Review of Promising Off-Label Use of Deucravacitinib
Abstract
1. Introduction
Psoriasis
2. Review
2.1. Discoid Lupus Erythema
2.2. Systemic Lupus Erythematosus
2.3. Alopecia Areata
2.4. Lichen Planus
2.5. Palmoplantar Pustulosis
2.6. Psoriatic Arthritis
2.7. Systemic Sclerosis
2.8. Inflammatory Bowel Diseases (Crohn’s Disease and Ulcerative Colitis)
2.9. Interstitial Pneumonia
2.10. Chronic Recurrent Multifocal Osteomyelitis
Disease | Evidence | The Suggested Mechanism | Article |
---|---|---|---|
Discoid lupus erythematosus | Case report (2 patients) | The inhibition of IL-12 and type 1 IFN | Ezeh N et al. [35] Aw K et al. [36] |
Alopecia areata | Case report (1 patient) | The inhibition of type 1 IFN | Oliel S et al. [55] |
Lichen planus | Case report (3 patients) | The inhibition of IL-12/17/23 and type 1 IFN | Stolte KN et al. [60] |
Palmoplantar pustulosis | Case report (5 patients) | The inhibition of Il-17/23 and type 1 IFN | De Luca DA et al. [68] |
Systemic sclerosis | Case report (3 patients) | The inhibition of IL-6/13/17/23 | Fukasawa T et al. [89] |
Interstitial pneumonia | Case report (1 patient) | The inhibition of IL-6/13/17/23 | Mima Y et al. [111] |
Chronic recurrent multifocal osteomyelitis | Case report (1 patient) | The inhibition of IL-1/6/17/23 | Glatzel C et al. [120] |
Disease | Trial Registration | Clinical Trial | Patients | Response |
---|---|---|---|---|
SLE | NCT03252587 | Phase 2 | Active SLE (n = 363) | At week 32, SRI-4 response rates were 58% with deucravacitinib 3 mg BID (OR 2.8 [95% CI 1.5–5.1]; p < 0.001), 50% with 6 mg BID (OR 1.9 [1.0–3.4]; p = 0.02), and 45% with 12 mg QD (OR 1.6 [0.8–2.9]; nominal p = 0.08), versus 34% with placebo. By week 48, secondary endpoints—including BICLA response, CLASI-50, achievement of LLDAS, and joint scores—were consistently improved with deucravacitinib compared with placebo [46]. |
NCT03920267 | Phase 2 | Active SLE (n = 261) | Ongoing | |
NCT05617677 | Phase 3 | Active SLE (POETYK SLE-1) (n = 490) | Ongoing | |
NCT05620407 | Phase 3 | Active SLE (POETYK SLE-2) (n = 490) | Ongoing | |
NCT06875960 | Open-label | SLE or DLE completing NCT03920267 or NCT03252587 (n = 35) | Ongoing | |
AA | NCT05556265 | Phase 2 | Active AA (n = 94) | Ongoing |
PsA | NCT03881059 | Phase 2 | Active PsA (n = 203) | At week 16, ACR20 response rate was 52.9% with 6 mg (p = 0.0134) and 62.7% with 12 mg (p = 0.0004) versus 31.8% with placebo. Both doses also significantly improved HAQ-DI, SF-36 PCS, and PASI 75 compared with placebo (all p ≤ 0.05) [76]. |
NCT04908189 | Phase 3 | Active PsA naïve to biologic disease modifying anti-rheumatic drugs or TNFα inhibitor treatment (n = 729) | Ongoing | |
NCT04908202 | Phase 3 | Active PsA naïve to biologic disease-modifying anti-rheumatic drugs (n = 670) | Ongoing | |
NCT06869551 | Phase 3 | Children and adolescents with active PsA (n = 60) | Ongoing | |
IBD | NCT03599622 | Phase 2 | Moderately to severe CD (n = 239) | Clinical remission at week 12 was 31.4% with deucravacitinib 3 mg, 19.0% with 6 mg, and 28.3% with placebo (p = 0.68 and p = 0.21 vs. placebo, respectively), indicating no significant between-group difference. Endoscopic response was higher with 3 mg than with placebo (23.3% vs. 8.3%; p = 0.02), whereas the 6 mg group did not differ from placebo (16.7% vs. 8.3%; p = 0.16). Clinical response rates were 48.8% and 39.3% with 3 mg and 6 mg, respectively, versus 38.3% with placebo; PRO2 remission occurred in 32.6% (p = 0.28) and 20.2% (p = 0.54) for the 3 mg and 6 mg groups, respectively, compared with 25.0% with placebo [103]. |
NCT03934216 | Phase 2 | Moderate to severe UC (n = 131) | The week-12 clinical response rate was 53.8% with deucravacitinib versus 50.0% with placebo, and the primary endpoint was not met. Clinical remission occurred in 20.8% and 25.0%, respectively. Endoscopic improvement was observed in 32.0% versus 37.5%, whereas endoscopic remission was achieved in 28.0% of deucravacitinib-treated patients and 0% of those receiving placebo [103]. | |
NCT04613518 | Phase 2 | Moderate to severe UC (n = 38) | Clinical remission was achieved in 14.8% of patients receiving deucravacitinib versus 16.3% receiving placebo (p = 0.59), with no significant between-group difference. Clinical response occurred in 37.5% vs. 32.6% (p = 0.31) and endoscopic response in 19.3% vs. 27.9% (p = 0.88), neither reaching statistical significance [103]. | |
