Pharmacokinetic Alterations in Patients with Chronic Heart Failure: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- Full article text access;
- Study type: PK study;
- Study population: CHF patients;
- Detailed reporting of PK parameters for the studied drug;
- Age ≥18 years;
- Language of the article: Russian or English.
- Studies lacking reported PK parameters of drugs;
- Publication types: narrative reviews, case–control studies, meta-analyses, and systematic reviews.
- 1.
- Demographic data: patients’ age, number of study participants, control group size (where applicable), NYHA functional class, and left ventricular ejection fraction (LVEF).
- 2.
- PK parameters: clearance, volume of distribution, half-life, and their alterations in CHF.
3. Results
3.1. Study Identification
3.2. Quality Assessment
3.3. Study Characteristics
3.4. Drug Group Categorization
3.5. PCPs Evaluation
3.6. Evaluation of PK Parameters in CHF Patients
3.6.1. Evaluation of PK Changes for Parenterally Administered Drugs
3.6.2. Evaluation of PK Changes for Orally Administered Drugs
4. Discussion
- The relatively small sample size in the majority of included studies.
- The predominance of the moderate risk of bias among most of the included studies.
- Most of the included studies included data on cardiovascular drugs. Thus, extrapolation of the PK alterations to non-cardiovascular drugs remains speculative.
- Most studies were published prior to the year 2000.
5. Conclusions
- Hypoalbuminemia associated with CHF may lead to an increased volume of distribution of lipophilic drugs.
- For lipophilic drugs used in CHF patients, potential prolongation of half-life and reduced clearance should be considered. This applies to both oral and parenteral formulations as important factors for dosing regimen modification.
- For HPB drugs used in CHF patients, reduced clearance must be considered as an important factor for dosing regimen modification.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHF | Chronic heart failure. |
PCP | Physicochemical property. |
PK | Pharmacokinetic. |
PubMed | United States National Library of Medicine. |
CNKI | China National Knowledge Infrastructure. |
DOAJ | Directory of Open Access Journals. |
PPB | Plasma protein binding. |
ACE | Angiotensin-converting enzyme. |
PDE | Phosphodiesterase. |
NHANES | National Health and Nutrition Examination Survey. |
NYHA | New York Heart Association. |
ADR | Adverse drug reaction. |
ATC classification | Anatomical Therapeutical Chemical classification. |
NA | Not applicable. |
LVEF | Left ventricle ejection fraction. |
LPB | Low protein binding. |
HPB | High protein binding. |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses. |
References
- Jimenez, S.; Cainzos-Achirica, M.; Monterde, D.; Garcia-Eroles, L.; Enjuanes, C.; Garay, A.; Yun, S.; Alcoberro, L.; Moliner, P.; Hidalgo, E.; et al. A population-based analysis in 375,233 cases of heart failure stages A, B and C. Real world epidemiology of prevalence and temporal trends in South-European populations. Eur. Hear. J. 2020, 41, ehaa946.0960. [Google Scholar] [CrossRef]
- Tiller, D.; Russ, M.; Greiser, K.H.; Nuding, S.; Ebelt, H.; Kluttig, A.; Kors, J.; Thiery, J.; Bruegel, M.; Haerting, J.; et al. Prevalence of symptomatic heart failure with reduced and with normal ejection fraction in an elderly general population—The CARLA study. PLoS ONE 2013, 8, e59225. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1412–1451. [Google Scholar] [CrossRef]
- Osadchiy, V.A.; Bukanova, T.Y. Clinical and pathogenetic features of inflammatory and atrophic changes in the gastroduodenal zone in patients with varying severity of chronic heart failure associated with coronary artery disease. Ter. Arkhiv 2015, 87, 15–19. [Google Scholar] [CrossRef]
- Yang, E.; Yu, K.S.; Lee, S. Prediction of gastric pH-mediated drug exposure using physiologically-based pharmacokinetic modeling: A case study of itraconazole. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Lupu, V.V.; Adam Raileanu, A.; Mihai, C.M.; Morariu, I.D.; Lupu, A.; Starcea, I.M.; Frasinariu, O.E.; Mocanu, A.; Dragan, F.; Fotea, S.; et al. The Implication of the Gut Microbiome in Heart Failure. Cells 2023, 12, 1158. [Google Scholar] [CrossRef]
- Cicchinelli, S.; Gemma, S.; Pignataro, G.; Piccioni, A.; Ojetti, V.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals 2024, 17, 490. [Google Scholar] [CrossRef]
- Hanna, D.; Baig, I.; Subbiondo, R.; Iqbal, U. The Usefulness of Bioelectrical Impedance as a Marker of Fluid Status in Patients With Congestive Heart Failure: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e37377. [Google Scholar] [CrossRef]
- Haddadin, R.; Aboujaoude, C.; Trad, G. Congestive Hepatopathy: A Review of the Literature. Cureus 2024, 16, e58766. [Google Scholar] [CrossRef]
- Berezin, A.A.; Obradovic, Z.; Berezina, T.A.; Boxhammer, E.; Lichtenauer, M.; Berezin, A.E. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants 2023, 12, 516. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, M.; Nakamura, K.; Nishihara, T.; Ichikawa, K.; Nakayama, R.; Takaya, Y.; Toh, N.; Akagi, S.; Miyoshi, T.; Akagi, T.; et al. Association between Cardiovascular Disease and Liver Disease, from a Clinically Pragmatic Perspective as a Cardiologist. Nutrients 2023, 15, 748. [Google Scholar] [CrossRef] [PubMed]
- Goliopoulou, A.; Theofilis, P.; Oikonomou, E.; Anastasiou, A.; Pantelidis, P.; Gounaridi, M.I.; Zakynthinos, G.; Katsarou, O.; Kassi, E.; Lambadiari, V.; et al. Non-Alcoholic Fatty Liver Disease and Echocardiographic Parameters of Left Ventricular Diastolic Function: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 14292. [Google Scholar] [CrossRef] [PubMed]
- Zordoky, B.N.; El-Kadi, A.O. Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr Drug Metab. 2008, 9, 122–128. [Google Scholar] [CrossRef]
- Abe, M.; Hemmi, S.; Kobayashi, H. How should we treat acute kidney injury caused by renal congestion? Kidney Res. Clin. Pract. 2023, 42, 415–430. [Google Scholar] [CrossRef]
- Lainscak, M.; Vitale, C.; Seferovic, P.; Spoletini, I.; Cvan Trobec, K.; Rosano, G.M. Pharmacokinetics and pharmacodynamics of cardiovascular drugs in chronic heart failure. Int. J. Cardiol. 2016, 224, 191–198. [Google Scholar] [CrossRef]
- Checklist Based on the Recommendations of PRISMA 2020. Available online: http://vestnik.mednet.ru/content/view/1580/1/lang,ru/ (accessed on 24 August 2023). (In Russian).
