Connections Between Gene Polymorphism and Fetlock and Hock Measurements in Polish Sport Horses
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Blood Samples and Gene Polymorphism
4.3. Bone Structure Measurements
4.4. Statistical Analysis
- yijklmnop—bone measurement.
- µ—mean.
- Ti—fixed effect of the training center (i = 1, 2).
- Rj—fixed effect of the warmblood register (j = 1, …, 4).
- Gk—fixed effect of the horse gender (k = 1, 2).
- Ll—fixed effect of the limb—front/hind (for fetlock joints k = 1, 2).
- Sm—fixed effect of the horse side (k = 1, 2).
- In–fixed effect of the investigations (k = 1, 2).
- Po–fixed effect of the gene polymorphism (l = 1, 2, or 1, 2, 3).
- eijklmnop—error.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wypchło, M.; Korwin-Kossakowska, A.; Bereznowski, A.; Hecold, M.; Lewczuk, D. Polymorphisms of the COL9A2, AOAH and FRZB genes in the horse genome and their association with the occurrence of osteochondrosis. Ann. Anim. Sci. 2017, 17, 143–153. [Google Scholar] [CrossRef]
- Wypchło, M.; Korwin-Kossakowska, A.; Bereznowski, A.; Hecold, M.; Lewczuk, D. Polymorphisms in selected genes and analysis of their relationship with osteochondrosis in Polish sport horse breeds. Anim. Genet. 2018, 49, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, J.; Irven, C.; Sykes, B. Exclusion of the cartilage link protein and the cartilage matrix protein genes as the mutant loci in several heritable chondrodysplasias. Hum. Genet. 1994, 94, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Meulenbelt, I.; Bijkerk, C.; De Wildt, S.C.M.; Miedema, H.S.; Valkenburg, H.A.; Breedveld, M.D.; Pols, H.A.P.; Te Koppele, J.M.; Sloos, V.G.S.; Hofman, A.; et al. Investigation of the association of the CRTM and CRTL1 genes with radiographically evident osteoarthritis in subjects from the Rotterdam study. Arthritis Rheum. 1997, 40, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, C.; Dierks, C.; Hamann, H.; Distl, O. Associations between candidate gene markers at a quantitative trait locus on equine chromosome 4 responsible for osteochondrosis dissecans in fetlock joints of South German Coldblood horses. J. Hered. 2008, 99, 125–129. [Google Scholar] [CrossRef]
- Harris, J.; Schwinn, N.; Mahoney, J.A.; Lin, H.H.; Shaw, M.; Howard, C.J.; Da Silva, R.P.; Gordon, S. A vitellogenic-like carboxypeptidase expressed by human macrophages is localized in endoplasmic reticulum and membrane ruffles. Int. J. Exp. Pathol. 2006, 87, 29–39. [Google Scholar] [CrossRef]
- Ramos, Y.F.M.; den Hollander, W.; Bovée, J.V.M.G.; Bomer, N.; van der Breggen, R.; Lakenberg, N.; Keurentjes, J.C.; Goeman, J.J.; Slagboom, P.E.; Nelissen, R.G.H.H.; et al. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study. PLoS ONE 2014, 9, e103056. [Google Scholar] [CrossRef]
- Loughlin, J.; Dowling, B.; Chapman, K.; Marcelline, L.; Mustafa, Z.; Southam, L.; Ferreira, A.; Ciesielski, C.; Carson, D.A.; Corr, M. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc. Natl. Acad. Sci. USA 2004, 101, 9757–9762. [Google Scholar] [CrossRef]
- Lane, N.E.; Lian, K.; Nevitt, M.C.; Zmuda, J.M.; Lui, L.; Li, J.; Wang, J.; Fontecha, M.; Umbas, N.; Rosenbach, M.; et al. Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum. 2006, 54, 1246–1254. [Google Scholar] [CrossRef]
- Pacholsky, D.; Vakeel, P.; Himmel, M.; Löwe, T.; Stradal, T.; Rottner, K.; Fürst, D.O.; van der Ven, P.F.M. Xin repeats define a novel actin-binding motif. J. Cell Sci. 2004, 117, 5257–5268. [Google Scholar] [CrossRef]
- Lampe, V.; Dierks, C.; Distl, O. Refinement of a quantitative gene locus on equine chromosome 16 responsible for osteochondrosis in Hanoverian warmblood horses. Animal 2009, 3, 1224–1231. [Google Scholar] [CrossRef]
- Glade, M.J.; Belling, T.H., Jr. A dietary etiology for osteochondrotic cartilage. J. Equine Vet. Sci. 1986, 6, 151–155. [Google Scholar] [CrossRef]
- Henson, F.M.; Davenport, C.; Butler, L.; Moran, I.; Shingleton, W.D.; Jeffcott, L.B.; Schofield, P.N. Effects of insulin and insulin-like growth factors I and II on the growth of equine fetal and neonatal chondrocytes. Equine Vet. J. 1997, 29, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Jeffcott, L.B.; Henson, F.M.D. Studies on growth cartilage in the horse and their application to aetiopathogenesis of dyschondroplasia (osteochondrosis). Vet. J. 1998, 156, 177–192. [Google Scholar] [CrossRef]
- Semevolos, S.A.; Nixon, A.J.; Brower-Toland, B.D. Changes in molecular expression of aggrecan and collagen types I, II, and X, insulin-like growth factor-I, and transforming growth factor-β1 in articular cartilage obtained from horses with naturally acquired osteochondrosis. Am. J. Vet. Res. 2001, 62, 1088–1094. [Google Scholar] [CrossRef]
