scholar] [CrossRef]
- Gerhauser, C.; Favero, F.; Risch, T.; Simon, R.; Feuerbach, L.; Assenov, Y.; Heckmann, D.; Sidiropoulos, N.; Waszak, S.M.; Hübschmann, D.; et al. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018, 34, 996–1011.e8. [Google Scholar] [CrossRef]
- Ogobuiro, I.; Deshmukh, S.; Wu, S.; Xiu, J.; Walker, P.; Swami, U.; Oberley, M.J.; Agarwal, N.; McKay, R.R.; Nabhan, C.; et al. Characterizing the molecular landscape of early onset and average onset prostate cancer. J. Clin. Oncol. 2023, 41 (Suppl. 16), 5059. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines 2019, 6, 82. [Google Scholar] [CrossRef]
- Pellestor, F.; Ganne, B.; Gaillard, J.B.; Gatinois, V. Chromoplexy: A Pathway to Genomic Complexity and Cancer Development. Int. J. Mol. Sci. 2025, 26, 3826. [Google Scholar] [CrossRef]
- Baca, S.C.; Prandi, D.; Lawrence, M.S.; Mosquera, J.M.; Romanel, A.; Drier, Y.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Ghandi, M.; et al. Punctuated Evolution of Prostate Cancer Genomes. Cell 2013, 153, 666–677. [Google Scholar] [CrossRef]
- Shen, M.M. Chromoplexy: A new category of complex rearrangements in the cancer genome. Cancer Cell 2013, 23, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Esentürk, E.; Sahli, A.; Haberland, V.; Ziuboniewicz, A.; Wirth, C.; Bova, G.S.; Bristow, R.G.; Brook, M.N.; Brors, B.; Butler, A.; et al. Causes of evolutionary divergence in prostate cancer. arXiv 2025, arXiv:2503.13189v1. [Google Scholar] [CrossRef]
- Woodcock, D.J.; Sahli, A.; Teslo, R.; Bhandari, V.; Gruber, A.J.; Ziubroniewicz, A.; Gundem, G.; Xu, Y.; Butler, A.; Anokian, E.; et al. Genomic evolution shapes prostate cancer disease type. Cell Genom. 2024, 4, 100511. [Google Scholar] [CrossRef]
- Chatsirisupachai, K.; Lagger, C.; de Magalhães, J.P. Age-associated differences in the cancer molecular landscape. Trends Cancer. 2022, 8, 962–971. [Google Scholar] [CrossRef]
- Azim, H.A.; Elghazawy, H.; Shohdy, K.S.; Lasheen, S.; Elghazawy, M.; Ghazy, R.M.; Abdelnasser, D.; Kassem, L. Impact of BRCA Mutation on Treatment Outcomes of Endocrine Therapy ± CDK4/6 Inhibitors in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor-2-Negative Breast Cancer: A Systematic Review and Meta-Analysis. JCO Precis. Oncol. 2025, 9, e2400841. [Google Scholar] [CrossRef] [PubMed]
- Victor, C.; Samuel, S.; Mohamed, A.T.; Carlos, R.; Ahmed, E.; Kc, B. Distinct genetic variants of early and late-onset prostate cancer. Insights Epigenet. Chromatin 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Lui, G.Y.L.; Grandori, C.; Kemp, C.J. CDK12: An emerging therapeutic target for cancer. J. Clin. Pathol. 2018, 71, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.; Karthaus, W.R.; Armenia, J.; Abida, W.; Iaquinta, P.J.; Zhang, Z.; Wongvipat, J.; Wasmuth, E.V.; Shah, N.; Sullivan, P.S.; et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 2017, 546, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Damaschke, N.A.; Yang, B.; Bhusari, S.; Svaren, J.P.; Jarrard, D.F. Epigenetic susceptibility factors for prostate cancer with aging. Prostate 2013, 73, 1721–1730. [Google Scholar] [CrossRef]
- Conteduca, V.; Hess, J.; Yamada, Y.; Ku, S.Y.; Beltran, H. Epigenetics in prostate cancer: Clinical implications. Transl. Androl. Urol. 2021, 10, 3104–3116. [Google Scholar] [CrossRef]
- Henrique, R.; Jerónimo, C. Molecular detection of prostate cancer: A role for GSTP1 hypermethylation. Eur. Urol. 2004, 46, 660–669; discussion 669. [Google Scholar] [CrossRef]
- Gaston, S.M.; Grizzle, W.E.; Van Neste, L.; Bigley, J.; Yen, J.; Adams, G.W.; Kearney, G.P. Epigenetic field effects: Potential applications for detection of occult high-grade prostate cancer. J. Clin. Oncol 2015, 33 (Suppl. 7), 20. [Google Scholar] [CrossRef]