- Kostis, J.B.; Garland, W.T.; Delaney, C.; Northon, J.; Liao, W.C. Fosinopril: Pharmacokinetics and pharmacodynamics in congestive heart failure. Clin. Pharmacol. Ther. 1995, 58, 660–665. [Google Scholar] [CrossRef]
- Till, A.E.; Dickstein, K.; Aarsland, T.; Gomez, H.J.; Gregg, H.; Hichens, M. The pharmacokinetics of lisinopril in hospitalized patients with congestive heart failure. Br. J. Clin. Pharmacol. 1989, 27, 199–204. [Google Scholar] [CrossRef]
- Gautam, P.C.; Vargas, E.; Lye, M. Pharmacokinetics of lisinopril (MK521) in healthy young and elderly subjects and in elderly patients with cardiac failure. J. Pharm. Pharmacol. 1987, 39, 929–931. [Google Scholar] [CrossRef]
- Johnston, D.; Duffin, D. Pharmacokinetic profiles of single and repeat doses of lisinopril and enalapril in congestive heart failure. Am. J. Cardiol. 1992, 70, 151C–153C. [Google Scholar] [CrossRef]
- Nishida, M.; Matsuo, H.; Sano, H.; Obata, H.; Yasuda, H. Effect of captopril on congestive heart failure. Jpn. Circ. J. 1990, 54, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, T.; Shiyonoiri, H.; Takasaki, I.; Kobayashi, K.; Ishii, M. The effect of captopril on pharmacokinetics of digoxin in patients with mild congestive heart failure. Rinsho Iyaku 1990, 6, 2001–2011. [Google Scholar] [CrossRef]
- Schwartz, J.B.; Taylor, A.; Abernethy, D.; O’Meara, M.; Farmer, J.; Young, J.; Nelson, E.; Pool, J.; Mitchell, J.R. Pharmacokinetics and pharmacodynamics of enalapril in patients with congestive heart failure and patients with hypertension. J. Cardiovasc. Pharmacol. 1985, 7, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Bellissant, E.; Giudicelli, J.F. Pharmacokinetic-pharmacodynamic model for perindoprilat regional haemodynamic effects in healthy volunteers and in congestive heart failure patients. Br. J. Clin. Pharmacol. 2001, 52, 25–33. [Google Scholar] [CrossRef]
- Thuillez, C.; Richard, C.; Loueslati, H.; Auzepy, P.; Giudicelli, J.F. Systemic and regional hemodynamic effects of perindopril in congestive heart failure. J. Cardiovasc. Pharmacol. 1990, 15, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Kimata, S. Acute hemodynamic effect of quinapril on chronic heart failure. Rinsho Iyaku 1995, 11, 299–313. [Google Scholar]
- Squire, I.B.; Macfadyen, R.J.; Lees, K.R.; Hillis, W.S.; Reid, J.L. Haemodynamic response and pharmacokinetics after the first dose of quinapril in patients with congestive heart failure. Br. J. Clin. Pharmacol. 1994, 38, 117–123. [Google Scholar] [CrossRef]
- Begg, E.J.; Robson, R.A.; Ikram, H.; Richards, A.M.; Bammert-Adams, J.A.; Olson, S.C.; Posvar, E.L.; Reece, P.A.; Sedman, A.J. The pharmacokinetics of quinapril and quinaprilat in patients with congestive heart failure. Br. J. Clin. Pharmacol. 1994, 37, 302–304. [Google Scholar] [CrossRef]
- Heintz, B.; Verho, M.; Brockmeier, D.; Luckel, G.; Maigatter, S.; Sieberth, H.G.; Rangoonwala, B.; Bender, N. Multiple-dose pharmacokinetics of ramipril in patients with chronic congestive heart failure. J. Cardiovasc. Pharmacol. 1993, 22 (Suppl. 9), S36–S42. [Google Scholar] [CrossRef]
- Wiseman, M.N.; Elstob, J.E.; Francis, R.J.; Brown, A.N.; Rajaguru, S.; Steiner, J.; Dymond, D.S. Initial and steady state pharmacokinetics of cilazapril in congestive cardiac failure. J. Pharm. Pharmacol. 1991, 43, 406–410. [Google Scholar] [CrossRef]
- Kostis, J.B.; Klapholz, M.; Delaney, C.; Vesterqvist, O.; Cohen, M.; Manning, J.A., Jr.; Jemal, M.; Kollia, G.D.; Liao, W.C. Pharmacodynamics and pharmacokinetics of omapatrilat in heart failure. J. Clin. Pharmacol. 2001, 41, 1280–1290. [Google Scholar] [CrossRef]
- Kessler, K.M.; Kayden, D.S.; Estes, D.M.; Koslovskis, P.L.; Sequeira, R.; Trohman, R.G.; Palomo, A.R.; Myerburg, R.J. Procainamide pharmacokinetics in patients with acute myocardial infarction or congestive heart failure. J. Am. Coll. Cardiol. 1986, 7, 1131–1139. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Rudis, M.I.; Padhi, I.D.; Borzak, S.; Svensson, C.K.; Webb, C.R.; Acciaioli, J.; Ware, J.A.; Krepostman, A.; Zarowitz, B.J. Disposition of procainamide in patients with chronic congestive heart failure receiving medical therapy. J. Clin. Pharmacol. 1996, 36, 35–41. [Google Scholar] [CrossRef]
- Graffner, C.; Conradson, T.B.; Hofvendahl, S.; Ryden, L. Tocainide kinetics after intravenous and oral administration in healthy subjects and in patients with acute myocardial infarction. Clin. Pharmacol. Ther. 1980, 27, 64–71. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, B.; Bakshi, M.; Branagan, P.; Kelly, G.J.; Walsh, M.J. Pharmacokinetics and haemodynamic effects of tocainide in patients with acute myocardial infarction complicated by left ventricular failure. Br. J. Clin. Pharmacol. 1985, 19, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, S.M.; Esterbrooks, D.; Hilleman, D.E.; Aronow, W.S.; Patterson, A.J.; Sketch, M.H.; Mooss, A.N.; Hee, T.T.; Reich, J.W. Tocainide kinetics in congestive heart failure. Clin. Pharmacol. Ther. 1983, 34, 596–603. [Google Scholar] [CrossRef]