- Binnerts, M.E.; Wen, X.; Canté-Barrett, K.; Bright, J.; Chen, H.T.; Asundi, V.; Rupp, F. Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. Biochem. Biophys. Res. Commun. 2004, 315, 272–280. [Google Scholar] [CrossRef]
- Baker, S.; Booth, C.; Fillman, C.; Shapiro, M.; Blair, M.P.; Hyland, J.C.; Ala-Kokko, L. A loss of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. Am. J. Med. Genet. Part A 2011, 155, 1668–1672. [Google Scholar] [CrossRef]
- Briggs, M.D.; Chapman, K.L. Pseudoachondroplasia and multiple epiphyseal dysplasia: Mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 2002, 19, 465–478. [Google Scholar] [CrossRef]
- Briggs, M.D.; Wright, M.J.; Mortier, G.R. Multiple epiphyseal dysplasia, autosomal dominant. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2024. [Google Scholar]
- Higashino, K.; Matsui, Y.; Yagi, S.; Takata, Y.; Goto, T.; Sakai, T.; Katoh, S.; Yasui, N. The alpha2 type IX collagen tryptophan polymorphism is associated with the severity of disc degeneration in younger patients with herniated nucleus pulposus of the lumbar spine. Int. Orthop. 2007, 31, 107–111. [Google Scholar] [CrossRef]
- Jim, J.J.; Noponen-Hietala, N.; Cheung, K.M.; Ott, J.; Karppinen, J.; Sahraravand, A.; Luk, K.D.; Yip, S.P.; Sham, P.C.; Song, Y.Q.; et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine 2005, 30, 2735–2742. [Google Scholar] [CrossRef]
- Zhu, M.; Tang, D.; Wu, Q.; Hao, S.; Chen, M.; Xie, C.; Rosier, R.N.; O’Keefe, R.J.; Chen, D. Activation of β-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult β-catenin conditional activation mice. J. Bone Miner. Res. 2009, 24, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Loughlin, J.; Oene, M.V.; Chapman, K.; Surdulescu, G.L.; Doherty, M.; Spector, T.D. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, E.; Chapman, K.; Meulenbelt, I.; Karassa, F.B.; Loughlin, J.; Carr, A.; Doherty, M.; Doherty, S.; Gómez-Reino, J.J.; Gonzalez, A.; et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.A.; Ntolosi, B.; DaSilva, R.P.; Gordon, S.; McKnight, A.J. Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics 2001, 72, 243–251. [Google Scholar] [CrossRef]
- Striebich, C.C.; Falta, M.T.; Wang, Y.; Bill, J.; Kotzin, B.L. Selective accumulation of related CD4+ T cell clones in the synovial fluid of patients with rheumatoid arthritis. J. Immunol. 1998, 161, 4428–4436. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Huang, K.; Lin, Y.; Hong, Y.; Lin, Z. CPVL suppresses metastasis of nasopharyngeal carcinoma through inhibiting epithelial–mesenchymal transition. J. Cancer Res. Clin. Oncol. 2023, 149, 16473–16488. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, R.; Yu, W.; Wang, J.; Wang, C.; Pang, C.; Jia, W. CPVL/CHN2 genetic variant is associated with diabetic retinopathy in Chinese type 2 diabetic patients. Diabetes 2011, 60, 3085–3089. [Google Scholar] [CrossRef]
- Ignatovich, O.; Tomlinson, I.M.; Popov, A.V.; Brüggemann, M.; Winter, G. Dominance of intrinsic genetic factors in shaping the human immunoglobulin Vλ repertoire. J. Mol. Biol. 1999, 294, 457–465. [Google Scholar] [CrossRef]
- Turlo, A.J.; McDermott, B.T.; Barr, E.D.; Riggs, C.M.; Boyde, A.; Pinchbeck, G.L.; Clegg, P.D. Gene expression analysis of subchondral bone, cartilage, and synovium in naturally occurring equine palmar/plantar osteochondral disease. J. Orthop. Res. 2022, 40, 595–603. [Google Scholar] [CrossRef]
- Zavodovskaya, R.; Stover, S.M.; Murphy, B.G.; Katzman, S.; Durbin-Johnson, B.; Britton, M.; Finno, C.J. Bone formation transcripts dominate the differential gene expression profile in an equine osteoporotic condition associated with pulmonary silicosis. PLoS ONE 2018, 13, e0197459. [Google Scholar] [CrossRef]
- Kemper, A.M.; Drnevich, J.; McCue, M.E.; McCoy, A.M. Differential gene expression in articular cartilage and subchondral bone of neonatal and adult horses. Genes 2019, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.H.; Halper, J. Connective tissue disorders in domestic animals. In Progress in Heritable Soft Connective Tissue Diseases; Springer International Publishing: Cham, Switzerland, 2021; pp. 325–335. [Google Scholar]
- Lee, S.; Baker, M.E.; Clinton, M.; Taylor, S.E. Use of omics data in fracture prediction; a scoping and systematic review in horses and humans. Animals 2021, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Palomino Lago, E.; Ross, A.K.; McClellan, A.; Guest, D.J. Identification of a global gene expression signature associated with the genetic risk of catastrophic fracture in iPSC-derived osteoblasts from Thoroughbred horses. Anim. Genet. 2025, 56, e13504. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk-Szmukier, M.; Ropka-Molik, K.; Piórkowska, K.; Bugno-Poniewierska, M. The expression profile of genes involved in osteoclastogenesis detected in whole blood of Arabian horses during 3 years of competing at race track. Res. Vet. Sci. 2019, 123, 59–64. [Google Scholar] [CrossRef]