- Barletta, F.; Bandini, M.; Cirulli, G.O.; Zaurito, P.; Lucianò, R.; Giannese, F.; Scotti, G.M.; Oneto, C.; Tenace, N.; Scarfò, F.; et al. DNA methylation alterations in prostate cancer: From diagnosis to treatment. Transl. Androl. Urol. 2025, 14, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Jedroszka, D.; Orzechowska, M.; Hamouz, R.; Gorniak, K.; Bednarek, A.K. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer. PLoS ONE 2017, 12, e0188842. [Google Scholar] [CrossRef] [PubMed]
- Orzechowska, M.J.; Anusewicz, D.; Bednarek, A.K. Age- and Stage-Dependent Prostate Cancer Aggressiveness Associated with Differential Notch Signaling. Int. J. Mech. Sci. 2022, 24, 164. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Wang, J. Role of Tumor Microenvironment in Prostate Cancer Immunometabolism. Biomolecules 2025, 15, 826. [Google Scholar] [CrossRef]
- Wang, L.; Tang, D. Immunosenescence promotes cancer development: From mechanisms to treatment strategies. Cell Commun. Signal. 2025, 23, 128. [Google Scholar] [CrossRef]
- Shakeri Abroudi, A.; Mashhouri Moghaddam, M.; Hashemi Karoii, D.; Djamali, M.; Azizi, H.; Skutella, T. Analysis of Microarray and Single-Cell RNA-Seq Finds Gene Co-Expression and Tumor Environment Associated with Extracellular Matrix in Epithelial–Mesenchymal Transition in Prostate Cancer. Int. J. Mech. Sci. 2025, 26, 8575. [Google Scholar] [CrossRef]
- Taverna, G.; Seveso, M.; Giusti, G.; Hurle, R.; Graziotti, P.; Štifter, S.; Chiriva-Internati, M.; Grizzi, F. Senescent Remodeling of the Innate and Adaptive Immune System in the Elderly Men with Prostate Cancer. Curr. Gerontol. Geriatr. Res. 2014, 2014, 478126. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, H.; Warden, C.; Steele, L.; Liu, X.; van Iterson, M.; Wu, X.; Nelson, R.; Liu, Z.; Yuan, Y.-C.; et al. Gene Expression Differences in Prostate Cancers between Young and Old Men. PLoS Genet. 2016, 12, e1006477. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J.; Xu, C.; Gao, M.; Li, N.; Geng, Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int. J. Biol. Sci. 2023, 19, 5089–5103. [Google Scholar] [CrossRef]
- Bocci, F.; Jolly, M.K.; George, J.T.; Levine, H.; Onuchic, J.N. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget 2018, 9, 29906–29920. [Google Scholar] [CrossRef]
- Boareto, M.; Jolly, M.K.; Lu, M.; Onuchic, J.N.; Clementi, C.; Ben-Jacob, E. Jagged-Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc. Natl. Acad. Sci. USA 2015, 112, E402–E409. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Proudfoot, J.A.; Jia, A.Y.; Zuhour, R.; Vince, R.; Liu, Y.; Zhao, X.; Hu, J.; Schussler, N.C.; Stevens, J.L.; et al. Use of the Decipher genomic classifier among men with prostate cancer in the United States. JNCI Cancer Spectr. 2023, 7, pkad052. [Google Scholar] [CrossRef]
- Kwon, W.A.; Joung, J.Y. Immunotherapy in Prostate Cancer: From a “Cold” Tumor to a “Hot” Prospect. Cancers 2025, 17, 1064. [Google Scholar] [CrossRef] [PubMed]
- McCaw, T.R.; Inga, E.; Chen, H.; Jaskula-Sztul, R.; Dudeja, V.; Bibb, J.A.; Ren, B.; Rose, J.B. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021, 26, e608–e621. [Google Scholar] [CrossRef] [PubMed]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Castoria, G. Estrogens and Their Receptors in Prostate Cancer: Therapeutic Implications. Front. Oncol. 2018, 8, 2. [Google Scholar] [CrossRef]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Bilancio, A.; Perillo, B.; Sinisi, A.A.; Migliaccio, A.; Castoria, G. Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers 2019, 11, 1418. [Google Scholar] [CrossRef]
- Grego-Bessa, J.; Diez, J.; Timmerman, L.; de la Pompa, J.L. Notch and epithelial-mesenchyme transition in development and tumor progression: Another turn of the screw. Cell Cycle 2004, 3, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Olczak, M.; Orzechowska, M.J.; Bednarek, A.K.; Lipiński, M. The Transcriptomic Profiles of ESR1 and MMP3 Stratify the Risk of Biochemical Recurrence in Primary Prostate Cancer beyond Clinical Features. Int. J. Mol. Sci. 2023, 24, 8399. [Google Scholar] [CrossRef]