- Yokota, M.; Miyahara, T.; Enomoto, N.; Inagaki, H.; Goto, J.; Hayashi, H. Pharmacokinetics and pharmacodynamics of SUN 1165, a novel antiarrhythmic agent, after administration of a single oral dose. Ther. Res. 1989, 10, 2135–2147. [Google Scholar]
- Rehnqvist, N.; Billing, E.; Moberg, L.; Lundman, T.; Olsson, G. Pharmacokinetics of felodipine and effect on digoxin plasma levels in patients with heart failure. Drugs 1987, 34 (Suppl. 3), 33–42. [Google Scholar] [CrossRef]
- Brater, D.C.; Day, B.; Burdette, A.; Anderson, S. Bumetanide and furosemide in heart failure. Kidney Int. 1984, 26, 183–189. [Google Scholar] [CrossRef]
- Chaturvedi, P.R.; O’Donnell, J.P.; Nicholas, J.M.; Shoenthal, D.R.; Waters, D.H.; Gwilt, P.R. Steady state absorption kinetics and pharmacodynamics of furosemide in congestive heart failure. Int. J. Clin. Pharmacol. Ther. Toxicol. 1987, 25, 123–128. [Google Scholar]
- Vasko, M.R.; Cartwright, D.B.; Knochel, J.P.; Nixon, J.V.; Brater, D.C. Furosemide absorption altered in decompensated congestive heart failure. Ann. Intern. Med. 1985, 102, 314–318. [Google Scholar] [CrossRef]
- Carlton, L.D.; Patterson, J.H.; Mattson, C.N.; Schmith, V.D. The effects of epoprostenol on drug disposition. II: A pilot study of the pharmacokinetics of furosemide with and without epoprostenol in patients with congestive heart failure. J. Clin. Pharmacol. 1996, 36, 257–264. [Google Scholar] [CrossRef]
- Gottlieb, S.S.; Khatta, M.; Wentworth, D.; Roffman, D.; Fisher, M.L.; Kramer, W.G. The effects of diuresis on the pharmacokinetics of the loop diuretics furosemide and torsemide in patients with heart failure. Am. J. Med. 1998, 104, 533–538. [Google Scholar] [CrossRef]
- Vargo, D.L.; Kramer, W.G.; Black, P.K.; Smith, W.B.; Serpas, T.; Brater, D.C. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin. Pharmacol. Ther. 1995, 57, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, F.; Mikkelsen, E. Distribution, elimination and effect of furosemide in normal subjects and in patients with heart failure. Eur. J. Clin. Pharmacol. 1977, 12, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Granneman, G.R.; Packer, M.; Boger, R.S. Simultaneous modeling of the pharmacokinetic and pharmacodynamic properties of enalkiren (Abbott-64662, a renin inhibitor). II: A dose-ranging study in patients with congestive heart failure. J. Cardiovasc. Pharmacol. 1993, 21, 834–840. [Google Scholar] [CrossRef]
- Gupta, S.K.; Granneman, G.R.; Boger, R.S.; Hollenberg, N.K.; Luther, R.R. Simultaneous modeling of the pharmacokinetic and pharmacodynamic properties of enalkiren (Abbott-64662, a renin inhibitor). I: Single dose stusy. Drug Metab Dispos. 1992, 20, 821–825. [Google Scholar] [CrossRef]
- Tilstone, W.J.; Dargie, H.; Dargie, E.N.; Morgan, H.G.; Kennedy, A.C. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clin. Pharmacol. Ther. 1974, 16, 322–329. [Google Scholar] [CrossRef]
- Naafs, M.A.; van der Hoek, C.; van Duin, S.; Koorevaar, G.; Schopman, W.; Silberbusch, J. Decreased renal clearance of digoxin in chronic congestive heart failure. Eur. J. Clin. Pharmacol. 1985, 28, 249–252. [Google Scholar] [CrossRef]
- Applefeld, M.M.; Adir, J.; Crouthamel, W.G.; Roffman, D.S. Digoxin pharmacokinetics in congestive heart failure. J. Clin. Pharmacol. 1981, 21, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Carlton, L.D.; Patterson, J.H.; Mattson, C.N.; Schmith, V.D. The effects of epoprostenol on drug disposition. I: A pilot study of the pharmacokinetics of digoxin with and without epoprostenol in patients with congestive heart failure. J. Clin. Pharmacol. 1996, 36, 247–256. [Google Scholar] [CrossRef]
- Machida, M.; Komatsu, T.; Fujimoto, T.; Takechi, S.; Nomura, A. The effect of carvedilol on plasma digoxin concentration in patients with chronic heart failure. Jpn. J. Ther. Drug Monit. 2007, 24, 155–161. [Google Scholar]
- Yukawa, E.; Suematu, F.; Yukawa, M.; Minemoto, M.; Ohdo, S.; Higuchi, S.; Goto, Y.; Aoyama, T. Population pharmacokinetics of digoxin in Japanese patients: A 2-compartment pharmacokinetic model. Clin. Pharmacokinet. 2001, 40, 773–781. [Google Scholar] [CrossRef]
- Yukawa, E.; Honda, T.; Ohdo, S.; Higuchi, S.; Aoyama, T. Population-based investigation of relative clearance of digoxin in Japanese patients by multiple trough screen analysis: An update. J. Clin. Pharmacol. 1997, 37, 92–100. [Google Scholar] [CrossRef]
- Edelson, J.; Stroshane, R.; Benziger, D.P.; Cody, R.; Benotti, J.; Hood, W.B., Jr.; Chatterjee, K.; Luczkowec, C.; Krebs, C.; Schwartz, R. Pharmacokinetics of the bipyridines amrinone and milrinone. Circulation 1986, 73 Pt 2, III145–III152. [Google Scholar]