- Gmel, A.I.; Druml, T.; von Niederhäusern, R.; Leeb, T.; Neuditschko, M. Genome-wide association studies based on equine joint angle measurements reveal new QTL affecting the conformation of horses. Genes 2019, 10, 370. [Google Scholar] [CrossRef]
- Wang, T.; Shi, X.; Liu, Z.; Ren, W.; Wang, X.; Huang, B.; Kou, X.; Liang, H.; Wang, C.; Chai, W. A novel A > G polymorphism in the intron 1 of LCORL gene is significantly associated with hide weight and body size in Dezhou donkey. Animals 2022, 12, 2581. [Google Scholar] [CrossRef]
- Bai, F.; Cai, Y.; Qi, M.; Liang, C.; Pan, L.; Liu, Y.; Feng, Y.; Cao, X.; Yang, Q.; Ren, G.; et al. LCORL and STC2 variants increase body size and growth rate in cattle and other animals. Genom. Proteom. Bioinform. 2025, 23, qzaf025. [Google Scholar] [CrossRef]
- Staiger, E.A.; Al Abri, M.A.; Pflug, K.M.; Kalla, S.E.; Ainsworth, D.M.; Miller, D.; Raudsepp, T.; Sutter, N.B.; Brooks, S.A. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiol. Genom. 2016, 48, 325–335. [Google Scholar] [CrossRef]
- Al Abri, M.A.; Holl, H.M.; Kalla, S.E.; Sutter, N.B.; Brooks, S.A. Whole genome detection of sequence and structural polymorphism in six diverse horses. PLoS ONE 2020, 15, e0230899. [Google Scholar] [CrossRef]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Pawlina-Tyszko, K.; Stefaniuk-Szmukier, M.; Szmatoła, T.; Bugno-Poniewierska, M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE 2019, 14, e0210751. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Neuditschko, M.; Ricard, A.; Velie, B.; Lindgren, G.; Mesarič, M.; Cotman, M.; Horna, M.; Dobretsberger, M.; Brem, G.; et al. Genome-wide homozygosity patterns and evidence for selection in a set of European and near eastern horse breeds. Genes 2019, 10, 491. [Google Scholar] [CrossRef]
- Bai, H.; Lu, H.; Wang, L.; Wang, S.; Zeng, W.; Zhang, T. SNPs analysis of height traits in Ningqiang pony. Anim. Biotechnol. 2021, 32, 566–572. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, T.S.; Cho, B.W.; Kim, T.M. Nanoparticles from equine fetal bone marrow-derived cells enhance the survival of injured chondrocytes. Animals 2020, 10, 1723. [Google Scholar] [CrossRef] [PubMed]
- Sevane, N.; Dunner, S.; Boado, A.; Cañon, J. Polymorphisms in ten candidate genes are associated with conformational and locomotive traits in Spanish Purebred horses. J. Appl. Genet. 2017, 58, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Azcona, F.; Karlau, A.; Trigo, P.; Molina, A.; Demyda-Peyrás, S. Genomic tools for early selection among Thoroughbreds and Polo Argentino horses for practicing polo. J. Equine Vet. Sci. 2024, 138, 105098. [Google Scholar] [CrossRef]
- Nazari-Ghadikolaei, A.; Fikse, W.F.; Viklund, Å.G.; Mikko, S.; Eriksson, S. Single-Step Genome-Wide Association Study of Factors for Evaluated and Linearly Scored Traits in Swedish Warmblood Horses. J. Anim. Breed. Genet. 2025, 142, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.; Möller, S.; Stock, K.F.; Nolte, W.; von Depka Prondzinski, M.; Reents, R.; Kalm, E.; Kühn, C.; Thaller, G.; Falker-Gieske, C.; et al. Genomic analyses of withers height and linear conformation traits in German Warmblood horses using imputed sequence-level genotypes. Genet. Sel. Evol. 2024, 56, 45. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhu, M.; Wang, B.; Teng, S.; Yan, J.; Wang, H.; Yuan, P.; Cao, S.; Qu, X.; et al. Genomic Insights into Post-Domestication Expansion and Selection of Body Size in Ponies. Adv. Sci. 2025, 12, 2413023. [Google Scholar] [CrossRef]
- Wang, G.; Li, M.; Zhou, J.; An, X.; Bai, F.; Gao, Y.; Yu, J.; Li, H.; Lei, C.; Dang, R. A novel A > G polymorphism in the intron 2 of TBX3 gene is significantly associated with body size in donkeys. Gene 2021, 785, 145602. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liu, W.; Li, Y.; Pan, J.; Pu, Y.; Han, J.; Orlando, L.; Ma, Y.; Jiang, L. A single-nucleotide mutation within the TBX3 enhancer increased body size in Chinese horses. Curr. Biol. 2022, 32, 480–487. [Google Scholar] [CrossRef]
- Nanaei, H.A.; Esmailizadeh, A.; Mehrgardi, A.A.; Han, J.; Wu, D.-D.; Li, Y.; Zhang, Y.-P. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genom. 2020, 21, 496. [Google Scholar] [CrossRef] [PubMed]
- Sigurðardóttir, H.; Ablondi, M.; Kristjansson, T.; Lindgren, G.; Eriksson, S. Genetic diversity and signatures of selection in Icelandic horses and Exmoor ponies. BMC Genom. 2024, 25, 772. [Google Scholar] [PubMed]
