YKL-40 Level Is Associated with TyG-BMI-Estimated Insulin Resistance and Metabolic Syndrome in a Population Without Diabetes, Independent of Obesity
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics of Participants by YKL-40 Quartiles
2.2. Predictors of TyG-BMI: Univariate and Multivariate Analysis
2.3. Relationship Between YKL-40 Levels and TyG-BMI-Estimated Insulin Resistance
2.4. Association Between Ykl-40 Levels and Metabolic Syndrome
2.5. Influence of Obesity on the Association Betweenykl-40 Quartiles and Metabolic Syndrome
3. Discussion
3.1. YKL-40 Levels and Insulin Resistance
3.2. YKL-40 Levels with Cardiometabolic Risk Factors and Metabolic Syndrome
3.3. Clinical Implications
3.4. Study Limitations
4. Materials and Methods
4.1. Study Participants and Design
4.2. Demographic Data and Laboratory Examinations
4.3. Surrogate Markers of Insulin Resistance
4.4. Definition of Metabolic Syndrome and Obesity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2DM | Type 2 diabetes mellitus |
HDL | High-density lipoprotein |
WC | Waist circumference |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
HbA1C | Glycated hemoglobin |
BMI | Body mass index |
TyG | Triglyceride-glucose |
TyG-BMI | Triglyceride-glucose body mass index |
LDL | Low-density lipoprotein |
OR | Odds ratio |
CI | Confidence interval |
HOMA-IR | Homeostatic Model Assessment of Insulin Resistance |
TWB | Taiwan Biobank |
ELISA | Enzyme-linked immunosorbent assay (ELISA) kits |
ANOVA | Analysis of variance |
References
- Inoue, Y.; Qin, B.; Poti, J.; Sokol, R.; Gordon-Larsen, P. Epidemiology of Obesity in Adults: Latest Trends. Curr. Obes. Rep. 2018, 7, 276–288. [Google Scholar] [CrossRef]
- Sattar, N.; Presslie, C.; Rutter, M.K.; McGuire, D.K. Cardiovascular and Kidney Risks in Individuals With Type 2 Diabetes: Contemporary Understanding With Greater Emphasis on Excess Adiposity. Diabetes Care 2024, 47, 531–543. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Hanley, A.J.; Festa, A.; D’Agostino, R.B., Jr.; Wagenknecht, L.E.; Savage, P.J.; Tracy, R.P.; Saad, M.F.; Haffner, S.M. Metabolic and inflammation variable clusters and prediction of type 2 diabetes: Factor analysis using directly measured insulin sensitivity. Diabetes 2004, 53, 1773–1781. [Google Scholar] [CrossRef]
- Hu, F.B.; Meigs, J.B.; Li, T.Y.; Rifai, N.; Manson, J.E. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004, 53, 693–700. [Google Scholar] [CrossRef]
- Boot, R.G.; van Achterberg, T.A.; van Aken, B.E.; Renkema, G.H.; Jacobs, M.J.; Aerts, J.M.; de Vries, C.J. Strong induction of members of the chitinase family of proteins in atherosclerosis: Chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 687–694. [Google Scholar] [CrossRef]
- Shackelton, L.M.; Mann, D.M.; Millis, A.J. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J. Biol. Chem. 1995, 270, 13076–13083. [Google Scholar] [CrossRef]