- Benotti, J.R.; Lesko, L.J.; McCue, J.E.; Alpert, J.S. Pharmacokinetics and pharmacodynamics of milrinone in chronic congestive heart failure. Am. J. Cardiol. 1985, 56, 685–689. [Google Scholar] [CrossRef]
- Taniguchi, T.; Shibata, K.; Saito, S.; Okeike, K. Pharmacokinetics of milrinone in patients with congestive heart failure during continuous venovenous hemofiltration. Intensive Care Med. 2000, 26, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Takano, T.; Hayakawa, H.; Kanmatsuse, K.; Saitoh, S.; Saitoh, T.; Kamishima, G.; Watanabe, K.; Motomiya, T.; Murata, M. Hemodynamic effects and pharmacokinetics of oral milrinone for short-term support in acute heart failure. Cardiology 1995, 86, 34–40. [Google Scholar] [CrossRef]
- Tammara, B.; Trang, J.M.; Kitani, M.; Miyamoto, G.; Bramer, S.L. The pharmacokinetics of toborinone in subjects with congestive heart failure and concomitant renal impairment and/or concomitant hepatic impairment. J. Clin. Pharmacol. 2002, 42, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Obata, K.; Yasue, H.; Yoshimura, M. Clinical effects and pharmacokinetics of alpha-human atrial natriuretic peptide (SUN 4936; carperitide) in patients with acute heart failure. Jpn. Pharmacol. Ther. 1993, 21, 1103–1114. [Google Scholar]
- Huber, T.; Grosse-Heitmeyer, W.; Rietbrock, S. Pharmacokinetics and pharmacodynamics of molsidomine in patients with liver dysfunction due to congestive heart failure. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 491–492. [Google Scholar]
- Mao, Z.L.; Stalker, D.; Keirns, J. Pharmacokinetics of conivaptan hydrochloride, a vasopressin V(1A)/V(2)-receptor antagonist, in patients with euvolemic or hypervolemic hyponatremia and with or without congestive heart failure from a prospective, 4-day open-label study. Clin. Ther. 2009, 31, 1542–1550. [Google Scholar] [CrossRef]
- Ochs, H.R.; Schuppan, U.; Greenblatt, D.J.; Abernethy, D.R. Reduced distribution and clearance of acetaminophen in patients with congestive heart failure. J. Cardiovasc. Pharmacol. 1983, 5, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Soran, O.; Feldman, A.M.; Schneider, V.M.; Mann, D.L.; Korth-Bradley, J.M. The pharmacokinetics of etanercept in patients with heart failure. Br. J. Clin. Pharmacol. 2001, 51, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Leuenberger, U.; Kenney, G.; Davis, D.; Clemson, B.; Zelis, R. Comparison of norepinephrine and isoproterenol clearance in congestive heart failure. Am. J. Physiol. 1992, 263 Pt 2, H56–H60. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Uno, S.; Yamasaki, Y.; Hirano, T.; Kim, S. OPC-61815 Investigators. Pharmacokinetics, Pharmacodynamics, Efficacy, and Safety of OPC-61815, a Prodrug of Tolvaptan for Intravenous Administration, in Patients With Congestive Heart Failure—A Phase II, Multicenter, Double-Blind, Randomized, Active-Controlled Trial. Circ. J. 2022, 86, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Rocci MLJr Weber, K.T.; Andrews, V.; Likoff, M.J. Pharmacokinetics and hemodynamics of amrinone in patients with chronic cardiac failure of diverse etiology. Res. Commun. Chem. Pathol. Pharmacol. 1987, 56, 3–19. [Google Scholar]
- Azzollini, F.; Catto, G.; Iacuitti, G.; Pelosi, G.; Picca, M.; Pocchiari, F. Ibopamine kinetics after a single oral dose in patients with congestive heart failure. Int. J. Clin. Pharmacol. Ther. Toxicol. 1988, 26, 105–112. [Google Scholar]
- Itoh, H.; Taniguchi, K.; Tsujibayashi, T.; Koike, A.; Sato, Y.; Nakamura, S. Hemodynamic effects and pharmacokinetics of longterm therapy with ibopamine in patients with chronic heart failure. Cardiology 1992, 80, 356–366. [Google Scholar] [CrossRef]
- Azzollini, F.; De Caro, L.; Longo, A.; Pelosi, G.; Rolandi, E.; Ventresca, G.P. Ibopamine kinetics after single and multiple dosing in patients with congestive heart failure. Int. J. Clin. Pharmacol. Ther. Toxicol. 1988, 26, 544–551. [Google Scholar]
- Nisi, A.; Panfili, M.; De Rosa, G.; Boffa, G.; Groppa, F.; Gusella, M.; Padrini, R. Pharmacokinetics of pentoxifylline and its main metabolites in patients with different degrees of heart failure following a single dose of a modified-release formulation. J. Clin. Pharmacol. 2013, 53, 51–57. [Google Scholar] [CrossRef]
- Tenero, D.; Boike, S.; Boyle, D.; Ilson, B.; Fesniak, H.F.; Brozena, S.; Jorkasky, D. Steady-state pharmacokinetics of carvedilol and its enantiomers in patients with congestive heart failure. J. Clin. Pharmacol. 2000, 40, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Lukas, M.A.; Tenero, D.M.; Baidoo, C.A.; Greenberg, B.H. Pharmacokinetic profile of controlled-release carvedilol in patients with left ventricular dysfunction associated with chronic heart failure or after myocardial infarction. Am. J. Cardiol. 2006, 98, 39L–45L. [Google Scholar] [CrossRef]