- Choudhury, P.; Wang, Z.; Zhu, M.; Teng, S.; Yan, J.; Cao, S.; Yi, G.; Liu, Y.; Liao, Y.; Tang, Z. Genome-wide detection of copy number variations associated with miniature features in horses. Genes 2023, 14, 1934. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, S.S.; Aminafshar, M.; Maryam, M.B.Z.B.; Banabazi, M.H.; Sargolzaei, M.; Miar, Y. Signatures of selection analysis using whole-genome sequence data reveals novel candidate genes for pony and light horse types. Genome 2020, 63, 387–396. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, D.; Cao, J.W.; Zhang, L.; Liu, C.X.; Xing, Y.P.; Wang, F.; Xu, H.Y.; Wang, S.C.; Ling, Y.; et al. Pathways involved in pony body size development. BMC Genom. 2021, 22, 58. [Google Scholar] [CrossRef]
- McIlwraith, C.W.; Kawcak, C.E.; Frisbie, D.D.; Little, C.B.; Clegg, P.D.; Peffers, M.J.; Karsdal, M.A.; Ekman, S.; Laverty, S.; Slayden, R.A.; et al. Biomarkers for equine joint injury and osteoarthritis. J. Orthop. Res. 2018, 36, 823–831. [Google Scholar] [CrossRef]
- Dierks, C. Molecular genetic analysis of quantitative trait loci (QTL) for osteochondrosis in hanoverian warmlood Horses. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hannover, Germany, 2006. [Google Scholar]
- Komm, K. Fine mapping of quantitative trait loci (QTL) for osteochondrosis in Hanoverian warmblood horse. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hannover, Germany, 2010. [Google Scholar]
- Wittwer, C.; Hamann, H.; Distl, O. The Candidate Gene XIRP2 at a Quantitative Gene Locus on Equine Chromosome 18 Associated with Osteochondrosis in Fetlock and Hock Joints of South German Coldblood Horses. J. Hered. 2009, 100, 481–486. [Google Scholar]
- Wittwer, C. Mapping quantitative trait loci (QTL) and comparative analysis of positional candidate genes for osteochondrosis in South German Coldblood horses. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hannover, Germany, 2006. [Google Scholar]
- Lampe, V. Fine mapping of quantitative trait loci (QTL) for osteochondrosis in Hanoverian warmblood horses. Ph.D. Thesis, University of Veterinary Medicine Hannover, Hannover, Germany, 2009. [Google Scholar]
GENES/ Genotypes | Measurements of the Fetlock Joint [LSM in cm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | B1 | B2 | C | C1 | C2 | D | E | ||
COL9A2 | CC | 3.69 AB | 4.86 AB | 3.15 AB | 3.29 AB | 0.80 AB | 0.65 AB | 1.70 | 0.14 | 10.21 |
CT | 3.80 A | 4.94 A | 3.24 Ac | 3.35 A | 0.83 A | 0.68 Ac | 1.72 | 0.14 | 10.22 | |
TT | 3.78 B | 4.92 B | 3.21 Bc | 3.25 B | 0.83 B | 0.67 Bc | 1.71 | 0.14 | 10.19 | |
p-value | 0.0001 | 0.01 | 0.001 | 0.0001 | 0.001 | 0.0001 | ns | ns | ns | |
AOAH1 | AA | 3.74 AB | 4.90 AB | 3.19 | 3.33 a | 0.82 | 0.66 AB | 1,71 A | 0.14 | 10.19 a |
AG | 3.83 BC | 4.95 A | 3.21 | 3.36 ab | 0.83 | 0.69 BC | 1.71 B | 0.14 | 10.24 b | |
CG | 3.54 AC | 4.81 B | 3.21 | 3.24 b | 0.77 | 0.57 AC | 1.88 AB | 0.14 | 10.54 ab | |
p-value | 0.0001 | 0.01 | ns | 0.01 | 0.07 | 0.0001 | 0.02 | ns | 0.02 | |
FRZB | CC | 3.68 aB | 4.84 aB | 3.17 | 3.29 ab | 0.82 | 0.67 | 1.67 a | 0.14 | 10.25 |
CT | 3.74 aC | 4.91 a | 3.20 | 3.33 a | 0.82 | 0.66 A | 1.72 ab | 0.14 | 10.20 | |
TT | 3.78 BC | 4.92 B | 3.20 | 3.45 b | 0.82 | 0.68 A | 1.70 b | 0.14 | 10.21 | |
p-value | 0.0001 | 0.03 | ns | 0.04 | ns | 0.001 | 0.03 | ns | ns | |
CPVL | CC | 3.77 | 4.95 A | 3.19 | 3.35 | 0.83 AB | 0.68 | 1.69 ab | 0.14 | 10.28 AB |
CG | 3.75 | 4.89 Ab | 3.20 | 3.33 | 0.82 A | 0.67 | 1.71 a | 0.15 A | 10.19 A | |
GG | 3.77 | 4.92 b | 3.19 | 3.33 | 0.81 B | 0.66 | 1.71 b | 0.13 A | 10.19 B | |
p-value | ns | 0.0007 | ns | ns | 0.0007 | 0.09 | 0.05 | 0.0001 | 0.004 | |
MATN | CC | 3.76 | 4.91 | 3.24 Ab | 3.27 | 0.81 | 0.70 AB | 1.72 | 0.15 | 10.24 |
CT | 3.76 | 4.90 | 3.19 Ac | 2.23 | 0.83 | 0.66 A | 1.71 | 0.15 | 10.19 | |
TT | 3.76 | 4.91 | 3.21 bc | 3.34 | 0.82 | 0.67 B | 1.71 | 0.15 | 10.21 | |
p-value | ns | ns | 0.005 | ns | ns | 0.0003 | ns | ns | ns | |
ACVR1 | AA | 3.76 | 4.95 | 3.19 | 3.39 a | 0.85 Ab | 0.67 | 1.68 a | 0.14 | 10.39 aB |
TA | 3.74 | 4.92 | 3.21 | 3.32 ab | 0.82 Ac | 0.65 A | 1.74 aB | 0.14 A | 10.25 aC | |
TT | 3.77 | 4.91 | 3.20 | 3.43 b | 0.83 bc | 0.68 A | 1.70 B | 0.15 A | 10.19 BC | |
p-value | ns | ns | ns | ns | 0.009 | 0.0001 | 0.0001 | 0.003 | 0.002 | |
BMPER | CC | 3.77 | 4.88 | 3.06 AB | 3.33 | 0.80 | 0.66 | 1.61 AB | 0.15 | 10.33 |
CT | 3.75 | 4.87 A | 3.22 A | 3.27 | 0.82 | 0.67 | 1.72 A | 0.15 | 10.18 | |
TT | 3.76 | 4.92 A | 3.18 B | 3.34 | 0.83 | 0.67 | 1.70 B | 0.15 | 10.21 | |
p-value | ns | 0.009 | 0.0001 | ns | ns | ns | 0.006 | ns | ns | |
HYAL3 | CC | 3.78 a | 4.95 A | 3.21 a | 3.36 A | 0.82 a | 0.66 | 1.73 a | 0.14 A | 10.19 a |
TC | 3.79 B | 4.92 b | 3.22 B | 3.36 B | 0.83 aB | 0.67 | 1.72 b | 0.15 AB | 10.26 aB | |
TT | 3.74 aB | 4.89 Ab | 3.18 aB | 3.31 AB | 0.82 B | 0.68 | 1.70 ab | 0.14 B | 10.17 B | |