NCT04877990 | Open-label | Previous participants in a Deucravacitinib Phase 2 study for CD or UC (n = 67) | Ongoing |
2.11. Others
Disease | Evidence | Article |
---|---|---|
Alzheimer’s disease | CRISPR analysis identified TYK2 as a key mediator of cdsRNA-induced neurotoxicity, and in mouse models, TYK2 knockdown reduced total and pathogenic tau levels and improved gliosis. | König LE et al. [126] Kim J et al. [127] |
Amyotrophic lateral sclerosis | CRISPR analysis identified TYK2 as a key mediator of cdsRNA-induced neurotoxicity, and in mouse models, TYK2 knockdown reduced total and pathogenic tau levels and improved gliosis. | Fröhlich A et al. [127] Kim J et al. [128] |
Chronic kidney disease | In mouse models, TYK2 inhibition or genetic deletion reduced medial arterial calcification. | Alesutan I et al. [133] |
Type 1 diabetes | Genetic studies have identified TYK2 as a risk factor for T1D, and in autoimmune T1D mouse models, the selective TYK2 inhibitor BMS-986165 suppressed β-cell inflammation and diabetes onset. | Onengut-Gumuscu S et al. [138] Mine K et al. [140] |
T-cell acute lymphoblastic leukemia | RNA interference screening showed that T-ALL cells depend on the TYK2–STAT1–BCL2 axis for survival, and in mouse models, the novel TYK2 inhibitor NDI-031301 reduced tumor burden and prolonged survival. | Sanda T et al. [146] Akahane K et al. [150] |
Multiple sclerosis | GWAS and transcriptomic analyses identified TYK2 as a susceptibility gene. | Thompson AJ et al. [151] |
Autoimmune thyroid diseases | GWAS and transcriptomic analyses identified TYK2 as a susceptibility gene. | Munteis E et al. [152] |
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Alopecia areata |
ALS | Amyotrophic lateral sclerosis |
BMI | Body mass index |
BSA | Body surface area |
CD | Cluster of differentiation |
CKD | Chronic kidney disease |
CRMO | Chronic recurrent multifocal osteomyelitis |
CTLA4 | Cytotoxic T-lymphocyte associated protein 4 |
DLE | Discoid lupus erythematosus |
DLQI | Dermatology life quality index |
ECM | Extracellular matrix |
ERK | Extracellular signal-regulated kinase |
HAQ-DI | Health assessment questionnaire–disability index |
HLA | Human leukocyte antigen genes |
IBD | Inflammatory bowel diseases |
IFN | Type I interferon |
IL | Interleukin |
IP | Interstitial pneumonia |
JAK | Janus kinase |
JNK | Jun N-terminal kinase |
LEI | Leeds enthesitis index |
LIF | Leukemia inhibitory factor |
LIFR | LIF receptor |
LP | Lichen planus |
MAPK | Mitogen-activated protein kinase |
MDA | Minimal disease activity |
MS | Multiple sclerosis |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
PASI | Psoriasis area severity index |
PD-L1 | Programmed death-ligand 1 |
PPP | Palmoplantar pustulosis |
PtGA | Patient global assessment of disease activity |
PsA | Psoriatic arthritis |
QoL | Quality of life |
SALT | Severity of alopecia tool |
SJC | Swollen joint count |
SLE | Systemic lupus erythematosus |
SRI | SLE responder index |
SSc | Systemic sclerosis |
T1D | Type 1 diabetes |
TGF-β | Transforming growth factor-beta |
Th | T helper |
TJC | Tender joint count |
T-ALL | T-cell acute lymphoblastic leukemia |
TNF-α | Tumor necrosis factor-alpha |
Tyr29 | Tyrosine 29 |
TYK2 | Tyrosine kinase 2 |
VSMCs | Vascular smooth muscle cells |
cdsRNA | Cytoplasmic double-stranded RNA |
GWAS | Genome-wide association studies |
References
- Pan, L.; Xu, J.; Xie, H.; Zhang, Y.; Jiang, H.; Yao, Y.; Wu, W. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. Eur. J. Med. Chem. 2025, 283, 117114. [Google Scholar] [CrossRef]
- Rusiñol, L.; Puig, L. Tyk2 Targeting in Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2023, 24, 3391. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Schulz, E.G.; Mariani, L.; Radbruch, A.; Höfer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 2009, 30, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front. Immunol. 2021, 12, 637829. [Google Scholar] [CrossRef]
- Bonelli, M.; Kerschbaumer, A.; Kastrati, K.; Ghoreschi, K.; Gadina, M.; Heinz, L.X.; Smolen, J.S.; Aletaha, D.; O’Shea, J.; Laurence, A. Selectivity, efficacy and safety of JAKinibs: New evidence for a still evolving story. Ann. Rheum. Dis. 2024, 83, 139–160. [Google Scholar] [CrossRef]