- Volck, B.; Price, P.A.; Johansen, J.S.; Sorensen, O.; Benfield, T.L.; Nielsen, H.J.; Calafat, J.; Borregaard, N. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc. Assoc. Am. Physicians 1998, 110, 351–360. [Google Scholar]
- Johansen, J.S.; Jensen, B.V.; Roslind, A.; Nielsen, D.; Price, P.A. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol. Biomarkers Prev. 2006, 15, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Rathcke, C.N.; Vestergaard, H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm. Res. 2006, 55, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Catalan, V.; Gomez-Ambrosi, J.; Rodriguez, A.; Ramirez, B.; Rotellar, F.; Valenti, V.; Silva, C.; Gil, M.J.; Salvador, J.; Fruhbeck, G. Increased circulating and visceral adipose tissue expression levels of YKL-40 in obesity-associated type 2 diabetes are related to inflammation: Impact of conventional weight loss and gastric bypass. J. Clin. Endocrinol. Metab. 2011, 96, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.B.; Gjesing, A.P.; Rathcke, C.N.; Ekstrom, C.T.; Eiberg, H.; Hansen, T.; Pedersen, O.; Vestergaard, H. Associations of the Inflammatory Marker YKL-40 with Measures of Obesity and Dyslipidaemia in Individuals at High Risk of Type 2 Diabetes. PLoS ONE 2015, 10, e0133672. [Google Scholar] [CrossRef]
- Nielsen, A.R.; Erikstrup, C.; Johansen, J.S.; Fischer, C.P.; Plomgaard, P.; Krogh-Madsen, R.; Taudorf, S.; Lindegaard, B.; Pedersen, B.K. Plasma YKL-40: A BMI-independent marker of type 2 diabetes. Diabetes 2008, 57, 3078–3082. [Google Scholar] [CrossRef]
- Hempen, M.; Kopp, H.P.; Elhenicky, M.; Hobaus, C.; Brix, J.M.; Koppensteiner, R.; Schernthaner, G.; Schernthaner, G.H. YKL-40 is elevated in morbidly obese patients and declines after weight loss. Obes. Surg. 2009, 19, 1557–1563. [Google Scholar] [CrossRef]
- Kyrgios, I.; Galli-Tsinopoulou, A.; Stylianou, C.; Papakonstantinou, E.; Arvanitidou, M.; Haidich, A.B. Elevated circulating levels of the serum acute-phase protein YKL-40 (chitinase 3-like protein 1) are a marker of obesity and insulin resistance in prepubertal children. Metabolism 2012, 61, 562–568. [Google Scholar] [CrossRef]
- Toloza, F.J.K.; Perez-Matos, M.C.; Ricardo-Silgado, M.L.; Morales-Alvarez, M.C.; Mantilla-Rivas, J.O.; Pinzon-Cortes, J.A.; Perez-Mayorga, M.; Arevalo-Garcia, M.L.; Tolosa-Gonzalez, G.; Mendivil, C.O. Comparison of plasma pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP-4), chitinase-3-like protein 1 (YKL-40) and brain-derived neurotrophic factor (BDNF) for the identification of insulin resistance. J. Diabetes Complicat. 2017, 31, 1423–1429. [Google Scholar] [CrossRef]
- Akboga, M.K.; Yalcin, R.; Sahinarslan, A.; Yilmaz Demirtas, C.; Pasaoglu, H.; Abaci, A. Increased serum YKL-40 level is associated with the presence and severity of metabolic syndrome. Anatol. J. Cardiol. 2016, 16, 953–958. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Type 2 diabetes: An overview. Clin. Chem. 1999, 45 Pt 2, 1339–1345. [Google Scholar] [CrossRef]