p-value | 0.009 | 0.01 | 0.0001 | 0.001 | 0.01 | ns | 0.02 | 0.0005 | 0.0001 | |
IGF1 | AA | 3.76 | 4.91 a | 3.20 | 3.34 a | 0.83 a | 0.67 A | 1.71 A | 0.15 | 10.20 a |
AT | 3.76 | 4.88 a | 3.20 | 3.32 a | 0.81 a | 0.65 A | 1.74 A | 0.14 | 10.27 a | |
TT | - | - | - | - | - | - | - | - | - | |
p-value | ns | 0.04 | ns | 0.03 | 0.01 | 0.0001 | 0.008 | ns | 0.01 | |
XIRP2 | AA | 3.76 | 4.89 | 3.19 | 3.32 | 0.83 | 0.67 | 1.69 | 0.15 | 10.19 |
AG | 3.76 | 4.92 | 3.20 | 3.34 | 0.82 | 0.67 | 1.72 | 0.15 | 10.22 | |
GG | 3.76 | 4.89 | 3.19 | 3.34 | 0.82 | 0.67 | 1.71 | 0.15 | 10.20 | |
p-value | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
ANLN | CC | 3.75 a | 4.93 a | 3.22 A | 3.34 A | 0.84 AB | 0.67 | 1.71 | 0.15 | 10.24 A |
CT | 3.78 aB | 4.91 b | 3.20 | 3.35 B | 0.82 A | 0.67 | 1.72 | 0.15 | 10.23 B | |
TT | 3.73 B | 4.89 ab | 3.19 A | 3.30 AB | 0.82 B | 0.66 | 1.71 | 0.15 | 10.11 AB | |
p-value | 0.001 | 0.05 | 0.01 | 0.0001 | 0.0009 | ns | ns | ns | 0.0001 | |
HYAL1 | AA | 3.77 A | 4.82 aB | 3.21 | 3.35 A | 0.83 a | 0.67 | 1.71 | 0.14 | 10.23 a |
AC | 3.70 A | 4.87 a | 3.19 | 3.29 A | 0.82 a | 0.66 | 1.71 | 0.14 | 10.18 | |
CC | 3.74 | 4.83 B | 3.20 | 3.31 | 0.81 | 0.69 | 1.75 | 0.14 | 10.10 a | |
p-value | 0.0001 | 0.002 | ns | 0.0001 | 0.02 | 0.09 | ns | ns | 0.02 | |
TGF-β | GG | 3.74 A | 4.88 aB | 3.18 A | 3.32 A | 0.82 | 0.66 aB | 1.71 | 0.15 | 10.19 |
TG | 3.76 b | 4.91 aC | 3.20 b | 3.34 B | 0.82 | 0.67 a | 1.71 | 0.15 | 10.23 | |
TT | 3.79 Ab | 4.98 BC | 3.23 Ab | 3.37 AB | 0.83 | 0.68 B | 1.73 | 0.14 | 10.20 | |
p-value | 0.007 | 0.0001 | 0.0009 | 0.0003 | ns | 0.01 | ns | ns | ns | |
COL5A2 | CC | 3.84 AB | 4.97 AB | 3.23 A | 3.35 | 0.83 a | 0.68 | 1.73 a | 0.15 Ab | 10.24 |
CT | 3.75 A | 4.91 A | 3.17 AB | 3.35 | 0.82 aB | 0.67 | 1.69 ab | 0.13 A | 10.26 A | |
TT | 3.75 B | 4.90 B | 3.21 B | 3.33 | 0.83 B | 0.67 | 1.72 b | 0.14 b | 10.18 A | |
p-value | 0.0001 | 0.0034 | 0.0001 | ns | 0.01 | ns | 0.02 | 0.02 | 0.01 | |
ELMO1 | GG | 3.75 A | 4.90 a | 3.18 A | 3.32 A | 0.82 | 0.66 A | 1.70 A | 0.14 | 10.17 A |
TG | 3.79 AB | 4.92 aB | 3.23 AB | 3.36 AB | 0.83 | 0.68 AB | 1.73 A | 0.15 | 10.27 AB | |
TT | 3.73 B | 4.88 B | 3.19 B | 3.33 B | 0.82 | 0.66 B | 1.72 | 0.15 | 10.18 B | |
p-value | 0.0001 | 0.0004 | 0.0001 | 0.002 | 0.08 | 0.001 | 0.01 | 0.08 | 0.0001 |
GENES/ Genotypes | Measurements of the Hock Joint [LSM in cm] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | N | ||
COL9A2 | CC | 7.83 | 1.45 A | 1.58 | 3.31 | 5.14 | 6.51 a | 11.95 | 7.23 aC | 5.94 | 1.12 | 1.63 ab | 1.61 | 6.36 | 17.80 a |
CT | 7.72 | 1.55 B | 1.57 | 3.38 | 5.15 | 6.56 B | 12.06 | 7.39 bC | 6.01 | 1.18 | 1.68 a | 1.65 | 6.57 | 18.14 a | |
TT | 7.63 | 1.47 AB | 1.63 | 3.65 | 5.04 | 6.28 aB | 11.94 | 7.36 ab | 5.93 | 1.13 | 1.67 b | 1.62 | 6.56 | 17.94 | |
p-value | ns | 0.001 | ns | ns | ns | 0.01 | ns | 0.05 | ns | 0.09 | 0.04 | ns | ns | 0.03 | |
AOAH1 | AA | 7.74 | 1.53 A | 1.57 A | 3.38 | 5.10 | 6.42 | 12.00 | 7.29 | 5.88 | 1.19 | 1.68 | 1.65 | 6.51 | 17.95 |
AG | 7.66 | 1.45 A | 1.65 A | 3.31 | 5.12 | 6.52 | 11.97 | 7.45 | 5.93 | 1.08 | 1.64 | 1.60 | 6.51 | 18.12 | |
CG | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
p-value | ns | 0.005 | 0.05 | ns | ns | ns | ns | 0.07 | ns | 0.002 | ns | 0.07 | ns | ns | |
FRZB | CC | 7.07 Ab | 1.52 | 1.51 | 3.26 | 4.84 | 6.12 | 11.52 AB | 6.97 AB | 5.58 AB | 1.18 | 1.51 | 1.67 | 6.15 | 17.36 AB |
CT | 7.92 AC | 1.52 | 1.58 | 3.37 | 5.14 | 6.45 | 12.01 A | 7.39 A | 6.03 A | 1.16 | 1.68 | 1.65 | 6.63 | 18.03 A | |
TT | 7.66 bC | 1.49 | 1.61 | 3.36 | 5.14 | 6.50 | 12.06 B | 7.36 B | 5.99 B | 1.14 | 1.67 | 1.61 | 6.47 | 18.06 B | |
p-value | 0.006 | ns | ns | ns | ns | ns | 0.01 | 0.01 | 0.002 | ns | ns | ns | ns | 0.01 | |
CPVL | CC | 7.61 | 1.35 AB | 1.60 | 3.29 aB | 4.97 A | 6.39 | 11.99 | 7.33 | 5.94 | 1.15 | 1.64 | 1.58 A | 6.36 | 18.09 a |
CG | 7.72 | 1.52 A | 1.62 | 3.37 a | 5.19 Ab | 6.56 A | 12.04 | 7.39 | 6.00 | 1.15 | 1.66 | 1.66 A | 6.49 | 18.07 b | |
GG | 7.72 | 1.51 B | 1.57 | 3.3 B | 5.07 b | 6.36 A | 11.94 | 7.29 | 5.93 | 1.17 | 1.69 | 1.62 | 6.63 | 17.81 ab | |
p-value | ns | ns | ns | 0.02 | 0.005 | 0.05 | ns | ns | ns | ns | ns | 0.009 | ns | 0.03 | |
MATN | CC | 7.61 | 1.35 AB | 1.58 | 3.57 ab | 5.16 | 6.29 | 11.92 | 7.65 | 5.96 | 1.30 a | 1.73 | 1.83 | 6.80 | 17.96 |
CT | 7.72 | 1.52 A | 1.61 | 3.38 a | 5.09 | 6.48 | 11.87 a | 7.33 | 5.95 | 1.18 | 1.68 | 1.63 | 6.46 | 17.90 | |
TT | 7,72 | 1.51 B | 1.59 | 3.34 b | 5.12 | 6.44 | 12.06 a | 7.33 | 5.98 | 1.14 a | 1.66 | 1.63 | 6.53 | 18.05 | |
p-value | ns | 0.003 | ns | 0.05 | ns | 0.005 | ns | 0.05 | ns | ns | 0.04 | 0.007 | ns | ns | |
ACVR1 | AA | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
TA | 7.72 | 1.49 | 1.61 | 3.31 a | 4.96 A | 6.40 | 11.96 | 7.26 a | 5.96 | 1.18 | 1.64 | 1.62 | 6.41 | 17.93 | |