- Hoy, S.M. Deucravacitinib: First Approval. Drugs 2022, 82, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Greb, J.E.; Goldminz, A.M.; Elder, J.T.; Lebwohl, M.G.; Gladman, D.D.; Wu, J.J.; Mehta, N.N.; Finlay, A.Y.; Gottlieb, A.B. Psoriasis. Nat. Rev. Dis. Primers 2016, 2, 16082. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M.; Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) Project Team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Takeshita, J.; Grewal, S.; Langan, S.M.; Mehta, N.N.; Ogdie, A.; Van Voorhees, A.S.; Gelfand, J.M. Psoriasis and comorbid diseases: Epidemiology. J. Am. Acad. Dermatol. 2017, 76, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Alwan, W.; Nestle, F.O. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin. Exp. Rheumatol. 2015, 33, S2–S6. [Google Scholar]
- Hawkes, J.E.; Yan, B.Y.; Chan, T.C.; Krueger, J.G. Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. J. Immunol. 2018, 201, 1605–1613. [Google Scholar] [CrossRef]
- Yamanaka, K.; Yamamoto, O.; Honda, T. Pathophysiology of psoriasis: A review. J. Dermatol. 2021, 48, 722–731. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Gooderham, M.; Warren, R.B.; Papp, K.A.; Strober, B.; Thaçi, D.; Morita, A.; Szepietowski, J.C.; Imafuku, S.; Colston, E.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J. Am. Acad. Dermatol. 2023, 88, 29–39. [Google Scholar] [CrossRef]
- Abduelmula, A.; Gooderham, M.J. TYK2 inhibition: Changing the treatment landscape for psoriasis? Expert Rev. Clin. Immunol. 2022, 18, 185–187. [Google Scholar] [CrossRef]
- Minegishi, Y.; Saito, M.; Morio, T.; Watanabe, K.; Agematsu, K.; Tsuchiya, S.; Takada, H.; Hara, T.; Kawamura, N.; Ariga, T.; et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006, 25, 745–755. [Google Scholar] [CrossRef]
- Burke, J.R.; Cheng, L.; Gillooly, K.M.; Strnad, J.; Zupa-Fernandez, A.; Catlett, I.M.; Zhang, Y.; Heimrich, E.M.; McIntyre, K.W.; Cunningham, M.D.; et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci. Transl. Med. 2019, 11, eaaw1736. [Google Scholar] [CrossRef] [PubMed]
- Imafuku, S.; Okubo, Y.; Tada, Y.; Ohtsuki, M.; Colston, E.; Napoli, A.; Shao, Y.; Banerjee, S.; Morita, A. Deucravacitinib, an oral, selective, allosteric tyrosine kinase 2 inhibitor, in Japanese patients with moderate to severe plaque, erythrodermic, or generalized pustular psoriasis: Efficacy and safety results from an open-label, phase 3 trial. J. Dermatol. 2024, 51, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Tada, Y.; Armstrong, A.W.; Imafuku, S.; Okubo, Y.; Morita, A.; Zhong, Y.; Zhuo, J.; Becker, B.; Napoli, A.; Banerjee, S.; et al. Deucravacitinib in Japanese patients with plaque, generalized pustular, or erythrodermic psoriasis: Patient-reported outcomes in the POETYK PSO-4 study. J. Dermatol. 2025, 52, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Saeki, H.; Fujimoto, E.; Kanda, N. Effectiveness and safety of deucravacitinib treatment for moderate-to-severe psoriasis in real-world clinical practice in Japan. J. Dermatolog Treat. 2024, 35, 2307489. [Google Scholar] [CrossRef]
- Kaczmarska, A.; Kwiatkowska, D.; Skrzypek, K.K.; Kowalewski, Z.T.; Jaworecka, K.; Reich, A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int. J. Mol. Sci. 2023, 24, 14734. [Google Scholar] [CrossRef]
- Hagino, T.; Onda, M.; Saeki, H.; Fujimoto, E.; Kanda, N. Real-world 52-week effectiveness of deucravacitinib in psoriasis: A stratified analysis by age and body mass index. J. Dermatol. 2025, 52, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Onda, M.; Saeki, H.; Fujimoto, E.; Kanda, N. Predictive factors for responders to deucravacitinib treatment in patients with psoriasis. J. Dermatol. 2025, 52, 551–555. [Google Scholar] [CrossRef]
- Lovell, K.K.; Feldman, S.R. Response to deucravacitinib in psoriasis patients with prior biologic therapy failures: A retrospective study. J. Am. Acad. Dermatol. 2025, 92, 334–335. [Google Scholar] [CrossRef]
- Hagino, T.; Saeki, H.; Fujimoto, E.; Kanda, N. Long-term real-world effectiveness of deucravacitinib in psoriasis: A 52-week prospective study stratified by prior apremilast or biologic therapy. J. Dermatol. 2025, 52, 634–641. [Google Scholar] [CrossRef]
