Emerging Therapeutic and Inflammation Biomarkers: The Role of Meteorin-Like (Metrnl) and Follistatin-Like 1 (FSTL1) in Inflammatory Diseases
Abstract
1. Introduction
2. Meteorin-like Protein (Metrnl) as a Novel Inflammatory Biomarker in Autoimmune Rheumatic Diseases
2.1. Structure and Biological Function of Metrnl
2.2. Metrnl in Immune Regulation and Inflammation
2.3. Metrnl’s Role in Metabolic and Inflammatory Diseases
2.4. Potential Diagnostic and Therapeutic Implications
3. Follistatin-like 1 (FSTL1) and Its Role in Inflammation in Autoimmune Rheumatic Diseases
3.1. Structure and Function of FSTL1
3.2. FSTL1 in Autoimmune and Chronic Inflammatory Diseases
3.3. Therapeutic Potential of Targeting FSTL1
4. Metrnl and FSTL1 in Other Autoimmune Pathologies: Role in Gastrointestinal Inflammatory Diseases
4.1. The Role of Metrnl in Colorectal Cancer (CRC)
4.2. The Role of Metrnl in Inflammatory Bowel Diseases (IBDs)
4.3. The Role of FSTL1 in CRC
4.4. The Role of FSTL1 in Gastric Cancer
4.5. The Role of FSTL1 in Liver Diseases
4.6. The Role of FSTL1 in IBD
5. Translational Considerations and Safety, Associated with Metrnl and FSTL1
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menzel, A.; Samouda, H.; Dohet, F.; Loap, S.; Ellulu, M.S.; Bohn, T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants 2021, 10, 414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Amezcua-Castillo, E.; González-Pacheco, H.; Sáenz-San, M.A.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease-Advancing toward Precision Medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galliera, E.; Massaccesi, L.; Yu, L.; He, J.; Ranucci, M.; Corsi Romanelli, M.M. SCD14-ST and New Generation Inflammatory Biomarkers in the Prediction of COVID-19 Outcome. Biomolecules 2022, 12, 826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seyhanli, E.S.; Guler, O.; Yasak, I.H.; Koyuncu, I. Investigation of the Correlation between Meteorin-Like Protein (Metrnl) and Thiol Balance in COVID-19 Patients. Clin. Lab. 2021, 67. [Google Scholar] [CrossRef] [PubMed]
- Minniti, J.F.S.; Dall’Antonia, V.D. Organokines in COVID-19: A Systematic Review. Cells 2023, 12, 1349. [Google Scholar] [CrossRef]
- Zhan, K.; Wang, L.; Lin, H.; Fang, X.; Jia, H.; Ma, X. Novel inflammatory biomarkers in the prognosis of COVID-19. Ther. Adv. Respir. Dis. 2023, 17, 17534666231199679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akbayırlı, U.; Kaya, S.; Aksoy Gökmen, A. COVID-19 Tanılı Hastalarda Akut Faz Reaktanı Olarak Serum Pentraksin-3 ve suPAR Düzeylerinin Değerlendirilmesi Evaluation of Serum Pentraxin-3 and suPAR Levels as Acute Phase Reactants in Patients with COVID-19]. Mikrobiyol. Bul. 2022, 56, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Uschach, I.; Burkhardt, A.M.; Martinez, C.; Hevezi, P.A.; Gerber, P.A.; Buhren, B.A.; Schrumpf, H.; Valle-Rios, R.; Vazquez, M.I.; Homey, B.; et al. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin. Immunol. 2015, 156, 119–127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, R.; Balu, A.R.; Molitoris, K.H.; White, J.P.; Robling, A.G.; Ayturk, U.M.; Baht, G.S. The role of Meteorin-like in skeletal development and bone fracture healing. J. Orthop. Res. 2022, 40, 2510–2521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, R.; He, M.; Peng, Y.; Xia, X. Homotherapy for heteropathy: Interleukin-41 and its biological functions. Immunology 2024, 173, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Freedman, P.; Schock, B.; O’Reilly, S. The Novel Cytokine Interleukin-41/Meteorin-like Is Reduced in Diffuse Systemic Sclerosis. Cells 2024, 13, 1205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berghoff, M.; Höpfinger, A.; Rajendran, R.; Karrasch, T.; Schmid, A.; Schäffler, A. Evidence of a Muscle-Brain Axis by Quantification of the Neurotrophic Myokine METRNL (Meteorin-Like Protein) in Human Cerebrospinal Fluid and Serum. J. Clin. Med. 2021, 10, 3271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Gao, Z.; Sun, T.; Zhang, S.; Yang, S.; Zheng, M.; Shen, H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front. Immunol. 