- Kjaergaard, A.D.; Johansen, J.S.; Bojesen, S.E.; Nordestgaard, B.G. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. Stroke 2015, 46, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.B.; Rathcke, C.N.; Skaaby, T.; Linneberg, A.; Vestergaard, H. The Association between genetic variations of CHI3L1, levels of the encoded glycoprotein YKL-40 and the lipid profile in a Danish population. PLoS ONE 2012, 7, e47094. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.C.; Millis, A.J. gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp. Cell Res. 2003, 287, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, J.; Johansen, J.S.; Winkel, P.; Hansen, J.F.; Hildebrandt, P.; Jensen, G.B.; Jespersen, C.M.; Kjoller, E.; Kolmos, H.J.; Lind, I.; et al. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. Eur. Heart J. 2009, 30, 1066–1072. [Google Scholar] [CrossRef]
- Xu, T.; Zhong, C.; Wang, A.; Guo, Z.; Bu, X.; Zhou, Y.; Tian, Y.; HuangFu, X.; Zhu, Z.; Zhang, Y. YKL-40 Level and Hypertension Incidence: A Population-Based Nested Case-Control Study in China. J. Am. Heart Assoc. 2016, 5, e004534. [Google Scholar] [CrossRef]
- Bakirci, E.M.; Degirmenci, H.; Hamur, H.; Gunay, M.; Gulhan, B.; Aydin, M.; Kucuksu, Z.; Ceyhun, G.; Topal, E. New inflammatory markers for prediction of non-dipper blood pressure pattern in patients with essential hypertension: Serum YKL-40/Chitinase 3-like protein 1 levels and echocardiographic epicardial adipose tissue thickness. Clin. Exp. Hypertens. 2015, 37, 505–510. [Google Scholar] [CrossRef]
- Schroder, J.; Jakobsen, J.C.; Winkel, P.; Hilden, J.; Jensen, G.B.; Sajadieh, A.; Larsson, A.; Arnlov, J.; Harutyunyan, M.; Johansen, J.S.; et al. Prognosis and Reclassification by YKL-40 in Stable Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e014634. [Google Scholar] [CrossRef]
- Chou, H.H.; Teng, M.S.; Juang, J.J.; Chiang, F.T.; Tzeng, I.S.; Wu, S.; Ko, Y.L. Circulating YKL-40 levels but not CHI3L1 or TRIB1 gene variants predict long-term outcomes in patients with angiographically confirmed multivessel coronary artery disease. Sci. Rep. 2024, 14, 29416. [Google Scholar] [CrossRef]
- Fan, C.T.; Lin, J.C.; Lee, C.H. Taiwan Biobank: A project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 2008, 9, 235–246. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendia, L.E.; Gonzalez-Ortiz, M.; Martinez-Abundis, E.; Ramos-Zavala, M.G.; Hernandez-Gonzalez, S.O.; Jacques-Camarena, O.; Rodriguez-Moran, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef]
- Simental-Mendia, L.E.; Rodriguez-Moran, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Er, L.K.; Wu, S.; Chou, H.H.; Hsu, L.A.; Teng, M.S.; Sun, Y.C.; Ko, Y.L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Qin, Y.; Qiao, Y.; Yan, G.; Wang, D.; Tang, C. Relationship between indices of insulin resistance and incident type 2 diabetes mellitus in Chinese adults. Endocrine 2024, 85, 1228–1237. [Google Scholar] [CrossRef]