- Papp, K.A.; Vender, R.; Purdy, K.; Lovegrove, F.; Oroz, I.; Grewal, P.; Lansang, P.; Park-Wyllie, L.; Abbarin, N.; Yang, Y.W.; et al. Time to Onset of Action for Biologics and Targeted Treatments in Psoriasis: Systematic Targeted Literature Review and Network Meta-Analysis. Dermatol. Ther. 2025, 15, 2615–2629. [Google Scholar] [CrossRef]
- Hagino, T.; Onda, M.; Saeki, H.; Fujimoto, E.; Kanda, N. Effectiveness of deucravacitinib for genital, nail and scalp lesions in patients with psoriasis: A 24-week real-world study. Clin. Exp. Dermatol. 2024, 50, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Saeki, H.; Fujimoto, E.; Kanda, N. Long-term effectiveness and safety of deucravacitinib for psoriasis: A 52-week real-world study of genital, scalp and nail lesions. Clin. Exp. Dermatol. 2025, 50, 952–959. [Google Scholar] [CrossRef]
- Shaw, M.H.; Freeman, G.J.; Scott, M.F.; Fox, B.A.; Bzik, D.J.; Belkaid, Y.; Yap, G.S. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma-dependent IL-10 reactivation. J. Immunol. 2006, 176, 7263–7271. [Google Scholar] [CrossRef]
- Bang, C.H.; Park, C.J.; Kim, Y.S. The Expanding Therapeutic Potential of Deucravacitinib Beyond Psoriasis: A Narrative Review. J. Clin. Med. 2025, 14, 1745. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Peng, L.; Zhao, J.; Bai, W.; Jiang, N.; Zhang, S.; Wu, C.; Wang, L.; Xu, D.; Leng, X.; et al. Efficacy and safety of Janus kinase inhibitors in systemic and cutaneous lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2023, 22, 103440. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.; Sanchez-Melendez, S.; Taylor, D.; Barker, J.; LaChance, A.; Shahriari, N.; Vleugels, R.A. Assessment of clinical response to anifrolumab in patients with refractory discoid lupus erythematosus. JAMA Dermatol. 2023, 159, 560. [Google Scholar] [CrossRef] [PubMed]
- Ezeh, N.; Vleugels, R.A.; Shahriari, N. Discoid lupus erythematosus successfully treated with deucravacitinib. JAAD Case Rep. 2024, 49, 59–61. [Google Scholar] [CrossRef]
- Aw, K.; Gavigan, G. Treatment of discoid lupus erythematosus scarring alopecia with deucravacitinib: A case report. SAGE Open Med. Case Rep. 2025, 13, 1–13. [Google Scholar] [CrossRef]
- Morand, E.; Merola, J.F.; Tanaka, Y.; Gladman, D.; Fleischmann, R. TYK2: An emerging therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 2024, 20, 232–240. [Google Scholar] [CrossRef]
- Tanaka, Y.; Luo, Y.; O’Shea, J.J.; Nakayamada, S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat. Rev. Rheumatol. 2022, 18, 133–145. [Google Scholar] [CrossRef]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016, 2, 16039. [Google Scholar] [CrossRef]
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Fava, A.; Petri, M. Systemic lupus erythematosus: Diagnosis and clinical management. J. Autoimmun. 2019, 96, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, A.A.; Rönnblom, L. Role of interferons in SLE. Best Pract. Res. Clin. Rheumatol. 2017, 31, 415–428. [Google Scholar] [CrossRef]
- Dai, H.; He, F.; Tsokos, G.C.; Kyttaris, V.C. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J. Immunol. 2017, 199, 903–910. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Ford, T.L.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.; Pike, M.; Merrill, J.T.; van Vollenhoven, R.; Werth, V.P.; Hobar, C.; Delev, N.; Shah, V.; Sharkey, B.; Wegman, T.; et al. Deucravacitinib, a Tyrosine Kinase 2 Inhibitor, in Systemic Lupus Erythematosus: A Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2023, 75, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Bokor, L.A.; Martyin, K.; Krebs, M.; Galajda, N.Á.; Meznerics, F.A.; Szabó, B.; Hegyi, P.; Lőrincz, K.; Kiss, N.; Bánvölgyi, A.; et al. Deucravacitinib shows superior efficacy and safety in cutaneous lupus erythematosus compared to various biologics and small molecules—A systematic review and meta-analysis. Autoimmun. Rev. 2025, 24, 103723. [Google Scholar] [CrossRef]
- Kandane-Rathnayake, R.; Louthrenoo, W.; Hoi, A.; Luo, S.-F.; Wu, Y.-J.J.; Chen, Y.-H.; Cho, J.; Lateef, A.; Hamijoyo, L.; Navarra, S.V.; et al. ‘Not at target’: Prevalence and consequences of inadequate disease control in systemic lupus erythematosus-a multinational observational cohort study. Arthritis Res. Ther. 2022, 24, 70. [Google Scholar] [CrossRef]
- Bultink, I.E.; de Vries, F.; van Vollenhoven, R.F.; Lalmohamed, A. Mortality, causes of death and influence of medication use in patients with systemic lupus erythematosus vs matched controls. Rheumatology 2021, 60, 207–216. [Google Scholar] [CrossRef]