2023, 14, 1098570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ushach, I.; Arrevillaga-Boni, G.; Heller, G.N.; Pone, E.; Hernandez-Ruiz, M.; Catalan-Dibene, J.; Hevezi, P.; Zlotnik, A. Meteorin-like/Meteorin-β Is a Novel Immunoregulatory Cytokine Associated with Inflammation. J. Immunol. 2018, 201, 3669–3676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.Y.; Song, J.; Zheng, S.L.; Fan, M.B.; Guan, Y.F.; Qu, Y.; Xu, J.; Wang, P.; Miao, C.Y. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling. Diabetes 2015, 64, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Lee, S.H.; Kim, H.C.; Bang, J.S.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Shin, Y.K.; Jeong, J.H. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Diao, L.; Xia, W.; Zeng, X.; Li, W.; Zou, J.; Liu, T.; Pang, X.; Wang, Y. Meteorin-like protein elevation post-exercise improved vascular inflammation among coronary artery disease patients by downregulating NLRP3 inflammasome activity. Aging 2023, 15, 14720–14732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, E.S.; Mitra, K.; Akter, S.; Ramproshad, S.; Mondal, B.; Khan, I.N.; Islam, M.T.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int. 2022, 22, 284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976, Erratum in Cell 2017, 169, 361–371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, B.; Li, X.; Gao, X. Meteorin-β: A Novel Biomarker and Therapeutic Target on Its Way to the Regulation of Human Diseases. Int. J. Mol. Sci. 2025, 26, 4485. [Google Scholar] [CrossRef]
- Manning, A.A.; Zhao, L.; Zhu, Z.; Xiao, H.; Redington, C.G.; Ding, V.A.; Stewart-Hester, T.; Bai, Q.; Dunlap, J.; Wakefield, M.R.; et al. Correction to: IL-39 acts as a friend to pancreatic cancer. Med. Oncol. 2019, 36, 22, Erratum in CMed. Oncol. 2018, 36, 12. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Alisic, H.; Reiman, B.T.; Deng, Z.; Zhu, Z.; Givens, N.T.; Bai, Q.; Tait, A.; Wakefield, M.R.; Fang, Y. IL-39 Reduces Proliferation and Promotes Apoptosis of Bladder Cancer by Altering the Activity of Cyclin E and Fas. Anticancer Res. 2021, 41, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Reboll, M.R.; Klede, S.; Taft, M.H.; Cai, C.L.; Field, L.J.; Lavine, K.J.; Koenig, A.L.; Fleischauer, J.; Meyer, J.; Schambach, A.; et al. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science 2022, 376, 1343–1347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huynh, K. Meteorin-like protein repairs the ischaemic heart via receptor KIT in endothelial cells. Nat. Rev. Cardiol. 2022, 19, 575. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Pyun, D.H.; Kim, T.J.; Lee, H.J.; Park, E.S.; Abd El-Aty, A.M.; Hwang, E.J.; Shin, Y.K.; Jeong, J.H. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ-mediated signaling pathways. Adv. Med. Sci. 2021, 66, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cai, Y.; Wang, Y.; Xu, C. Meteorin-Like (METRNL) Attenuates Myocardial Ischemia/Reperfusion Injury-Induced Cardiomyocytes Apoptosis by Alleviating Endoplasmic Reticulum Stress via Activation of AMPK-PAK2 Signaling in H9C2 Cells. Med. Sci. Monit. 2020, 26, e924564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fouani, F.Z.; Fadaei, R.; Moradi, N.; Zandieh, Z.; Ansaripour, S.; Yekaninejad, M.S.; Vatannejad, A.; Mahmoudi, M. Circulating levels of Meteorin-like protein in polycystic ovary syndrome: A case-control study. PLoS ONE 2020, 15, e0231943. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, S.L.; Li, Z.Y.; Zhang, Z.; Wang, D.S.; Xu, J.; Miao, C.Y. Evaluation of Two Commercial Enzyme-Linked Immunosorbent Assay Kits for the Detection of Human Circulating Metrnl. Chem. Pharm. Bull. 2018, 66, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kang, Y.E.; Kim, J.M.; Choung, S.; Joung, K.H.; Kim, H.J.; Ku, B.J. Serum Meteorin-like protein levels decreased in patients newly diagnosed with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 135, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Hwang, S.Y.; Choi, J.H.; Lee, H.J.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Implications of circulating Meteorin-like (Metrnl) level in human subjects with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 136, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, F.; Wang, C.; Deng, Y.; Cao, Z.; Cui, Y.; Xu, K.; Ln, P.; Sun, Y. Serum Levels of Meteorin-Like (Metrnl) Are Increased in Patients with Newly Diagnosed Type 2 Diabetes Mellitus and Are Associated with Insulin Resistance. Med. Sci. Monit. 2019, 25, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, D.X.; Feng, Y.Y.; Wang, H.Y.; Lu, C.H.; Liu, D.Z.; Gong, C.; Xue, Y.; Na, N. Metrnl ameliorates myocardial ischemia–reperfusion injury by activating AMPK-mediated M2 macrophage polarization. Mol. Med. 2025, 31, 98. [Google Scholar] [CrossRef]