- Horiuchi, I.; Nozawa, T.; Fujii, N.; Inoue, H.; Honda, M.; Shimizu, T.; Taguchi, M.; Hashimoto, Y. Pharmacokinetics of R- and S-Carvedilol in routinely treated Japanese patients with heart failure. Biol. Pharm. Bull. 2008, 31, 976–980. [Google Scholar] [CrossRef]
- Saito, M.; Kawana, J.; Ohno, T.; Hanada, K.; Kaneko, M.; Mihara, K.; Shiomi, M.; Nagayama, M.; Sumiyoshi, T.; Ogata, H. Population pharmacokinetics of R- and S-carvedilol in Japanese patients with chronic heart failure. Biol. Pharm. Bull. 2010, 33, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Abo, Y.; Mori, S.; Yokoi, H.; Takeda, H.; Nakano, H.; Watanabe, Y. Pharmacokinetics of candesartan cilexetil (TCV-116) in patients with chronic heart failure. J. N. Remedies Clin. 1996, 45, 1662–1668. [Google Scholar]
- Kostis, J.B.; Vachharajani, N.N.; Hadjilambris, O.W.; Kollia, G.D.; Palmisano, M.; Marino, M.R. The pharmacokinetics and pharmacodynamics of irbesartan in heart failure. J. Clin. Pharmacol. 2001, 41, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.W.; Toh, J.; Emmert, S.E.; Ritter, M.A.; Furtek, C.I.; Lu, H.; Colucci, W.S.; Uretsky, B.F.; Rucinska, E. Pharmacokinetics of intravenous and oral losartan in patients with heart failure. J. Clin. Pharmacol. 1998, 38, 525–532. [Google Scholar] [CrossRef]
- Lima, J.J.; Haughey, D.B.; Leier, C.V. Disopyramide pharmacokinetics and bioavailability following the simultaneous administration of disopyramide and 14C-disopyramide. J. Pharmacokinet. Biopharm. 1984, 12, 289–313. [Google Scholar] [CrossRef]
- Bonde, J.; Angelo, H.R.; Bodtker, S.; Svendsen, T.L.; Kampmann, J.P. Kinetics of disopyramide after intravenous infusion to patients with myocardial infarction and heart failure. Acta Pharmacol. Toxicol. 1985, 56, 278–282. [Google Scholar] [CrossRef]
- Kessler, K.M.; Lowenthal, D.T.; Warner, H.; Gibson, T.; Briggs, W.; Reidenberg, M.M. Quinidine elimination in patients with congestive heart failure or poor renal function. N. Engl. J. Med. 1974, 290, 706–709. [Google Scholar] [CrossRef]
- Prescott, L.F.; Adjepon-Yamoah, K.K.; Talbot, R.G. Impaired lignocaine metabolism in patients with myocardial infarction and cardiac failure. Br. Med. J. 1976, 1, 939–941. [Google Scholar] [CrossRef]
- Thomson, P.D.; Melmon, K.L.; Richardson, J.A.; Cohn, K.; Steinbrunn, W.; Cudihee, R.; Rowland, M. Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann. Intern. Med. 1973, 78, 499–508. [Google Scholar] [CrossRef]
- Sawyer, D.R.; Ludden, T.M.; Crawford, M.H. Continuous infusion of lidocaine in patients with cardiac arrhythmias. Unpredictability of plasma concentrations. Arch. Intern. Med. 1981, 141, 43–45. [Google Scholar] [CrossRef]
- Kobayashi, M.; Fukumoto, K.; Ueno, K. Effect of congestive heart failure on mexiletine pharmacokinetics in a Japanese population. Biol. Pharm. Bull. 2006, 29, 2267–2269. [Google Scholar] [CrossRef] [PubMed]
- Vadiei, K.; O’Rangers, E.A.; Klamerus, K.J.; Kluger, J.; Kazierad, D.J.; Leese, P.T.; Chow, M.S.; Zimmerman, J.J. Pharmacokinetics of intravenous amiodarone in patients with impaired left ventricular function. J. Clin. Pharmacol. 1996, 36, 720–727. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Overholser, B.R.; Sowinski, K.M.; Wroblewski, H.A.; Amankwa, K.; Borzak, S.; Kingery, J.R.; Coram, R.; Zipes, D.P.; Flockhart, D.A.; et al. Pharmacokinetics of ibutilide in patients with heart failure due to left ventricular systolic dysfunction. Pharmacotherapy 2008, 28, 1461–1470. [Google Scholar] [CrossRef]
- Dunselman, P.H.; Edgar, B.; Scaf, A.H.; Kuntze, C.E.; Wesseling, H. Pharmacokinetics of felodipine after intravenous and chronic oral administration in patients with congestive heart failure. Br. J. Clin. Pharmacol. 1989, 28, 45–52. [Google Scholar] [CrossRef]
- Chen, D.G.; Feng, Q.P.; Wang, Z.Q.; Chen, K. Nifedipine pharmacodynamics and pharmacokinetics in treatment of congestive heart failure. Chin. Med. J. 1990, 103, 1008–1014. [Google Scholar] [PubMed]
- Muller, F.O.; Middle, M.V.; Schall, R.; Terblanche, J.; Hundt, H.K.; Groenewoud, G. An evaluation of the interaction of meloxicam with frusemide in patients with compensated chronic cardiac failure. Br. J. Clin. Pharmacol. 1997, 44, 393–398. [Google Scholar] [CrossRef]
- Hirasawa, K.; Tateda, K.; Kato, J. Clinicopharmacological study of nicardipine hydrochloride: Pharmacokinetics and hemodynamics after intravenous infusion in patients with acute heart failure. Jpn. Pharmacol. Ther. 1995, 23, 901–911. [Google Scholar]
- Marone, C.; Rivera, B.; Zwahlen, H.; Lahn, W.; Frey, F. Efficacy and pharmacokinetics of piretanide in patients with congestive heart failure. Eur. J. Clin. Investig. 1989, 19, 378–383. [Google Scholar] [CrossRef]
- Smith, N.A.; Kates, R.E.; Lebsack, C.; Ruder, M.A.; Mead, R.H.; Bekele, T.; Okerholm, R.A.; Rubin, G.M.; Winkle, R.A. Clinical pharmacology of intravenous enoximone: Pharmacodynamics and pharmacokinetics in patients with heart failure. Am. Heart J. 1991, 122 Pt 1, 755–763. [Google Scholar] [CrossRef]