- Lee, H.H.; Gwillim, E.; Patel, K.R.; Hua, T.; Rastogi, S.; Ibler, E.; Silverberg, J.I. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2020, 82, 675–682. [Google Scholar] [CrossRef]
- Alexis, A.F.; Dudda-Subramanya, R.; Sinha, A.A. Alopecia areata: Autoimmune basis of hair loss. Eur. J. Dermatol. 2004, 14, 364–370. [Google Scholar]
- Gilhar, A.; Kalish, R.S. Alopecia areata: A tissue specific autoimmune disease of the hair follicle. Autoimmun. Rev. 2006, 5, 64–69. [Google Scholar] [CrossRef]
- Bertolini, M.; Gilhar, A.; Paus, R. Alopecia areata as a model for T cell-dependent autoimmune diseases. Exp. Dermatol. 2012, 21, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, M.M.; Schwartz, R.R.; Andrews, K.; Seiffert-Sinha, K.; Sinha, A.A. Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata. Biomolecules 2023, 13, 1285. [Google Scholar] [CrossRef]
- Oliel, S.; Moussa, S.; Stanciu, M.; Netchiporouk, E. Rapid hair regrowth in an alopecia universalis patient with deucravacitinib: A case report. SAGE Open Med. Case Rep. 2023, 11, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Fan, H.; Chen, M.; Xia, L.; Wang, S.; Dong, W.; Wang, Q.; Niu, S.; Rao, H.; Chen, L.; et al. The efficacy and safety of JAK inhibitors for alopecia areata: A systematic review and meta-analysis of prospective studies. Front. Pharmacol. 2022, 13, 950450. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, L.; Arenbergerova, M.; Grimalt, R.; Ioannides, D.; Katoulis, A.C.; Lazaridou, E.; Olszewska, M.; Ovcharenko, Y.S.; Piraccini, B.M.; Prohic, A.; et al. European expert consensus statement on the systemic treatment of alopecia areata. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 687–694. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Pavel, A.B.; Diaz, A.; Zhang, N.; Del Duca, E.; Estrada, Y.; King, B.; Banerjee, A.; Banfield, C.; Cox, L.A.; et al. Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers. J. Allergy Clin. Immunol. 2022, 149, 1318–1328. [Google Scholar] [CrossRef]
- Tziotzios, C.; Lee, J.Y.W.; Brier, T.; Saito, R.; Hsu, C.K.; Bhargava, K.; Stefanato, C.M.; Fenton, D.A.; McGrath, J.A. Lichen planus and lichenoid dermatoses: Clinical overview and molecular basis. J. Am. Acad. Dermatol. 2018, 79, 789–804. [Google Scholar] [CrossRef]
- Stolte, K.N.; Mesas-Fernández, A.; Meier, K.; Klein, E.K.; Dommisch, H.; Ghoreschi, K.; Solimani, F. TYK2 inhibition with deucravacitinib ameliorates erosive oral lichen planus. Exp. Dermatol. 2024, 33, e15080. [Google Scholar] [CrossRef]
- Shao, S.; Tsoi, L.C.; Sarkar, M.K.; Xing, X.; Xue, K.; Uppala, R.; Berthier, C.C.; Zeng, C.; Patrick, M.; Billi, A.C.; et al. IFN-gamma enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Sci. Transl. Med. 2019, 11, eaav7561. [Google Scholar] [CrossRef]
- Pietschke, K.; Holstein, J.; Meier, K.; Schäfer, I.; Müller-Hermelink, E.; Gonzalez-Menendez, I.; Quintanilla-Martinez, L.; Ghoreschi, F.C.; Solimani, F.; Ghoreschi, K. The inflammation in cutaneous lichen planus is dominated by IFN-ϒ and IL-21-A basis for therapeutic JAK1 inhibition. Exp. Dermatol. 2021, 30, 262–270. [Google Scholar] [CrossRef]
- Schmidt, T.; Solimani, F.; Pollmann, R.; Stein, R.; Stulberga, I.; Kühn, K.; Eming, R.; Eubel, V.; Kind, P. TH1/TH17 cell recognition of desmoglein 3 and bullous pemphigoid antigen 180 in patients with lichen planus. J. Allergy Clin. Immunol. 2018, 142, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Augustin, M.; Baraliakos, X.; Krönke, G.; Schneider, M.; Schreiber, S.; Schulze-Koops, H.; Zeißig, S.; Thaçi, D. TYK2 inhibition and its potential in the treatment of chronic inflammatory immune diseases. J. Dtsch. Dermatol. Ges. 2021, 19, 1409–1420. [Google Scholar] [CrossRef]
- Misiak-Galazka, M.; Zozula, J.; Rudnicka, L. Palmoplantar pustulosis: Recent advances in etiopathogenesis and emerging treatments. Am. J. Clin. Dermatol. 2020, 21, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Brunasso, A.M.G.; Massone, C. Recent advances in palmoplantar pustulosis. Fac. Rev. 2021, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.; Gilliet, M. Psoriasis: From pathogenesis to targeted therapies. Clin. Rev. Allergy Immunol. 2018, 54, 102–113. [Google Scholar] [CrossRef]