- Khodir, S.A.; Shaban, A.M.; Sweed, E.; El-aziz, N.M.A.; Mostafa, B.A.; Latif, A.A.A.; El-Kalshy, M.M.; Elgizawy, E.I. METRNL mitigates oxidative stress and inflammatory drawbacks in ovalbumin/lipopolysaccharide-induced allergic airway diseases via the IKK/IκB/NF-κB signaling pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hu, D.; Zhao, X.; Hu, W. Correlation of serum meteorin-like concentrations with diabetic nephropathy. Diabetes Res. Clin. Pract. 2020, 169, 108443. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Huang, S.; Lin, X.; Liu, X.; Xu, X.; Li, C.; Chen, P. Upregulation of Metrnl improves diabetic kidney disease by inhibiting the TGF-β1/Smads signaling pathway: A potential therapeutic target. PLoS ONE 2024, 19, e0309338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, L.; Huang, G.; Weng, L.; Xu, J.; Li, Y.; Cui, W.; Li, M. Decreased serum interleukin-41/Metrnl levels in patients with Graves’ disease. J. Clin. Lab. Anal. 2022, 36, e24676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest. 2017, 127, 43–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, Y.; Ye, X.; Lu, A.; Zhao, D.; Liu, J.; Cheng, J.; Yang, T. Inverse relationship between serum Metrnl levels and visceral fat obesity (VFO) in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2020, 161, 108068. [Google Scholar] [CrossRef] [PubMed]
- Anido-Varela, L.; Aragón-Herrera, A.; González-Maestro, A.; Bellas, C.T.; Tarazón, E.; Solé-González, E.; Martínez-Sellés, M.; Guerra-Ramos, J.M.; Carrasquer, A.; Morán-Fernández, L.; et al. Meteorin-like protein plasma levels are associated with worse outcomes in de novo heart failure. Eur. J. Clin. Invest. 2025, 55, e14380. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, C.; Ferrer-Curriu, G.; Cervera-Barea, A.; Florit, L.; Guitart-Mampel, M.; Garrabou, G.; Zamora, M.; Crispi, F.; Fernandez-Solà, J.; Lupón, J.; et al. Meteorin-like/Meteorin-β protects heart against cardiac dysfunction. J. Exp. Med. 2021, 218, e20201206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, Z.W.; Wang, N.; Hu, W.J.; Zheng, S.L.; Wang, D.S.; Chang, F.Q.; Wang, Z.; Tian, J.S.; Dong, X.H.; Wu, T.; et al. Chronic vascular pathogenesis results in the reduced serum Metrnl levels in ischemic stroke patients. Acta Pharmacol. Sin. 2024, 45, 914–925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giden, R.; Yasak, I.H. Meteorin-like protein decreases in acute coronary syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Curriu, G.; Rueda, F.; Revuelta-López, E.; García-García, C.; Codina, P.; Gálvez-Montón, C.; Roura, S.; Aimo, A.; Emdin, M.; Planavila, A.; et al. Meteorin-like protein is associated with a higher risk profile and predicts a worse outcome in patients with STEMI. Rev. Esp. Cardiol. 2023, 76, 891–900, (In English, Spanish). [Google Scholar] [CrossRef] [PubMed]
- Gholamrezayi, A.; Mohamadinarab, M.; Rahbarinejad, P.; Fallah, S.; Barez, S.R.; Setayesh, L.; Moradi, N.; Fadaei, R.; Chamani, E.; Tavakoli, T. Characterization of the serum levels of Meteorin-like in patients with inflammatory bowel disease and its association with inflammatory cytokines. Lipids Health Dis. 2020, 19, 230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuo, L.; Ge, S.; Ge, Y.; Li, J.; Zhu, B.; Zhang, Z.; Jiang, C.; Li, J.; Wang, S.; Liu, M.; et al. The Adipokine Metrnl Ameliorates Chronic Colitis in Il-10−/−- Mice by Attenuating Mesenteric Adipose Tissue Lesions During Spontaneous Colitis. J. Crohns Colitis. 2019, 13, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Jamrasi, P.; Bae, J.H.; Song, W. Effects of 12-week exercise on Meteorin-like levels, inflammation, and functional capacity in older adults: Korean national aging project randomized controlled study. Eur. Geriatr. Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Lin, P.; Wang, C.; Wang, K.; Sun, Y. Administration of metrnl delays the onset of diabetes in non-obese diabetic mice. Endocr, J. 2021, 68, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; McKay, L.K.; Bareja, A.; Li, Y.; Khodabukus, A.; Bursac, N.; Taylor, G.A.; Baht, G.S.; White, J.P. Meteorin-like is an injectable peptide that can enhance regeneration in aged muscle through immune-driven fibro/adipogenic progenitor signaling. Nat. Commun. 2022, 13, 7613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hong, C.; Wang, Z.; Zheng, S.L.; Hu, W.J.; Wang, S.N.; Zhao, Y.; Miao, C.Y. Metrnl regulates cognitive dysfunction and hippocampal BDNF levels in D-galactose-induced aging mice. Acta Pharmacol. Sin. 2023, 44, 741–751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, L.; Chang, X.; Hu, L.; Liu, L.; Wang, G.; Huang, Y.; Xu, L.; Jin, B.; Song, J.; Hu, L.; et al. Accelerating Wound Closure With Metrnl in Normal and Diabetic Mouse Skin. Diabetes 2023, 72, 1692–1706. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.M.; Pant, A.; Dinalankara, W.; Choi, J.; Jain, A.; Nitta, R.; Yazigi, E.; Saleh, L.; Zhao, L.; Nirschl, T.R.; et al. The cytokine Meteorin-like inhibits anti-tumor CD8+ T cell responses by disrupting mitochondrial function. Immunity 2024, 57, 1864–1877.e9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, X.; Leung, T.F.; Wong, G.W.; Ko, W.H.; Cai, M.; He, E.J.; Chu, I.M.; Tsang, M.S.; Chan, B.C.; Ling, J.; et al. Meteorin-β/Meteorin like/IL-41 attenuates airway inflammation in house dust mite-induced allergic asthma. Cell Mol. Immunol. 2022, 19, 245–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hambrock, H.O.; Kaufmann, B.; Müller, S.; Hanisch, F.G.; Nose, K.; Paulsson, M.; Maurer, P.; Hartmann, U. Structural characterization of TSC-36/Flik: Analysis of two charge isoforms. J. Biol. Chem. 2004, 279, 11727–11735. [Google Scholar] [CrossRef]
- Umezu, T.; Yamanouchi, H.; Iida, Y.; Miura, M.; Tomooka, Y. Follistatin-like-1, a diffusible mesenchymal factor determines the fate of epithelium. Proc. Natl. Acad. Sci. USA 2010, 107, 4601–4606. [Google Scholar] [CrossRef]
- Mattiotti, A.; Prakash, S.; Barnett, P.; van den Hoff, M.J.B. Follistatin-like 1 in development and human diseases. Cell Mol. Life Sci. 2018, 75, 2339–2354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zwijsen, A.; Blockx, H.; Van Arnhem, W.; Willems, J.; Fransen, L.; Devos, K.; Raymackers, J.; Van De Voorde, A.; Slegers, H. Characterization of a rat C6 glioma-secreted follistatin-related protein (FRP). Eur. J. Biochem. 1994, 225, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Paul Bornstein, E. Helene Sage, Matricellular proteins: Extracellular modulators of cell function. Curr. Opin. Cell Biol. 2002, 14, 608–616. [Google Scholar] [CrossRef]
- Sylva, M.; Moorman, A.F.M.; van den Hoff, M.J.B. Follistatin-like 1 in vertebrate development. Birth Defect. Res. C 2013, 99, 61–69. [Google Scholar] [CrossRef]
- Chaly, Y.; Hostager, B.; Smith, S.; Hirsch, R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol. Res. 2014, 59, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, Y.; Jiang, D.; Dong, Y.; Liu, Y.; Zhang, S.; Guo, J.; Qi, C.; Zhao, C.; Jiang, F.; et al. Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Mol. Ther. 2021, 29, 347–364. [Google Scholar] [CrossRef]
- Sylva, M.; Li, V.S.; Buffing, A.A.; van Es, J.H.; van den Born, M.; van der Velden, S.; Gunst, Q.; Koolstra, J.H.; Moorman, A.F.; Clevers, H.; et al. The BMP antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS ONE 2011, 6, e22616. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Qi, X.; Gong, J.; Yu, M.; Zhang, F.; Sha, H.; Gao, X. Fstl1 antagonizes BMP signaling and regulates ureter development. PLoS ONE 2012, 7, e32554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.; Liu, J.; Mao, H.; Hu, Y.-H.; Yan, Y.; Zhao, C. The expression pattern of Follistatin-like 1 in mouse central nervous system development. Gene Expr. Patterns 2009, 9, 532–540. [Google Scholar] [CrossRef]
- Oshima, Y.; Ouchi, N.; Sato, K.; Izumiya, Y.; Pimentel, D.R.; Walsh, K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008, 117, 3099–3108. [Google Scholar] [CrossRef]