TT | 7.72 | 1.52 | 1.59 | 3.38 a | 5.16 A | 6.48 | 12.01 | 7.37 a | 5.97 | 1.15 | 1.68 | 1.64 | 6.56 | 18.03 | |
p-value | ns | ns | ns | 0.03 | 0.001 | ns | ns | 0.05 | ns | ns | ns | ns | ns | ns | |
BMPER | CC | 8.57 a | 1.55 | 1.62 | 3.33 | 5.56 ab | 6.85 | 12.41 a | 7.57 a | 6.38 Ab | 0.99 a | 1.63 | 1.61 | 6.48 | 18.46 |
CT | 7.51 a | 1.46 | 1.52 | 3.17 A | 5.09 a | 6.63 | 11.75 ab | 7.13 aB | 5.78 AC | 1.07 B | 1.59 a | 1.53 A | 6.44 | 17.74 | |
TT | 7.74 | 1.51 | 1.60 | 3.37 A | 5.10 b | 6.43 | 12.01 b | 7.36 B | 5.98 bC | 1.17 aB | 1.68 a | 1.65 A | 6.52 | 18.02 | |
p-value | 0.05 | 0.07 | ns | 0.001 | 0.04 | ns | 0.01 | 0.007 | ns | 0.002 | 0.03 | 0.005 | ns | 0.06 | |
HYAL3 | CC | 7.77 | 1.51 | 1.63 | 3.31 | 4.91 A | 6.56 | 11.94 | 7.30 | 5.94 | 1.19 | 1.63 a | 1.61 | 6.74 | 17.98 |
TC | 7.72 | 1.51 | 1.60 | 3.38 | 5.29 Ab | 6.38 | 12.08 A | 7.37 | 5.97 | 1.15 | 1.69 aB | 1.64 | 6.50 | 18.03 | |
TT | 7.68 | 1.51 | 1.58 | 3.34 | 5.05 b | 6.54 | 11.86 A | 7.31 | 5.98 | 1.15 | 1.63 B | 1.63 | 6.44 | 17.95 | |
p-value | ns | ns | ns | ns | 0.005 | ns | 0.01 | ns | ns | ns | 0.009 | ns | ns | ns | |
IGF1 | AA | 7.73 | 1.51 a | 1.60 | 3.36 | 5.10 a | 6.46 | 11.99 | 7.34 | 5.96 | 1.16 | 1.66 | 1.64 A | 6.52 | 18.00 |
AT | 7.62 | 1.45 a | 1.59 | 3.36 | 5.28 a | 6.30 | 12.10 | 7.47 | 6.07 | 1.13 | 1.69 | 1.56 A | 6.46 | 17.96 | |
TT | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
p-value | ns | 0.01 | ns | ns | 0.03 | ns | ns | ns | ns | ns | ns | 0.002 | ns | ns | |
XIRP2 | AA | 7.71 | 1.51 | 1.61 | 3.35 | 5.14 | 6.39 | 11.95 a | 7.32 | 5.94 | 1.13 | 1.67 | 1.66 | 6.39 | 17.89 |
AG | 7.68 | 1.51 | 1.60 | 3.36 | 5.08 | 6.44 | 11.95 B | 7.32 | 5.95 | 1.16 | 1.66 | 1.63 | 6.47 | 17.97 | |
GG | 7.82 | 1.51 | 1.60 | 3.36 | 5.19 | 6.57 | 12.20 aB | 7.44 | 6.06 | 1.15 | 1.68 | 1.63 | 6.66 | 18.18 | |
p-value | ns | ns | ns | ns | ns | ns | 0.01 | ns | ns | ns | ns | ns | ns | 0.07 | |
ANLN | CC | 7.68 | 1.53 A | 1.59 | 3.34 a | 5.01 A | 6.46 | 11.86 A | 7.26 a | 5.93 | 1.17 | 1.63 A | 1.63 | 6.44 | 17.86 A |
CT | 7.78 | 1.52 B | 1.61 | 3.38 B | 5.18 A | 6.45 | 12.11 AB | 7.42 ab | 6.01 A | 1.16 | 1.69 AB | 1.64 | 6.53 | 18.18 AB | |
TT | 7.51 | 1.43 AB | 1.56 | 3.26 aB | 5.09 | 6.43 | 11.78 B | 7.28 b | 5.86 A | 1.12 | 1.61 B | 1.62 | 6.66 | 17.63 B | |
p-value | ns | 0.001 | ns | 0.004 | 0.02 | ns | 0.004 | 0.02 | 0.01 | ns | 0.002 | ns | ns | 0.001 | |
HYAL1 | AA | 7.92 A | 1.51 | 1.59 | 3.37 | 5.11 | 6.43 | 12.08 a | 7.29 | 5.97 | 1.13 | 1.70 | 1.62 | 6.50 | 18.05 |
AC | 7.98 B | 1.53 | 1.63 | 3.38 | 5.21 | 6.53 | 12.28 ab | 7.25 | 6.04 | 1.14 | 1.68 | 1.62 | 6.81 | 18.20 | |
CC | 6.84 AB | 1.52 | 1.57 | 3.34 | 5.08 | 6.50 | 11.70 b | 7.60 | 5.94 | 1.23 | 1.57 | 1.71 | 6.43 | 17.79 | |
p-value | 0.002 | ns | ns | ns | ns | ns | 0.03 | ns | ns | ns | ns | ns | ns | ns | |
TGF-β | GG | 7.82 | 1.52 | 1.59 | 3.37 | 5.15 | 6.35 | 12.04 | 7.29 | 5.97 | 1.16 A | 1.68 | 1.66 a | 6.69 | 18.09 |
TG | 7.65 | 1.50 | 1.60 | 3.34 | 5.10 | 6.48 | 11.95 | 7.34 | 5.95 | 1.13 B | 1.66 | 1.61 ab | 6.43 | 17.94 | |
TT | 7.77 | 1.54 | 1.60 | 3.42 | 5.11 | 6.54 | 12.04 | 7.45 | 6.07 | 1.26 AB | 1.68 | 1.66 b | 6.50 | 18.12 | |
p-value | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.001 | ns | 0.03 | ns | ns | |
COL5A9 | CC | 7.91 | 1.52 | 1.61 | 3.45 ab | 5.00 A | 6.45 | 12.17 | 7.47 | 6.22 AB | 1.18 a | 1.69 | 1.66 | 6.48 | 18.36 aB |
CT | 7.85 a | 1.51 | 1.56 | 3.34 a | 5.26 AB | 6.45 | 11.96 | 7.34 | 5.94 A | 1.09 aB | 1.69 | 1.61 | 6.69 | 17.98 a | |
TT | 7.62 a | 1.51 | 1.61 | 3.34 b | 5.09 B | 6.45 | 11.97 | 7.31 | 5.94 B | 1.17 B | 1.66 | 1.63 | 6.47 | 17.94 B | |
p-value | 0.05 | ns | ns | 0.03 | 0.004 | ns | ns | ns | 0.003 | 0.003 | ns | ns | ns | 0.01 | |
ELMO1 | GG | 7.72 | 1.49 | 1.61 | 3.37 | 5.15 | 6.43 | 12.06 | 7.32 | 5.95 | 1.16 | 1.68 | 1.64 | 6.44 | 17.95 |
TG | 7.71 | 1.52 | 1.57 | 3.36 | 5.11 | 6.51 | 12.00 | 7.39 | 5.99 | 1.17 | 1.67 | 1.62 | 6.65 | 18.06 | |
TT | 7.72 | 1.53 | 1.61 | 3.35 | 5.06 | 6.42 | 11.92 | 7.31 | 5.96 | 1.13 | 1.65 | 1.65 | 6.42 | 17.98 | |
p-value | ns | 0.08 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
GENES | Number of Affected Measurements | |||||
---|---|---|---|---|---|---|
Fetlock (9 Parameters) | Hock (14 Parameters) | Both Joints (23 Parameters) | ||||
Number Affected | % Affected | Number Affected | % Affected | Number Affected | % Affected | |
COL9A2 | 6 | 67 | 6 | 43 | 12 | 52 |
AOAH1 | 7 | 78 | 5 | 36 | 12 | 52 |
FRZB | 5 | 56 | 5 | 36 | 10 | 43 |
CPVL | 6 | 67 | 5 | 36 | 11 | 48 |
MATN | 2 | 22 | 6 | 43 | 8 | 35 |
ACVR1 | 5 | 56 | 3 | 21 | 8 | 35 |
BMPER | 3 | 33 | 10 | 71 | 13 | 56 |
HYAL3 | 8 | 89 | 3 | 21 | 11 | 48 |
IGF1 | 6 | 67 | 3 | 21 | 9 | 39 |
XIRP2 | 0 | 0 | 1 | 7 | 1 | 4 |