- De Luca, D.A.; Papara, C.; Hawro, T.; Thaçi, D.; Ständer, S. Exploring the effect of deucravacitinib in patients with palmoplantar pustular psoriasis. J. Dermatolog Treat. 2024, 35, 2399220. [Google Scholar] [CrossRef]
- Alinaghi, F.; Calov, M.; Kristensen, L.E.; Gladman, D.D.; Coates, L.C.; Jullien, D.; Gottlieb, A.B.; Gisondi, P.; Wu, J.J.; Thyssen, J.P.; et al. Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. J. Am. Acad. Dermatol. 2019, 80, 251–265. [Google Scholar] [CrossRef]
- Ocampo, D.V.; Gladman, D. Psoriatic arthritis. F1000Res 2019, 8, 1665. [Google Scholar] [CrossRef]
- Kishimoto, M.; Deshpande, G.A.; Fukuoka, K.; Kawakami, T.; Ikegaya, N.; Kawashima, S.; Komagata, Y.; Kaname, S. Clinical features of psoriatic arthritis. Best. Pract. Res. Clin. Rheumatol. 2021, 35, 101670. [Google Scholar] [CrossRef]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic arthritis. N. Engl. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef]
- Girolomoni, G.; Strohal, R.; Puig, L.; Bachelez, H.; Barker, J.; Boehncke, W.H.; Prinz, J.C. The role of IL-23 and the IL-23/T(H) 17 immune axis in the pathogenesis and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Lé, A.M.; Torres, T. Deucravacitinib for the treatment of psoriatic arthritis: The evidence so far. Drugs Context 2023, 12, 2023-2-7. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Coates, L.C.; Mease, P.J.; Nowak, M.; Hippeli, L.; Lehman, T.; Banerjee, S.; Merola, J.F. Deucravacitinib, a selective, TYK2 inhibitor, in psoriatic arthritis: Achievement of minimal disease activity components in a phase 2 trial. Rheumatology 2025, 64, 2557–2564. [Google Scholar] [CrossRef]
- Mease, P.J.; Deodhar, A.A.; van der Heijde, D.; Behrens, F.; Kivitz, A.J.; Neal, J.; Kim, J.; Singhal, S.; Nowak, M.; Banerjee, S. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann. Rheum. Dis. 2022, 81, 815–822. [Google Scholar] [CrossRef]
- Knobler, R.; Moinzadeh, P.; Hunzelmann, N.; Kreuter, A.; Cozzio, A.; Mouthon, L.; Cutolo, M.; Rongioletti, F.; Denton, C.; Rudnicka, L.; et al. European dermatology forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, part 1: Localized scleroderma, systemic sclerosis and overlap syndromes. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1401–1424. [Google Scholar] [CrossRef]
- Varga, J.; Abraham, D. Systemic sclerosis: A prototypic multisystem fibrotic disorder. J. Clin. Investig. 2007, 117, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef]
- Lescoat, A.; Varga, J.; Matucci-Cerinic, M.; Khanna, D. New promising drugs for the treatment of systemic sclerosis: Pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opin. Investig. Drugs 2021, 30, 635–652. [Google Scholar] [CrossRef]
- Rosendahl, A.H.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Sato, S.; Ihn, H.; Takehara, K. Enhanced production of interleukin-6 (IL-6), oncostatin M and soluble IL-6 receptor by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. Rheumatology 1999, 38, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.; Bereznay, O.; Sporn, M.; Greenberg, A.H. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J. Exp. Med. 1989, 170, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Zurawski, G.; de Vries, J.E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today 1994, 15, 19–26. [Google Scholar] [CrossRef]
- Krasimirova, E.; Velikova, T.; Ivanova-Todorova, E.; Tumangelova-Yuzeir, K.; Kalinova, D.; Boyadzhieva, V.; Stoilov, N.; Yoneva, T.; Rashkov, R.; Kyurkchiev, D. Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients. World J. Exp. Med. 2017, 7, 84–96. [Google Scholar] [CrossRef]
- Tang, J.; Lei, L.; Pan, J.; Zhao, C.; Wen, J. Higher levels of serum interleukin-35 are associated with the severity of pulmonary fibrosis and Th2 responses in patients with systemic sclerosis. Rheumatol. Int. 2018, 38, 1511–1519. [Google Scholar] [CrossRef]
- Sato, S.; Fujimoto, M.; Hasegawa, M.; Takehara, K. Altered blood B lymphocyte homeostasis in systemic sclerosis: Expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004, 50, 1918–1927. [Google Scholar] [CrossRef]
- Park, M.J.; Park, Y.; Choi, J.W.; Baek, J.A.; Jeong, H.Y.; Na, H.S.; Moon, Y.M.; Cho, M.L.; Park, S.H. Establishment of a humanized animal model of systemic sclerosis in which T helper-17 cells from patients with systemic sclerosis infiltrate and cause fibrosis in the lungs and skin. Exp. Mol. Med. 2022, 54, 1577–1585. [Google Scholar] [CrossRef]