- Sosa, J.; Oyelakin, A.; Sinha, S. The Reign of Follistatin in Tumors and Their Microenvironment: Implications for Drug Resistance. Biology 2024, 13, 130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiou, J.; Chang, Y.-C.; Tsai, H.-F.; Lin, Y.-F.; Huang, M.-S.; Yang, C.-J.; Hsiao, M. Follistatin-like Protein 1 Inhibits Lung Cancer Metastasis by Preventing Proteolytic Activation of Osteopontin. Cancer Res. 2019, 79, 6113–6125. [Google Scholar] [CrossRef]
- Kim, D.K.; Kang, S.H.; Kim, J.S.; Kim, Y.G.; Lee, Y.H.; Lee, D.Y.; Jeong, K.H.; Hwang, H.S. Clinical implications of circulating follistatin-like protein-1 in hemodialysis patients. Sci. Rep. 2023, 13, 6637. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ozaki, S.; Osakada, F.; Mori, K.; Okubo, M.; Nakao, K. Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases. Int. Immunol. 1998, 10, 1305–1314. [Google Scholar] [CrossRef]
- Ehara, Y.; Sakurai, D.; Tsuchiya, N.; Nakano, K.; Tanaka, Y.; Yamaguchi, A.; Tokunaga, K. Follistatin-related protein gene (FRP) is expressed in the synovial tissues of rheumatoid arthritis, but its polymorphisms are not associated with genetic susceptibility. Clin. Exp. Rheumatol. 2004, 22, 707–712. [Google Scholar] [PubMed]
- Parfenova, O.K.; Kukes, V.G.; Grishin, D.V. Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021, 9, 999. [Google Scholar] [CrossRef]
- Kawabata, D.; Tanaka, M.; Fujii, T.; Umehara, H.; Fujita, Y.; Yoshifuji, H.; Mimori, T.; Ozaki, S. Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis Rheum. 2004, 50, 660–668. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xu, N.; Wei, Q.; Wu, M.; Li, X.; Zheng, P.; Sun, S.; Jin, Y.; Zhang, G.; et al. Follistatin-like protein 1 is elevated in systemic autoimmune diseases and correlated with disease activity in patients with rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, R17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hyun-Ju Kim, Woo Youl Kang, Sook Jin Seong, Shin-Yoon Kim, Mi-Sun Lim, Young-Ran Yoon, Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation. Cell. Signal. 2016, 28, 1137–1144. [CrossRef]
- Wang, Y.; Li, D.; Xu, N.; Tao, W.; Zhu, R.; Sun, R.; Fan, W.; Zhang, P.; Dong, T.; Yu, L. Follistatin-like protein 1: A serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res. Ther. 2011, 13, R193. [Google Scholar] [CrossRef]
- Gorelik, M.; Wilson, D.; Shulman, S.; Hirsch, R. Follistatin like protein (FSTL-1) levels are elevated in acute Kawasaki Disease and may differentiate between patients with and without aneurysm formation. Pediatr. Rheumatol. 2012, 10 (Suppl. 1), A1–A124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, B.; Zhu, J.; Chai, X. Case-Control Study: Evaluating the Role and Therapeutic Potential of FSTL1 in Type 2 Inflammation of Chronic Rhinosinusitis. J. Inflamm. Res. 2025, 18, 2545–2556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geng, Y.; Dong, Y.; Yu, M.; Zhang, L.; Yan, X.; Sun, J.; Qiao, L.; Geng, H.; Nakajima, M.; Furuichi, T.; et al. Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc. Natl. Acad. Sci. USA 2011, 108, 7058–7063. [Google Scholar] [CrossRef]
- Fujimoto, H.; Kobayashi, T.; Azuma, A. Idiopathic pulmonary fibrosis: Treatment and prognosis. Clin. Med. Insights Circ. Respir. Pulm. Med. 2016, 9 (Suppl. 1), 179–185. [Google Scholar] [CrossRef] [PubMed]
- Fuschiotti, P. Current perspectives on the immunopathogenesis of systemic sclerosis. Immunotargets Ther. 2016, 5, 21–35. [Google Scholar] [CrossRef]
- Tanaka, N.; Kimura, T.; Fujimori, N.; Nagaya, T.; Komatsu, M.; Tanaka, E. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J. Gastroenterol. 2019, 25, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors 2011, 29, 196–202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karisa, P.; Sylviana, N.; Fitria, N.; Setiawan, S. FSTL-1 as a Novel Cardiokine of Cardiac Angiogenesis: A Systematic Review. Vasc. Health Risk Manag. 2025, 21, 437–449. [Google Scholar] [CrossRef]
- Xu, X.Y.; Du, Y.; Liu, X.; Ren, Y.; Dong, Y.; Xu, H.Y.; Shi, J.-S.; Jiang, D.; Xu, X.; Li, L.; et al. Targeting Follistatin like 1 ameliorates liver fibrosis induced by carbon tetrachloride through TGF-β1-miR29a in mice. Cell Commun. Signal 2020, 18, 151. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Liu, J.; Li, J.; Wang, J.; Zhang, Y.; Zhang, Z.; Liu, Y.; Jin, Y.; Li, J. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice. Sci. Rep. 2017, 7, 45820. [Google Scholar] [CrossRef]