- Ruder, M.A.; Lebsack, C.; Winkle, R.A.; Mead, R.H.; Smith, N.; Kates, R.E. Disposition kinetics of orally administered enoximone in patients with moderate to severe heart failure. J. Clin. Pharmacol. 1991, 31, 702–708. [Google Scholar] [CrossRef]
- Lima, J.J.; Leier, C.V.; Holtz, L.; Sterechele, J.; Shields, B.J.; MacKichan, J.J. Oral enoximone pharmacokinetics in patients with congestive heart failure. J. Clin. Pharmacol. 1987, 27, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Sandell, E.P.; Hayha, M.; Antila, S.; Heikkinen, P.; Ottoila, P.; Lehtonen, L.A.; Pentikainen, P.J. Pharmacokinetics of levosimendan in healthy volunteers and patients with congestive heart failure. J. Cardiovasc. Pharmacol. 1995, 26 (Suppl. 1), S57–S62. [Google Scholar] [CrossRef] [PubMed]
- Poder, P.; Eha, J.; Sundberg, S.; Antila, S.; Heinpalu, M.; Loogna, I.; Planken, U.; Rantanen, S.; Lehtonen, L. Pharmacokinetic-pharmacodynamic interrelationships of intravenous and oral levosimendan in patients with severe congestive heart failure. Int. J. Clin. Pharmacol. Ther. 2003, 41, 365–373. [Google Scholar] [CrossRef]
- Antila, S.; Kivikko, M.; Lehtonen, L.; Eha, J.; Heikkilä, A.; Pohjanjousi, P.; Pentikäinen, P.J. Pharmacokinetics of levosimendan and its circulating metabolites in patients with heart failure after an extended continuous infusion of levosimendan. Br. J. Clin. Pharmacol. 2004, 57, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Kieback, A.G.; Iven, H.; Stolzenburg, K.; Eichner, E.; Ruckdeschel, W.; Baumann, G. Pharmacokinetics and hemodynamic effects of the phosphodiesterase III inhibitor saterinone in patients with chronic heart failure. Int. J. Cardiol. 2003, 91, 201–208. [Google Scholar] [CrossRef]
- Mueck, W.; Frey, R. Population pharmacokinetics and pharmacodynamics of cinaciguat, a soluble guanylate cyclase activator, in patients with acute decompensated heart failure. Clin. Pharmacokinet. 2010, 49, 119–129. [Google Scholar] [CrossRef]
- Tice, F.D.; Jungbluth, G.L.; Binkley, P.F.; MacKichan, J.J.; Mohrland, J.S.; Wolf, D.L.; Leier, C.V. Clinical pharmacology of nicorandil in patients with congestive heart failure. Clin. Pharmacol. Ther. 1992, 52, 496–503. [Google Scholar] [CrossRef]
- Kates, R.E.; Leier, C.V. Dobutamine pharmacokinetics in severe heart failure. Clin. Pharmacol. Ther. 1978, 24, 537–541. [Google Scholar] [CrossRef]
- Patel, I.H.; Soni, P.P.; Fukuda, E.K.; Smith, D.F.; Leier, C.V.; Boudoulas, H. The pharmacokinetics of midazolam in patients with congestive heart failure. Br. J. Clin. Pharmacol. 1990, 29, 565–569. [Google Scholar] [CrossRef]
- Kuntz, H.D.; Straub, H.; May, B. Theophylline elimination in congestive heart failure. Klin. Wochenschr. 1983, 61, 1105–1106. [Google Scholar] [CrossRef]
- Slaughter, R.L.; Lanc, R.A. Theophylline clearance in obese patients in relation to smoking and congestive heart failure. Drug Intell. Clin. Pharm. 1983, 17, 274–276. [Google Scholar]
- Jeong, C.S.; Hwang, S.C.; Jones, D.W.; Ryu, H.S.; Sohn, K.; Sands, C.D. Theophylline disposition in Korean patients with congestive heart failure. Ann. Pharmacother. 1994, 28, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Cuzzolin, L.; Schinella, M.; Tellini, U.; Pezzoli, L.; Lippi, U.; Benoni, G. The effect of sex and cardiac failure on the pharmacokinetics of a slow-release theophylline formulation in the elderly. Pharmacol. Res. 1990, 22 (Suppl. 1), 137–138. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Miyai, K.; Koyama, M.; Seki, T.; Kawaguchi, Y.; Horiuchi, Y. Effect of congestive heart failure on theophylline disposition. Clin. Pharm. 1990, 9, 936–937. [Google Scholar]
- Gheorghiade, M.; Thyssen, A.; Zolynas, R.; Nadar, V.K.; Greenberg, B.H.; Mehra, M. Pharmacokinetics and pharmacodynamics of rivaroxaban and its effect on biomarkers of hypercoagulability in patients with chronic heart failure. J. Heart Lung Transplant. 2011, 30, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.M.; Shieh, S.M.; Hu, O.Y. Pharmacokinetics and pharmacodynamics of enantiomers of pimobendan in patients with dilated cardiomyopathy and congestive heart failure after single and repeated oral dosing. Clin. Pharmacol. Ther. 1995, 57, 610–621. [Google Scholar] [CrossRef]
- Sakai, M.; Ohkawa, S.; Kaku, T.; Kuboki, K.; Chida, K.; Imai, T. Pharmacokinetics of flosequinan in elderly patients with chronic congestive heart failure. Eur. J. Clin. Pharmacol. 1993, 44, 387–389. [Google Scholar] [CrossRef]
- Nicholls, D.P.; Droogan, A.; Carson, C.A.; Taylor, I.C.; Passmore, A.P.; Johnston, G.D.; Kendall, M.; Dutka, D.; Morris, G.K.; Underwood, L.M.; et al. Pharmacokinetics of flosequinan in patients with heart failure. Eur. J. Clin. Pharmacol. 1996, 50, 289–291. [Google Scholar] [CrossRef]