- Fukasawa, T.; Yoshizaki-Ogawa, A.; Yoshizaki, A.; Sato, S. The effects of deucravacitinib on three cases of systemic sclerosis associated with psoriasis. Rheumatology 2025, 64, 4067–4069. [Google Scholar] [CrossRef]
- Faust, A.H.; Halpern, L.F.; Danoff-Burg, S.; Cross, R.K. Psychosocial factors contributing to inflammatory bowel disease activity and health-related quality of life. Gastroenterol. Hepatol. 2012, 8, 173–181. [Google Scholar]
- de Souza, H.S.; Fiocchi, C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, B.; Moraes, L.; Magnusson, M.K.; Öhman, L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand. J. Gastroenterol. 2018, 53, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef]
- Neurath, M.F. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor. Rev. 2019, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.F.; Isaacs, J.D. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann. Rheum. Dis. 2018, 77, 175–187. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Chapman, J.C.; Colombel, J.F.; Caprioli, F.; D’Haens, G.; Ferrante, M.; Schreiber, S.; Atreya, R.; Danese, S.; Lindsay, J.O.; et al. Risankizumab versus Ustekinumab for Moderate-to-Severe Crohn’s Disease. N. Engl. J. Med. 2024, 391, 213–223. [Google Scholar] [CrossRef]
- Danese, S.; Panaccione, R.; Feagan, B.G.; Afzali, A.; Rubin, D.T.; Sands, B.E.; Reinisch, W.; Panés, J.; Sahoo, A.; Terry, N.A.; et al. Efficacy and safety of 48 weeks of guselkumab for patients with Crohn’s disease: Maintenance results from the phase 2, randomised, double-blind GALAXI-1 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 133–146. [Google Scholar] [CrossRef]
- Rubin, D.T.; Allegretti, J.R.; Panés, J.; Shipitofsky, N.; Yarandi, S.S.; Huang, K.G.; Germinaro, M.; Wilson, R.; Zhang, H.; Johanns, J.; et al. Guselkumab in patients with moderately to severely active ulcerative colitis (QUASAR): Phase 3 double-blind, randomised, placebo-controlled induction and maintenance studies. Lancet 2025, 405, 33–49. [Google Scholar] [CrossRef]
- Danese, S.; Peyrin-Biroulet, L. Selective Tyrosine Kinase 2 Inhibition for Treatment of Inflammatory Bowel Disease: New Hope on the Rise. Inflamm. Bowel Dis. 2021, 27, 2023–2030. [Google Scholar] [CrossRef]
- Akiyama, S.; Shimizu, H.; Tamura, A.; Yokoyama, K.; Sakurai, T.; Kobayashi, M.; Eizuka, M.; Yanai, S.; Nomura, K.; Shibuya, T.; et al. Efficacy and Safety of Three Janus Kinase Inhibitors in Ulcerative Colitis Patients over and under 65 Years of Age: A Real-World Comparative Analysis. Inflamm. Intest. Dis. 2025, 10, 180–186. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, Z.; Liu, L. Identification of novel proteins in inflammatory bowel disease based on the gut-brain axis: A multi-omics integrated analysis. Clin. Proteom. 2024, 21, 59. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Ellinghaus, E.; Nair, R.P.; Stuart, P.E.; Esko, T.; Metspalu, A.; Debrus, S.; Raelson, J.V.; Tejasvi, T.; Belouchi, M.; et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 2012, 90, 636–647. [Google Scholar] [CrossRef]
- D’Haens, G.; Danese, S.; Panaccione, R.; Rubin, D.T.; Peyrin-Biroulet, L.; Matsuoka, K.; Loftus, E.V., Jr.; Kobayashi, T.; Elsharkawi, W.; Miceli, R.; et al. Deucravacitinib in patients with inflammatory bowel disease: 12-week efficacy and safety results from 3 randomized phase 2 studies in Crohn’s disease and ulcerative colitis. J. Crohns Colitis 2025, 19, jjaf080. [Google Scholar] [CrossRef]
- Travis, W.D.; Costabel, U.; Hansell, D.M.; King, T.E., Jr.; Lynch, D.A.; Nicholson, A.G.; Ryerson, C.J.; Ryu, J.H.; Selman, M.; Wells, A.U.; et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 2013, 188, 733–748. [Google Scholar] [CrossRef]
- Samarelli, A.V.; Tonelli, R.; Marchioni, A.; Bruzzi, G.; Gozzi, F.; Andrisani, D.; Castaniere, I.; Manicardi, L.; Moretti, A.; Tabbì, L.; et al. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int. J. Mol. Sci. 2021, 22, 8952. [Google Scholar] [CrossRef] [PubMed]
- Montero, P.; Milara, J.; Roger, I.; Cortijo, J. Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int. J. Mol. Sci. 2021, 22, 6211. [Google Scholar] [CrossRef] [PubMed]
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef]