- Rodrigues Gomes, J. A Narrative Review on the FSTL-1 Protein and its Current Known Impact on Cardiovascular Ischaemic Disease. Int. J. Med. Stud. 2024, 12, 457–464. [Google Scholar] [CrossRef]
- Wei, K.; Serpooshan, V.; Hurtado, C.; Diez-Cuñado, M.; Zhao, M.; Maruyama, S.; Zhu, W.; Fajardo, G.; Noseda, M.; Nakamura, K.; et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015, 525, 479–485. [Google Scholar] [CrossRef]
- Dong, Y.; Geng, Y.; Li, L.; Li, X.; Yan, X.; Fang, Y.; Li, X.; Dong, S.; Liu, X.; Li, X.; et al. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J. Exp. Med. 2015, 212, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Chaly, Y.; Blair, H.C.; Smith, S.M.; Bushnell, D.S.; Marinov, A.D.; Campfield, B.T.; Hirsch, R. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann. Rheum. Dis. 2015, 74, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.F.; Pan, H.; Yan, H.; Sandell, L.J.; Pham, C.T.N.; Wickline, S.A. Applications of RNA interference in the treatment of arthritis. Transl. Res. 2019, 214, 1–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.Y.; Fan, M.B.; Zhang, S.L.; Qu, Y.; Zheng, S.L.; Song, J.; Miao, C.Y. Intestinal Metrnl released into the gut lumen acts as a local regulator for gut antimicrobial peptides. Acta Pharmacol. Sin. 2016, 37, 1458–1466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uzun, M.; Ilhan, Y.S.; Bozdag, A.; Yilmaz, M.; Artas, G.; Kuloglu, T. Asprosin, irisin, and meteorin-like protein immunoreactivity in different stages of colorectal adenocarcinoma. Pathol. Res. Pract. 2023, 245, 154432. [Google Scholar] [CrossRef]
- Onat, E.; Kocaman, N.; Balta, H. The Role of Meteorin-Like Peptide and Asprosin in Colon Carcinoma. Cureus 2023, 15, 5–10. [Google Scholar] [CrossRef]
- Yin, Y.; Zhu, Z.-X.; Li, Z.; Chen, Y.-S.; Zhu, W.-M. Role of mesenteric component in Crohn’s disease: A friend or foe? World J. Gastrointest. Surg. 2021, 13, 1536–1549. [Google Scholar] [CrossRef]
- Zhang, S.L.; Li, Z.Y.; Wang, D.S.; Xu, T.Y.; Fan, M.B.; Cheng, M.H.; Miao, C.Y. Aggravated ulcerative colitis caused by intestinal Metrnl deficiency is associated with reduced autophagy in epithelial cells. Acta Pharmacol. Sin. 2020, 41, 763–770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voutsadakis, I.A. A role for Follistatin-like protein 1 (FSTL1) in colorectal cancer. Ann. Transl. Med. 2020, 8, 155. [Google Scholar] [CrossRef]
- Zhao, Y.; Ou, Q.; Deng, Y.; Peng, J.; Li, C.; Li, J.; Zhao, Q.; Qiu, M.; Wan, D.; Fang, Y. Determination of follistatin-like protein 1 expression in colorectal cancer and its association with clinical outcomes. Ann. Transl. Med. 2019, 7, 606. [Google Scholar] [CrossRef]
- Gu, C.; Wang, X.; Long, T.; Wang, X.; Zhong, Y.; Ma, Y. FSTL1 interacts with VIM and promotes colorectal cancer metastasis via activating the focal adhesion signalling pathway. Cell Death Dis. 2018, 9, 654. [Google Scholar] [CrossRef]
- Bevivino, G.; Sedda, S.; Franzè, E.; Stolfi, C.; Di Grazia, A.; Dinallo, V.; Caprioli, F.; Facciotti, F.; Colantoni, A.; Ortenzi, A.; et al. Follistatin-like protein 1 sustains colon cancer cell growth and survival. Oncotarget 2018, 9, 31278–31290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Huang, S.; Yao, Y.; Chen, J.; Li, J.; Xiang, X.; Deng, J.; Xiong, J. Follistatin-like 1 (FSTL1) is a prognostic biomarker and correlated with immune cell infiltration in gastric cancer. World J. Surg. Oncol. 2020, 18, 324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sierzega, M.; Drabik, A.; Sanak, M.; Chrzan, R.; Richter, P. Dissecting the importance and origin of circulating myokines in gastric cancer cachexia. Front. Endocrinol. 2024, 15, 1437197. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, P.; Li, S.; Jiang, Y.; Wu, C. Follistatin-like protein 1 knockdown elicits human gastric cancer cell apoptosis via a STAT6-dependent pathway. Oncol. Rep. 2019, 42, 2806–2813. [Google Scholar] [CrossRef]