- Orlando, R.; De Martin, S.; Andrighetto, L.; Floreani, M.; Palatini, P. Fluvoxamine pharmacokinetics in healthy elderly subjects and elderly patients with chronic heart failure. Br. J. Clin. Pharmacol. 2010, 69, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Silke, B.; Lakhani, Z.M.; Taylor, S.H. Pharmacokinetic and pharmacodynamic studies with prazosin in chronic heart failure. J. Cardiovasc. Pharmacol. 1981, 3, 329–335. [Google Scholar] [CrossRef]
- Cook, J.A.; Smith, D.E.; Cornish, L.A.; Tankanow, R.M.; Nicklas, J.M.; Hyneck, M.L. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with congestive heart failure. Clin. Pharmacol. Ther. 1988, 44, 487–500. [Google Scholar] [CrossRef]
- Rosenthal, E.; Francis, R.J.; Brown, A.N.; Rajaguru, S.; Williams, P.E.; Steiner, J.; Curry, P.V. A pharmacokinetic study of cilazapril in patients with congestive heart failure. Br. J. Clin. Pharmacol. 1989, 27 (Suppl. 2), 267S–273S. [Google Scholar] [CrossRef]
- Lima, J.J.; Binkley, P.F.; Johnson, J.; Leier, C.V. Dose- and timedependent binding and kinetics of pindolol in patients with congestive heart failure. J. Clin. Pharmacol. 1986, 26, 253–257. [Google Scholar] [CrossRef]
- Massarella, J.W.; Silvestri, T.; DeGrazia, F.; Miwa, B.; Keefe, D. Effect of congestive heart failure on the pharmacokinetics of cibenzoline. J. Clin. Pharmacol. 1987, 27, 187–192. [Google Scholar] [CrossRef]
- Crawford, M.H.; Ludden, T.M.; Kennedy, G.T. Determinants of systemic availability of oral hydralazine in heart failure. Clin. Pharmacol. Ther. 1985, 38, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Iida, S.; Kinoshita, H.; Holford, N.H. Population pharmacokinetic and pharmacodynamic modelling of the effects of nicorandil in the treatment of acute heart failure. Br. J. Clin. Pharmacol. 2008, 66, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Armstrong, J.A.; Marks, G.S. Pharmacokinetic hemodynamic studies of intravenous nitroglycerin in congestive cardiac failure. Circulation 1980, 62, 160–166. [Google Scholar] [CrossRef]
- Sainsbury, E.J.; Fitzpatrick, D.; Ikram, H. Pharmacokinetic and plasma-concentration-effect relationships of prenalterol in cardiac failure. Eur. J. Clin. Pharmacol. 1985, 28, 397–403. [Google Scholar] [CrossRef]
- Dahlstrom, U.; Graffner, C.; Jonsson, U.; Hoffmann, K.J.; Karlsson, E.; Lagerstrom, P.O. Pharmacokinetics of prenalterol after single and multiple administration of controlled release tablets to patients with congestive heart failure. Eur. J. Clin. Pharmacol. 1983, 24, 495–502. [Google Scholar] [CrossRef]
- Pasini, E.; Comini, L.; Dioguardi, F.S.; Grossetti, F.; Olivares, A.; Zanelli, E.; Aquilani, R.; Scalvini, S. Hypoalbuminemia as a marker of protein metabolism disarrangement in patients with stable chronic heart failure. Minerva Med. 2020, 111, 226–238. [Google Scholar] [CrossRef]
- Korzekwa, K.; Nagar, S. Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning. Pharm. Res. 2017, 34, 544–551. [Google Scholar] [CrossRef]
- Gunaydin, H.; Altman, M.D.; Ellis, J.M.; Fuller, P.; Johnson, S.A.; Lahue, B.; Lapointe, B. Strategy for Extending Half-life in Drug Design and Its Significance. ACS Med. Chem. Lett. 2018, 9, 528–533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bandeira, F.; Oliveira, L.B.; Siqueira, M.A.F.M.; Gadelha, R.B.M.; Correia, A.R.P.; Garcia, J.M.A.; Bandeira, F.V.; Bandeira, M.P. FRI113 Increased Body Fat Is Associated With Heart Failure Of Ischemic Cause. J. Endocr. Soc 2023, 7, bvad114.626. [Google Scholar] [CrossRef]
- Bruno, C.D.; Harmatz, J.S.; Duan, S.X.; Zhang, Q.; Chow, C.R.; Greenblatt, D.J. Effect of lipophilicity on drug distribution and elimination: Influence of obesity. Br. J. Clin. Pharmacol. 2021, 87, 3197–3205. [Google Scholar] [CrossRef]
- Jongmans, C.; Muller, A.E.; Van Den Broek, P.; Cruz De Almeida, B.D.M.; Van Den Berg, C.; Van Oldenrijk, J.; Bos, P.K.; Koch, B.C.P. An Overview of the Protein Binding of Cephalosporins in Human Body Fluids: A Systematic Review. Front. Pharmacol. 2022, 13, 900551. [Google Scholar] [CrossRef]
- Dezanet, C.; Kempf, J.; Mingeot-Leclercq, M.-P.; Décout, J.-L. Amphiphilic Aminoglycosides as Medicinal Agents. Int. J. Mol. Sci. 2020, 21, 7411. [Google Scholar] [CrossRef] [PubMed]
- Butranova, O.I.; Ushkalova, E.A.; Zyryanov, S.K.; Chenkurov, M.S.; Baybulatova, E.A. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023, 11, 1633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butranova, O.I.; Ushkalova, E.A.; Zyryanov, S.K.; Chenkurov, M.S. Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines 2023, 11, 940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
ATC Drug Group | No. of Studies | % |
---|---|---|
C—Cardiovascular system | 96 | 90.57 |
R—Respiratory system | 5 | 4.72 |
N—Nervous system | 3 | 2.83 |