- Pan, W.H.; Yeh, W.T. How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: An extension of Asian-Pacific recommendations. Asia Pac. J. Clin. Nutr. 2008, 17, 370–374. [Google Scholar]
Q1, n = 1076 | Q2, n = 1076 | Q3, n = 1076 | Q4, n = 1076 | |
---|---|---|---|---|
Age (years) | 42.3 ± 9.7 | 45.3 ± 10.0 b | 48.9 ± 10.3 b,d | 53.8 ± 10.0 b,d |
Male (n) (%) | 444 (41.3%) | 472 (43.9%) | 460 (42.8%) | 477 (44.3%) |
Smoker (n) (%) | 195 (18.1%) | 188 (17.5%) | 196 (18.2%) | 199 (18.5%) |
Exercise habits (n) (%) ‡ | 370 (34.4%) | 412 (38.3%) | 448 (41.7%) | 523 (48.6%) |
Body mass index (kg/m2) | 23.73 ± 3.45 | 23.91 ± 3.54 | 23.97 ± 3.44 | 24.10 ± 3.47 |
Waist circumference (cm) | 81.38 ± 9.58 | 82.10 ± 9.61 | 82.70 ± 9.41 a | 83.76 ± 9.86 b,d |
Systolic BP (mmHg) * | 111.5 ± 13.8 | 112.4 ± 14.6 | 112.7 ± 15.5 | 116.8 ± 16.5 b,d |
Diastolic BP (mmHg) * | 70.6 ± 9.8 | 70.9 ± 10.3 | 70.9 ± 10.6 | 72.0 ± 10.5 a |
Fasting glucose (mmol/L) | 5.01 ± 0.38 | 5.07 ± 0.41 | 5.12 ± 0.44 b,c | 5.14 ± 0.43 b,d |
HbA1C (%) | 5.45 ± 0.32 | 5.51 ± 0.33 b | 5.56 ± 0.35 b,c | 5.58 ± 0.35 b,d |
Cholesterol (mmol/L) | 4.94 ± 0.87 | 4.99 ± 0.87 | 5.02 ± 0.91 | 5.05 ± 0.98 a |
Triglycerides (mmol/L)† | 0.85 (0.61–1.23) | 0.94 (0.70–1.34) b | 1.04 (0.76–1.48) b,d | 1.19 (0.85–1.72) b,d |
HDL-C (mmol/L) | 1.46 ± 0.34 | 1.43 ± 0.34 | 1.41 ± 0.34 a | 1.40 ± 0.34 a |
LDL-C (mmol/L) | 3.10 ± 0.87 | 3.15 ± 0.80 | 3.16 ± 0.80 | 3.10 ± 0.81 |
TyG-BMI | 194.6 ± 35.8 | 199.2 ± 37.1 a | 201.8 ± 35.7 b | 206.3 ± 37.6 b,d |
Metabolic syndrome (n) (%) ‡ | 98 (9.1%) | 134 (12.5%) | 166 (15.4%) | 200 (18.6%) |
Component of metabolic syndrome § | ||||
Elevated waist circumference ‡ | 368 (34.2%) | 403 (37.5%) | 456 (42.4%) | 478 (44.4%) |
Elevated triglycerides ‡ | 113 (10.5%) | 147 (13.7%) | 205 (19.1%) | 286 (26.6%) |
Reduced HDL-cholesterol | 206 (19.1%) | 230 (21.4%) | 244 (22.7%) | 241 (22.4%) |
Elevated blood pressure ‡ | 192 (17.8%) | 225 (20.9%) | 256 (23.8%) | 346 (32.2%) |
Elevated fasting glucose ‡ | 90 (8.4%) | 144 (13.4%) | 188 (17.5%) | 177 (16.4%) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | Standardized β | p Value | Standardized β | p Value | Cumulative R2 | |
Age | 0.048 | 0.002 | WC | 0.714 | 0.0E0 ‡ | 0.669 |
Male gender | 0.311 | 2.45 × 10−90 | HDL-C | −0.189 | 3.32 × 10−84 | 0.697 |
Smoking | 0.158 | 1.18 × 10−23 | Diastolic BP § | 0.083 | 1.85 × 10−9 | 0.705 |
Exercise habits | 0.017 | 0.273 | Male gender | −0.076 | 5.08 × 10−15 | 0.709 |
WC | 0.8178 | 0.0E0 ‡ | LDL-C | 0.074 | 7.04 × 10−17 | 0.713 |
Systolic BP § | 0.348 | 1.84 × 10−114 | YKL-40 level * | 0.059 | 1.07 × 10−10 | 0.715 |
Diastolic BP § | 0.379 | 4.40 × 10−137 | Age | −0.061 | 8.94 × 10−10 | 0.717 |
HDL-C | −0.475 | 1.75 × 10−224 | Systolic BP § | 0.042 | 0.003 | 0.717 |
LDL-C | 0.242 | 2.49 × 10−54 | ||||
YKL-40 level * | 0.108 | 6.88 × 10−12 |