- Gu, C.; Xue, H.; Yang, X.; Nie, Y.; Qian, X. Role of follistatin-like protein 1 in liver diseases. Exp. Biol. Med. 2023, 248, 193–200. [Google Scholar] [CrossRef]
- Ramnath, D.; Irvine, K.M.; Lukowski, S.W.; Horsfall, L.U.; Loh, Z.; Clouston, A.D.; Patel, P.J.; Fagan, K.J.; Iyer, A.; Lampe, G.; et al. Hepatic expression profiling identifies steatosis-independent and steatosis-driven advanced fibrosis genes. JCI Insight 2018, 3, e120274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Chi, Y.; Xiao, X.; Li, J.; Sun, M.; Sun, S.; Xu, W.; Zhang, L.; Li, X.; Cheng, F.; et al. Plasma FSTL-1 as a noninvasive diagnostic biomarker for patients with advanced liver fibrosis. Hepatology 2024, 82, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ren, H.; Wu, X.; Hu, Q.; Hong, Z.; Wang, G.; Gu, G.; Ren, J.; Li, J. Follistatin like protein-1 modulates macrophage polarization and aggravates dextran sodium sulfate-induced colitis. Int. Immunopharmacol. 2020, 83, 106456. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Bai, G.; Tang, L.; Liu, L.; Li, Y.; Jiang, W. Changes in MMP-2, MMP-9, inflammation, blood coagulation and intestinal mucosal permeability in patients with active ulcerative colitis. Exp. Ther. Med. 2020, 20, 269–274. [Google Scholar] [CrossRef]
- Wu, M.; Ding, Y.; Wu, N.; Jiang, J.; Huang, Y.; Zhang, F.; Wang, H.; Zhou, Q.; Yang, Y.; Zhuo, W.; et al. FSTL1 promotes growth and metastasis in gastric cancer by activating AKT related pathway and predicts poor survival. Am. J. Cancer Res. 2021, 11, 712–728. [Google Scholar] [PubMed] [PubMed Central]
- Pires, I.S.; Hammond, P.T.; Irvine, D.J. Engineering Strategies for Immunomodulatory Cytokine Therapies-Challenges and Clinical Progress. Adv. Ther. 2021, 4, 2100035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saxton, R.A.; Glassman, C.R.; Garcia, K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 2023, 22, 21–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alizadeh, H. Meteorin-like protein (Metrnl): A metabolic syndrome biomarker and an exercise mediator. Cytokine 2022, 157, 155952. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, Y.; Song, J.; Sun, Y.; Li, H.; Chen, L.; Hou, X. Serum Metrnl Level is Correlated with Insulin Resistance, But Not with β-Cell Function in Type 2 Diabetics. Med. Sci. Monit. 2019, 25, 8968–8974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Features | Metrnl (Meteorin-Like, IL-41) | Refs. | FSTL1 (Follistatin-Like 1) | Refs. |
---|---|---|---|---|
Primary site of expression/production | Barrier tissues (skin, mucosa) and stromal cells (fibroblasts, endothelial cells, adipocytes, etc.) | Li et al., 2023 [16] Uschach et al., 2015 [11] | Mainly by mesenchymal-derived cells, including fibroblasts, chondrocytes, smooth muscle cells, etc. | Mattiotti et al., 2018 [58]; Karisa et al., 2025 [85] |
Major signaling pathways | AMPK–PPARγ, AMPK–PAK2, inhibition of NF-κB, STAT5/PPARγ | Li et al., 2023 [16]; Chen et al., 2025 [35] | DIP2A–Smad2/3, TGF-β1–Smad/JNK/ERK, AKT/ERK | Karisa et al., 2025 [85]; Xu et al., 2020 [29] |
Immune effects | M2 macrophage polarization reduces ROS and NLRP3 inflammasome activity | Chen et al., 2025 [35]; Khodir et al., 2025 [36] | Enhances TNF-α, IL-6, IL-1β; amplifies autoimmune inflammation response | Tanaka et al., 1998 [71]; Li et al., 2011 [75] |
Tissue outcomes | Protects against fibrosis, myocardial ischemia–reperfusion injury, and endothelial inflammation | Chen et al., 2025 [35] | Promotes fibrosis in the lung, liver, and systemic sclerosis; drives cartilage degradation in RA/OA | Xu et al., 2020 [29]; Fujimoto et al., 2016 [81] |
Clinical associations | Linked with CAD, T2DM, PCOS, diabetic nephropathy, IBD, ischemic stroke | Wang et al., 2019 [34]; Giden and Yasak 2023 [45] | Elevated in RA, OA, Sjögren’s, systemic sclerosis, pulmonary fibrosis, and Kawasaki disease | Karisa et al., 2025 [85] |
Therapeutic implications | Candidate biomarker and protective cytokine; potential in regenerative and metabolic disorders | Li et al., 2023 [15]; Jamrasi et al., 2025 [49] | Target for fibrosis and autoimmunity; approaches include neutralizing antibodies, siRNA, and antisense therapies | Xu et al., 2020 [29]; Mattiotti et al., 2018 [58] |
Molecule | Disease/Context | Population | Direction vs. Controls/Outcome | Significance | References |