B—Blood and blood forming organs | 1 | 0.94 |
L—Antineoplastic and immunomodulating agents | 1 | 0.94 |
PCP | N of Drugs | % | References |
---|---|---|---|
Hydrophilic | 32 | 45.1 | [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
Lipophilic | 32 | 45.1 | [72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116] |
Amphiphilic | 7 | 9.9 | [117,118,119,120,121,122,123] |
PPB | No. of Drugs | % | References |
---|---|---|---|
HPB | 28 | 39.4 | [17,26,27,28,29,38,39,40,41,42,43,44,45,59,62,66,72,73,74,75,76,77,78,81,86,88,89,90,91,92,96,97,98,103,109,110,113,114,115,116,119,123] |
LPB | 39 | 54.9 | [17,18,19,20,21,22,23,24,25,32,33,34,35,36,46,47,48,49,50,51,52,53,54,55,56,57,58,71,79,80,82,83,84,85,87,93,94,95,99,104,105,106,107,108,111,112] |
NA | 4 | 5.6 | [30,37,68,69,70,118] |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 23 (76.7) | 7 (23.3) | [17,31,32,33,34,39,44,45,46,55,56,57,59,60,61,62,63,64,65,66,77,78,79,80,82,83,84,86,87,88,91,92,93,96,97,98,100,103,105,106,111,115,118,119,120,121,122] |
Volume of distribution | 11 (47.8) | 12 (52.2) | [17,18,31,32,33,34,39,44,45,46,55,56,57,59,60,63,66,77,78,79,80,82,83,84,86,87,88,91,92,93,96,97,98,100,103,105,106,115,118,119,120,122] |
Half-life | 7 (29.2) | 14 (70.8) | [17,32,33,34,39,44,45,46,55,56,57,59,60,61,62,63,66,77,79,80,81,82,83,84,86,87,88,91,92,93,96,97,98,103,105,106,115,118,119,122] |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 24 (92.3) | 2 (7.7) | [44,82,83,84,86,87,88,91,92,93,96,97,98,100,103,104,105,106,115,121] |
Volume of distribution | 10 (52.6) | 9 (47.4) | [44,82,83,84,86,87,88,91,92,93,96,97,98,100,103,104,105,106,115] |
Half-life | 2 (10) | 18 (90) | [44,81,82,83,84,86,87,88,91,92,93,96,97,98,103,104,105,106,115] |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 2 (66.7) | 1 (33.3) | [119,120,122] |
Volume of distribution | 1 (33.3) | 2 (66.7) | [119,120,122] |
Half-life | NA | 2 (100) | [119,122] |
Half-Life | Volume of Distribution | Clearance | |
---|---|---|---|
PPB of hydrophilic drugs | −0.3296 (p = 0.116) | −0.214 (p = 0.3274) | −0.0927 (p = 0.6262) |
PPB of lipophilic drugs | 0.068 (p = 0.776) | 0.725 (p = 0.00045) | 0.3118 (p = 0.121) |
PPB of amphiphilic drugs | NA | NA | NA |
PCP of HPB dugs | 0.433 (p = 0.0346) | 0.2175 (p = 0.319) | −0.055 (p = 0.799) |
PCP of LPB drugs | 0.072 (p = 0.749) | −0.2637 (p = 0.236) | −0.2002 (p = 0.2489) |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 30 (76.9) | 9 (23.1) | [17,18,19,20,21,22,23,24,26,27,28,29,30,31,36,37,39,40,41,42,43,44,49,50,51,52,53,54,67,69,70,71,90] |
Volume of distribution | 1 (20) | 4 (80) | [36,42,50,51] |
Half-life | 6 (18.8) | 26 (81.2) | [17,20,21,22,24,28,30,36,37,39,40,41,43,44,47,48,49,50,67,69,70,90] |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 39 (88.6) | 5 (11.4) | [24,28,39,55,58,72,73,74,75,76,77,78,79,85,89,94,95,103,107,108,109,110,111,112,113,114,115,116,117,119] |
Volume of distribution | 3 (37.5) | 5 (62.5) | [58,75,79,107,113] |
Half-life | 5 (19.2) | 21 (80.8) | [24,38,39,55,58,71,76,77,78,79,81,88,89,94,95,103,107,109,111,112,113,115,119] |
PK Parameter | Studies Exhibiting Decrease in PK Parameter, n (%) | Studies Exhibiting Increase in PK Parameter, n (%) | References |
---|---|---|---|
Clearance | 5 (62.5) | 3 (37.5) | [29,43,44,61,101,116,117,123] |
Volume of distribution | 1 (100) | NA | [117] |
Half-life | NA | 5 (100) | [43,44,61,101,117] |
Half-Life | Volume of Distribution | Clearance | |
---|---|---|---|
PPB of hydrophilic drugs | 0.316 (p = 0.132) | 0.25 (p = 0.685) | 0.504 (p = 0.0038) |
PPB of lipophilic drugs | −0.3858 (p = 0.052) | 0.258 (p = 0.537) | 0.2319 (p = 0.13) |
PPB of amphiphilic drugs | NA | NA | −1 (p = 0) |
PCP of HPB dugs | −0.2271 (p = 0.2645) | −0.25 (p = 0.685) | −0.3956 (p = 0.0087) |
PCP of LPB drugs | 0.3459 (p = 0.0714) | −0.258 (p = 0.537) | 0.296 (p = 0.0711) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butranova, O.; Zyryanov, S.; Kustov, Y. Pharmacokinetic Alterations in Patients with Chronic Heart Failure: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 9495. https://doi.org/10.3390/ijms26199495
Butranova O, Zyryanov S, Kustov Y. Pharmacokinetic Alterations in Patients with Chronic Heart Failure: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(19):9495. https://doi.org/10.3390/ijms26199495
Chicago/Turabian StyleButranova, Olga, Sergey Zyryanov, and Yury Kustov. 2025. "Pharmacokinetic Alterations in Patients with Chronic Heart Failure: A Systematic Review" International Journal of Molecular Sciences 26, no. 19: 9495. https://doi.org/10.3390/ijms26199495
APA StyleButranova, O., Zyryanov, S., & Kustov, Y. (2025). Pharmacokinetic Alterations in Patients with Chronic Heart Failure: A Systematic Review. International Journal of Molecular Sciences, 26(19), 9495. https://doi.org/10.3390/ijms26199495