Characteristic | EO-PC ≤ 55 Years | LO-PC ≥ 65 Years |
---|---|---|
Incidence | Rising, over 10% of new US diagnoses [11]. | In the majority of cases, two-thirds are diagnosed in people over age 70 [9]. |
5-year relative survival | 98% (for ages 20–54) [11]. | 100% (for ages 55–79) [11]. |
Disease characteristics | The majority are low-risk at diagnosis; however, a subset with high-grade/stage has a poor prognosis [11]. | The majority are indolent, but age is a significant risk factor for all grades and stages [11]. |
Cause-specific mortality | Among high-grade/stage cases, higher mortality than in all other groups except those over 80 [11]. | Lower mortality than young men in similar high-grade/stage cases [11]. |
Genetic component | More significant genetic component, linked to constitutional variants [9]. | A less significant heritable component, more driven by age and environmental factors [9]. |
Therapeutic burden | Prolonged impact from treatment-related morbidities due to extended life expectancy [11]. | Shorter duration of long-term morbidities [11]. |
Paternal disease characteristics | A father diagnosed at <65 years is associated with a >4-fold increase in risk; a father with a Gleason score ≥8 is associated with a >2.5-fold increase in the son’s risk for a similar high-grade cancer [10]. | Risk is significantly lower with a father diagnosed at ≥70 years old (SIR, 2.3 vs. 4.3 for <65 years) [10]. |
Characteristic | EO-PC ≤ 55 Years | LO-PC ≥ 65 Years |
---|---|---|
Genomics | Enriched for fusion events (e.g., TMPRSS2-ERG) driven by chromoplexy; lower mutational burden [18,19]. | Higher overall mutational burden, with a “clock-like” C>T signature; enriched for mutations in tumor suppressors (RB1, APC, AR) [24,25]. |
Epigenomics | Less accumulation of AREAS [29]. | Widespread epigenetic drift; accumulation of AREAS with hypermethylation of genes like GSTP1 and RASSF1A [23,24]. |
Transcriptomics | Higher neuroendocrine differentiation and MAPK pathway activity scores [17]. | General AR- and ERα-linked programs [48]. |
EMT profile | Partial/Hybrid EMT; co-expression of epithelial (CDH1) and mesenchymal markers (CTNNB1) [34,35]. | Multifactor-driven EMT [34,49,50]. |
TME | “Frustrated immunity” with high immune cell infiltration (NK, DC) but also high expression of immunosuppressive genes (CTLA4, IDO1) [41]. | Immunosuppressive TME with a shift to M2-like TAMs and increased MDSCs [37]. |
Notch signaling | Intense activation at the late stage, leading to a hybrid Sender/Receiver phenotype [35]. | Diminished at the early stage, inactivated at the late stage [35]. |
Prognosis | High rate of BCR, despite low Gleason score [41,51]. | Lower recurrence for the same clinical stage; prognosis often tied to comorbidities [1]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzechowska, M.J.; Bednarek, A.K. Molecular Landscape of Prostate Cancer Across Age Groups: Impact on Prognosis and Treatment Outcomes. Int. J. Mol. Sci. 2025, 26, 9777. https://doi.org/10.3390/ijms26199777
Orzechowska MJ, Bednarek AK. Molecular Landscape of Prostate Cancer Across Age Groups: Impact on Prognosis and Treatment Outcomes. International Journal of Molecular Sciences. 2025; 26(19):9777. https://doi.org/10.3390/ijms26199777
Chicago/Turabian StyleOrzechowska, Magdalena Julita, and Andrzej K. Bednarek. 2025. "Molecular Landscape of Prostate Cancer Across Age Groups: Impact on Prognosis and Treatment Outcomes" International Journal of Molecular Sciences 26, no. 19: 9777. https://doi.org/10.3390/ijms26199777
APA StyleOrzechowska, M. J., & Bednarek, A. K. (2025). Molecular Landscape of Prostate Cancer Across Age Groups: Impact on Prognosis and Treatment Outcomes. International Journal of Molecular Sciences, 26(19), 9777. https://doi.org/10.3390/ijms26199777