---|---|---|---|---|---|
Metrnl | Autoimmune skin/joint tissues | RA synovial membrane & psoriatic skin biopsies | ↑ Metrnl tissue expression vs. non-inflamed controls | p < 0.05 | Uschach et al., 2015 [11]; Li et al., 2023 [16] |
Metrnl | PCOS | Case–control women | ↓ serum Metrnl; inverse with insulin/glucose | p < 0.05 | Zheng et al., 2018 [31]; Li et al., 2023 [16] |
Metrnl | Type 2 diabetes mellitus (T2DM) | Mixed cohorts | Conflicting: ↓ Metrnl in some cohorts; ↑ Metrnl in others | Mixed | Zheng et al., 2018 [31]; Wang et al., 2019 [34] |
Metrnl | Diabetic nephropathy (T2DM) | Adults with T2DM | ↓ Metrnl with ↑ nephropathy severity; inverse with eGFR | p < 0.01 | Wang et al., 2019 [34]; Li et al., 2023 [16] |
Metrnl | Coronary artery disease (CAD) | Adults with CAD | Lower levels are associated with adverse risk profiles | p < 0.05 | Wang et al., 2019 [34]; Li et al., 2023 [16] |
Metrnl | Acute coronary syndrome (ACS) | Adults with ACS (2021–2023) | Inverse correlation between circulating Metrnl levels and serum troponin concentrations; | p < 0.05 | Giden and Yasak, 2023 [45]; Li et al., 2023 [16] |
Metrnl | STEMI (prognosis) | STEMI patients (Cohorts 2021–2024) | Higher admission Metrnl linked to worse outcomes/mortality | p < 0.05; independent in models | Li et al., 2023 [16] |
Metrnl | Ischemic stroke | Adults with AIS | ↓ Metrnl vs. controls; diagnostic/prognostic signal | p < 0.01 | Giden and Yasak, 2023 [45]; Li et al., 2023 [16] |
Metrnl | IBD (UC/CD) | IBD cohorts (2018–2022) | ↓ Metrnl vs. controls; inverse with TNF-α/IL-6; inverse with BMI | p < 0.01 | Li et al., 2023 [16] |
Metrnl | Neuro–metabolic axis | Patients/CSF cohorts | Serum– and CSF correlation; BBB permeability signal | p < 0.05 | Berghoff et al., 2021 [15]; Li et al., 2023 [16] |
FSTL1 | Rheumatoid arthritis (RA) | RA patients | ↑ FSTL1 autoantibodies (serum & synovial fluid) | p < 0.05 | Tanaka et al., 2019 [83]; Li et al., 2011 [75] |
FSTL1 | Osteoarthritis (OA) & Sjögren’s | Adult cohorts | ↑ serum FSTL1 in OA & Sjögren’s; RA > Sjögren’s for auto-Abs; absent in OA | p < 0.05 | Fujimoto et al., 2016 [81]; Li et al., 2011 [75] |
FSTL1 | Kawasaki disease (pediatric vasculitis) | Pediatric KD | ↑ plasma FSTL1 in acute phase; ↓ post-IVIG | p < 0.05 | Fujimoto et al., 2016 [81] |
FSTL1 | Systemic sclerosis (SSc) | Adults with SSc | ↑ circulating FSTL1; correlates with fibrosis severity | p < 0.01 | Fujimoto et al., 2016 [81]; Xu et al., 2020 [29] |
FSTL1 | Pulmonary fibrosis/ILD | ILD cohorts | ↑ serum/tissue FSTL1; association with progression | p < 0.05 | Xu et al., 2020 [29] |
FSTL1 | Asthma/COPD (inflammatory lung disease) | Respiratory cohorts (2017–2021) | ↑ circulating FSTL1 vs. controls | p < 0.05 | Fujimoto et al., 2016 [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velikova, T.; Bakopoulou, K.; Gulinac, M.; Manova, E.; Valkov, H.; Miteva, D.; Shumnalieva, R. Emerging Therapeutic and Inflammation Biomarkers: The Role of Meteorin-Like (Metrnl) and Follistatin-Like 1 (FSTL1) in Inflammatory Diseases. Int. J. Mol. Sci. 2025, 26, 9711. https://doi.org/10.3390/ijms26199711
Velikova T, Bakopoulou K, Gulinac M, Manova E, Valkov H, Miteva D, Shumnalieva R. Emerging Therapeutic and Inflammation Biomarkers: The Role of Meteorin-Like (Metrnl) and Follistatin-Like 1 (FSTL1) in Inflammatory Diseases. International Journal of Molecular Sciences. 2025; 26(19):9711. https://doi.org/10.3390/ijms26199711
Chicago/Turabian StyleVelikova, Tsvetelina, Konstantina Bakopoulou, Milena Gulinac, Evelina Manova, Hristo Valkov, Dimitrina Miteva, and Russka Shumnalieva. 2025. "Emerging Therapeutic and Inflammation Biomarkers: The Role of Meteorin-Like (Metrnl) and Follistatin-Like 1 (FSTL1) in Inflammatory Diseases" International Journal of Molecular Sciences 26, no. 19: 9711. https://doi.org/10.3390/ijms26199711
APA StyleVelikova, T., Bakopoulou, K., Gulinac, M., Manova, E., Valkov, H., Miteva, D., & Shumnalieva, R. (2025). Emerging Therapeutic and Inflammation Biomarkers: The Role of Meteorin-Like (Metrnl) and Follistatin-Like 1 (FSTL1) in Inflammatory Diseases. International Journal of Molecular Sciences, 26(19), 9711. https://doi.org/10.3390/ijms26199711