ANLN | 6 | 67 | 8 | 57 | 14 | 61 |
HYAL1 | 5 | 56 | 2 | 14 | 7 | 30 |
TGF-β | 5 | 56 | 2 | 14 | 7 | 30 |
COL5A2 | 7 | 78 | 6 | 43 | 13 | 57 |
ELMO1 | 7 | 78 | 0 | 0 | 7 | 30 |
mean | 5 | 58 | 4 | 31 | 10 | 41 |
GENES | Gene Genotype | Gene Frequency | Allele Frequency Observed | |||
---|---|---|---|---|---|---|
Observed | Expected | |||||
COL9A2 (n = 198) | CC | 61 | 0.310 | 0.200 | C | 0.447 |
CT | 54 | 0.274 | 0.494 | - | ||
TT | 83 | 0.416 | 0.306 | T | 0.553 | |
Hardy–Weinberg test | Χ2 = 39.09 | p = 0.0001 | ||||
AOAH1 (n = 198) | AA | 168 | 0.848 | 0.850 | A | 0.922 |
AG | 29 | 0.146 | 0.144 | - | ||
GG | 1 | 0.0005 | 0.0006 | G | 0.078 | |
Hardy–Weinberg test | Χ2 = 0.04 | p = 0.83354 | ||||
FRZB (n = 198) | CC | 8 | 0.004 | 0.064 | C | 0.253 |
CT | 84 | 0.424 | 0.378 | - | ||
TT | 106 | 0.535 | 0.559 | T | 0.747 | |
Hardy–Weinberg test | Χ2 = 3.03 | p = 0.08154 | ||||
CPVL (n = 198) | CC | 38 | 0.192 | 0.189 | C | 0.434 |
CG | 96 | 0.485 | 0.491 | - | ||
GG | 64 | 0.323 | 0.320 | G | 0.566 | |
Hardy–Weinberg test | Χ2 = 0.03 | p = 0.85167 | ||||
MATN (n = 198) | CC | 9 | 0.045 | 0.046 | C | 0.215 |
CT | 67 | 0.338 | 0.337 | - | ||
TT | 122 | 0.616 | 0.617 | T | 0.785 | |
Hardy–Weinberg test | Χ2 = 0.00 | p = 0.95882 | ||||
ACVR1 (n = 198) | AA | 5 | 0.025 | 0.025 | A | 0.157 |
TA | 52 | 0.263 | 0.264 | - | ||
TT | 141 | 0.712 | 0.711 | T | 0.843 | |
Hardy–Weinberg test | Χ2 = 0.01 | p = 0.93717 | ||||
BMPER (n = 198) | CC | 3 | 0.015 | 0.0009 | C | 0.096 |
CT | 32 | 0.162 | 0.174 | - | ||
TT | 163 | 0.823 | 0.817 | T | 0.904 | |
Hardy–Weinberg test | Χ2 = 0.93 | p = 0.03353 | ||||
HYAL3 (n = 198) | CC | 25 | 0.126 | 0.132 | C | 0.364 |
TC | 94 | 0.475 | 0.463 | - | ||
TT | 79 | 0.399 | 0.405 | T | 0.636 | |
Hardy–Weinberg test | Χ2 = 0.13 | p = 0.71664 | ||||
IGF1 (n = 198) | AA | 168 | 0.848 | 0.854 | A | 0.924 |
AT | 30 | 0.152 | 0.140 | - | ||
TT | - | 0.000 | 0.006 | T | 0.076 | |
Hardy–Weinberg test | Χ2 = 1.33 | p = 0.24881 | ||||
XIRP2 (n = 198) | AA | 43 | 0.217 | 0.223 | A | 0.472 |
AG | 101 | 0.510 | 0.498 | - | ||
GG | 54 | 0.273 | 0.279 | G | 0.528 | |
Hardy–Weinberg test | Χ2 = 0.11 | p = 0.74237 | ||||
ANLN (n = 198) | CC | 58 | 0.293 | 0.271 | C | 0.520 |
CT | 90 | 0.455 | 0.499 | - | ||
TT | 50 | 0.253 | 0.230 | T | 0.480 | |
Hardy–Weinberg test | Χ2 = 1.58 | p = 0.20829 | ||||
HYAL1 (n = 198) | AA | 158 | 0.798 | 0.781 | A | 0.884 |
AC | 34 | 0.172 | 0.205 | - | ||
CC | 6 | 0.030 | 0.013 | C | 0.116 | |
Hardy–Weinberg test | Χ2 = 5.31 | p = 0.02120 | ||||
TGF-β (n = 198) | GG | 68 | 0.343 | 0.343 | G | 0.586 |
TG | 96 | 0.485 | 0.485 | - | ||
TT | 34 | 0.172 | 0.172 | T | 0.414 | |
Hardy–Weinberg test | Χ2 = 0.00 | p = 0.99056 | ||||
COL5A9 (n = 198) | CC | 17 | 0.086 | 0.051 | C | 0.225 |
CT | 55 | 0.278 | 0.348 | - | ||
TT | 126 | 0.0636 | 0.601 | T | 0.775 | |
Hardy–Weinberg test | Χ2= 8.15 | p = 0.00431 | ||||
ELMO1 (n = 198) | GG | 80 | 0.404 | 0.361 | G | 0.601 |
TG | 78 | 0.394 | 0.480 | - | ||
TT | 40 | 0.202 | 0.159 | T | 0.399 | |
Hardy–Weinberg test | Χ2 = 6.32 | p = 0.01197 |
Measurement | Description |
---|---|
A | The line marked with the letter A passes through the widest part of the distal (inferior) epiphyses of the tibia, and it is perpendicular to the long axis of this bone |
B | The line marked with the letter B runs on the surface of the central tarsal bone from the point where the fissure of proximal intertarsal joint begins to the point where the fissure of distal intertarsal joint begins |
C | The line marked with the letter C runs on the surface of the third tarsal bone from the point where the fissure of distal intertarsal joint begins to the point where the fissure of tarsometatarsal joint begins |
D | Line D runs as an extension of the long axis of the 3rd metatarsal bone from the point on the central tarsal bone to the point on the 3rd tarsal bone. |
E | The line marked with the letter E connects two the most external and the lowest points of the tibial cochlea |
F | The line marked with the letter F extends from the end of the joint gap limited by the coronoid process to the end of talocalcaneal join between the calcaneus and the talus |
G | The line marked with the letter G extends from the point in the middle of the F line to the highest point on the calcaneal tuberosity of the calcaneus |
H | The line marked with letter H occurs at the widest part of the calcaneal tuberosity of the calcaneus from the outermost point of the dorsal side of this tuberosity to the outermost point of the plantar side of this tuberosity |
I | The line marked with the letter I runs perpendicular to the G line in the middle of the G line |