1st Quartile | 2nd Quartile | 3rd Quartile | 4th Quartile | ||||
---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Model 1 | Reference | 1.165 (0.949–1.430) | 0.144 | 1.389 (1.136–1.698) | 0.001 | 1.684 (1.382–2.051) | 2.23 × 10−7 |
Model 2 | Reference | 1.171 (0.947–1.457) | 0.145 | 1.470 (1.189–1.818) | 3.78 × 10−4 | 1.839 (1.475–2.291) | 5.94 × 10−8 |
Model 3 | Reference | 1.182 (0.897–1.557) | 0.234 | 1.605 (1.216–2.117) | 0.001 | 1.943 (1.453–2.598) | 7.00 × 10−6 |
Model 4 | Reference | 1.140 (0.851–1.527) | 0.379 | 1.589 (1.186–2.130) | 0.002 | 2.006 (1.477–2.725) | 8.00 × 10−5 |
1st Quartile | 2nd Quartile | 3rd Quartile | 4th Quartile | ||||
---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
All participants | |||||||
Model 1 | Reference | 1.453 (1.154–1.829) | 0.001 | 1.859 (1.487–2.324) | 5.25 × 10−8 | 2.521 (2.029–3.132) | 6.78 × 10−17 |
Model 2 | Reference | 1.301 (1.023–1.654) | 0.032 | 1.528 (1.204–1.939) | 4.97 × 10−4 | 1.798 (1.411–2.292) | 2.0 × 10−6 |
Normal weight participants (BMI < 23 kg/m2) | |||||||
Model 1 | Reference | 2.020(0.848–4.809) | 0.112 | 3.776 (1.642–8.430) | 0.001 | 7.525 (3.514–16.114) | 2.05 × 10−7 |
Model 2 | Reference | 1.514 (0.626–3.657) | 0.357 | 2.208 (0.965–5.051) | 0.061 | 2.912 (1.297–6.541) | 0.010 |
Overweight and obese participants (BMI ≥ 23 kg/m2) | |||||||
Model 1 | Reference | 1.402 (1.086–1.810) | 0.010 | 1.690 (1.316–2.170) | 3.90 × 10−5 | 2.134 (1.669–2.728) | 1.46 × 10−9 |
Model 2 | Reference | 1.326 (1.017–1.729) | 0.037 | 1.528 (1.171–1.993) | 0.002 | 1.731 (1.320–2.272) | 7.50 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, H.-H.; Chou, S.-H.; Yeh, K.-H.; Huang, H.-L.; Tzeng, I.-S.; Ko, Y.-L. YKL-40 Level Is Associated with TyG-BMI-Estimated Insulin Resistance and Metabolic Syndrome in a Population Without Diabetes, Independent of Obesity. Int. J. Mol. Sci. 2025, 26, 9682. https://doi.org/10.3390/ijms26199682
Chou H-H, Chou S-H, Yeh K-H, Huang H-L, Tzeng I-S, Ko Y-L. YKL-40 Level Is Associated with TyG-BMI-Estimated Insulin Resistance and Metabolic Syndrome in a Population Without Diabetes, Independent of Obesity. International Journal of Molecular Sciences. 2025; 26(19):9682. https://doi.org/10.3390/ijms26199682
Chicago/Turabian StyleChou, Hsin-Hua, Shing-Hsien Chou, Kuan-Hung Yeh, Hsuan-Li Huang, I-Shiang Tzeng, and Yu-Lin Ko. 2025. "YKL-40 Level Is Associated with TyG-BMI-Estimated Insulin Resistance and Metabolic Syndrome in a Population Without Diabetes, Independent of Obesity" International Journal of Molecular Sciences 26, no. 19: 9682. https://doi.org/10.3390/ijms26199682
APA StyleChou, H.-H., Chou, S.-H., Yeh, K.-H., Huang, H.-L., Tzeng, I.-S., & Ko, Y.-L. (2025). YKL-40 Level Is Associated with TyG-BMI-Estimated Insulin Resistance and Metabolic Syndrome in a Population Without Diabetes, Independent of Obesity. International Journal of Molecular Sciences, 26(19), 9682. https://doi.org/10.3390/ijms26199682