J | The J line represents the thickness of the dorsal cortical bone of the tibia at the exact distance which is the value of the D line drawn along the long axis of the tibia from the beginning of proximal epiphysis of the tibia. The J line runs perpendicular to the long axis of the tibia |
K | The K line marks the thickness of the central tarsal bone along the long axis of the 3rd metatarsal bone |
L | The L line marks the thickness of the third tarsal bone along the long axis of the 3rd metatarsal bone |
M | The line marked with the letter M runs at the widest part of the proximal epiphysis of the 3rd metatarsal bone and it is perpendicular to the long axis of this bone |
N | The line marked with the letter N runs from the lowest point of the sagittal sulcus within the calcaneal tuberosity of the calcaneus to the starting point of the tarsometatarsal joint on the 3rd metatarsal bone |
Measurement | Description |
---|---|
A | Dimension A runs from the beginning of the median crest of the distal metacarpal/metatarsal bone III to the beginning of the epicondyle |
B | Dimension B includes the width of the proximal fetlock bone and runs parallel to the line connecting the two highest visible points of the joint surface of the fetlock joint, at its widest point |
B1 | The dimension marked with the letter B1 runs halfway along the fetlock bone, perpendicular to the long axis of this bone, from the upper border of the dorsal cortex to the lower border of the ventral cortex |
B2 | The dimension marked with the letter B2 is drawn parallel to the line connecting the two highest visible points of the proximal fetlock bone at the widest point of the distal fetlock bone |
C | The dimension marked with the letter C determines the thickness of the dorsal cortex of the fetlock bone at the mid-length of the bone. |
C1 | The dimension marked with the letter C1 determines the thickness of the cortical substance of the ventral surface of the fetlock bone at the mid-length of the bone |
C2 | The dimension marked with the letter C2 denotes the distance between the inner borders of the dorsal and ventral cortex at the midpoint of the fetlock bone. |
D | The dimension marked with the letter D indicates the width of the fetlock joint chink at its lowest point, measured from the surface of the distal metacarpal/metatarsal III bone to the surface of the proximal epiphysis of the fetlock bone. This section is aligned with the long axis of the fetlock bone. |
E | The dimension marked with the letter E indicates the length of the fetlock bone from the lowest point of the proximal epiphysis in the fetlock joint to the lowest point of the distal epiphysis of the fetlock bone in the coronal joint |
Measurement (cm) | Mean | SD | Coefficient of Variability | |
---|---|---|---|---|
A | N = 1559 | 3.74 | 0.23 | 6.15 |
B | N = 1559 | 4.88 | 0.27 | 5.53 |
B1 | N = 1559 | 3.17 | 0.17 | 5.36 |
B2 | N = 1559 | 3.31 | 0.18 | 5.44 |
C | N = 1559 | 0.82 | 0.08 | 9.76 |
C1 | N = 1559 | 0.66 | 0.08 | 12.12 |
C2 | N = 1503 | 1.68 | 0.19 | 11.31 |
D | N = 1558 | 0.14 | 0.03 | 21.43 |
E | N = 1559 | 10.13 | 0.46 | 4.54 |
Measurement (cm) | Mean | SD | Coefficient of Variability | |
---|---|---|---|---|
A | N = 181 | 7.76 | 0.70 | 9.02 |
B | N = 188 | 1.48 | 0.12 | 8.11 |
C | N = 191 | 1.58 | 0.18 | 11.39 |
D | N = 181 | 2.28 | 0.23 | 10.09 |
E | N = 177 | 5.05 | 0.37 | 7.33 |
F | N = 174 | 6.33 | 0.53 | 8.37 |
G | N = 149 | 11.79 | 0.56 | 4.75 |
H | N = 172 | 7.32 | 0.38 | 5.19 |
I | N = 149 | 5.87 | 0.31 | 5.28 |
J | N = 172 | 1.11 | 0.17 | 15.32 |
K | N = 173 | 1.62 | 0.15 | 9.26 |
L | N = 173 | 1.59 | 0.12 | 7.55 |
M | N = 178 | 6.47 | 0.96 | 14.84 |
N | N = 169 | 17.71 | 0.83 | 4.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewczuk, D.; Wypchło, M.; Hecold, M.; Buczkowska, R.; Korwin-Kossakowska, A. Connections Between Gene Polymorphism and Fetlock and Hock Measurements in Polish Sport Horses. Int. J. Mol. Sci. 2025, 26, 9645. https://doi.org/10.3390/ijms26199645
Lewczuk D, Wypchło M, Hecold M, Buczkowska R, Korwin-Kossakowska A. Connections Between Gene Polymorphism and Fetlock and Hock Measurements in Polish Sport Horses. International Journal of Molecular Sciences. 2025; 26(19):9645. https://doi.org/10.3390/ijms26199645
Chicago/Turabian StyleLewczuk, Dorota, Maria Wypchło, Mateusz Hecold, Roma Buczkowska, and Agnieszka Korwin-Kossakowska. 2025. "Connections Between Gene Polymorphism and Fetlock and Hock Measurements in Polish Sport Horses" International Journal of Molecular Sciences 26, no. 19: 9645. https://doi.org/10.3390/ijms26199645
APA StyleLewczuk, D., Wypchło, M., Hecold, M., Buczkowska, R., & Korwin-Kossakowska, A. (2025). Connections Between Gene Polymorphism and Fetlock and Hock Measurements in Polish Sport Horses. International Journal of Molecular Sciences, 26(19), 9645. https://doi.org/10.3390/ijms26199645