- Wilson, M.S.; Madala, S.K.; Ramalingam, T.R.; Gochuico, B.R.; Rosas, I.O.; Cheever, A.W.; Wynn, T.A. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 2010, 207, 535–552. [Google Scholar] [CrossRef]
- Epstein Shochet, G.; Brook, E.; Bardenstein-Wald, B.; Shitrit, D. TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir. Res. 2020, 21, 56. [Google Scholar] [CrossRef]
- Volpe, E.; Servant, N.; Zollinger, R.; Bogiatzi, S.I.; Hupé, P.; Barillot, E.; Soumelis, V. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 2008, 9, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Mima, Y.; Ohtsuka, T.; Akiyama, N.; Norimatsu, Y. Deucravacitinib Improved Interstitial Pneumonia Along with KL-6 Reduction in a Patient with Psoriasis: A Case Report. Clin. Cosmet. Investig. Dermatol. 2025, 18, 1677–1681. [Google Scholar] [CrossRef]
- Huo, R.; Guo, Q.; Hu, J.; Li, N.; Gao, R.; Mi, L.; Zhang, Z.; Liu, H.; Guo, Z.; Zhao, H.; et al. Therapeutic Potential of Janus Kinase Inhibitors for the Management of Interstitial Lung Disease. Drug Des. Devel Ther. 2022, 16, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C.M.; Miller, E.; Demellawy, D.E.; Shen, F.; Zhang, M. Chronic recurrent multifocal osteomyelitis. A narrative and pictorial review. Front. Immunol. 2022, 13, 959575. [Google Scholar] [CrossRef]
- Hofmann, S.R.; Kapplusch, F.; Girschick, H.J.; Morbach, H.; Pablik, J.; Ferguson, P.J.; Hedrich, C.M. Chronic Recurrent Multifocal Osteomyelitis (CRMO): Presentation, Pathogenesis, and Treatment. Curr. Osteoporos. Rep. 2017, 15, 542–554. [Google Scholar] [CrossRef]
- Moreno-Mateo, F.; Perea, S.H.; Onel, K.B. Chronic recurrent multifocal osteomyelitis: Diagnosis and treatment. Curr. Opin. Pediatr. 2021, 33, 90–96. [Google Scholar] [CrossRef]
- Hofmann, S.R.; Kubasch, A.S.; Range, U.; Laass, M.W.; Morbach, H.; Girschick, H.J.; Hedrich, C.M. Serum biomarkers for the diagnosis and monitoring of chronic recurrent multifocal osteomyelitis (CRMO). Rheumatol. Int. 2016, 36, 769–779. [Google Scholar] [CrossRef]
- Hofmann, S.R.; Morbach, H.; Schwarz, T.; Rösen-Wolff, A.; Girschick, H.J.; Hedrich, C.M. Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin. Immunol. 2012, 145, 69–76. [Google Scholar] [CrossRef]
- Wipff, J.; Costantino, F.; Lemelle, I.; Pajot, C.; Duquesne, A.; Lorrot, M.; Faye, A.; Bader-Meunier, B.; Brochard, K.; Despert, V.; et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015, 67, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Roderick, M.; Finn, A.; Ramanan, A.V. The jigsaw puzzle of chronic non-bacterial osteomyelitis: Are anti-IL17 therapies the next piece? Rheumatology 2020, 59, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Glatzel, C.; Strunz, P.P.; Goebeler, M.; Holl-Wieden, A.; Schmalzing, M.; Schmieder, A. Case Report: Effectiveness of deucravacitinib in chronic recurrent multifocal osteomyelitis and concomitant psoriasis. Front. Immunol. 2025, 16, 1480810. [Google Scholar] [CrossRef]
- Xu, J.; Yu, L.; Liu, F.; Wan, L.; Deng, Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front. Immunol. 2023, 14, 1222129. [Google Scholar] [CrossRef]
- Chen, X.; Holtzman, D.M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 2022, 55, 2236–2254. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef]
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023, 22, 185–212. [Google Scholar] [CrossRef]
- Rodriguez, S.; Sahin, A.; Schrank, B.R.; Al-Lawati, H.; Costantino, I.; Benz, E.; Fard, D.; Albers, A.D.; Cao, L.; Gomez, A.C.; et al. Genome-encoded cytoplasmic double-stranded RNAs, found in C9ORF72 ALS-FTD brain, propagate neuronal loss. Sci. Transl. Med. 2021, 13, eaaz4699. [Google Scholar] [CrossRef] [PubMed]
- König, L.E.; Rodriguez, S.; Hug, C.; Daneshvari, S.; Chung, A.; Bradshaw, G.A.; Sahin, A.; Zhou, G.; Eisert, R.J.; Piccioni, F.; et al. TYK2 as a novel therapeutic target in Alzheimer’s Disease with TDP-43 inclusions. bioRxiv 2024. [Google Scholar] [CrossRef]
- Fröhlich, A.; Bowles, K.R. Deciphering the role of TYK2 in tau phosphorylation and pathology. Trends Neurosci. 2025, 48, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Tadros, B.; Liang, Y.H.; Kim, Y.; Lasagna-Reeves, C.; Sonn, J.Y.; Chung, D.C.; Hyman, B.; Holtzman, D.M.; Zoghbi, H.Y. TYK2 regulates tau levels, phosphorylation and aggregation in a tauopathy mouse model. Nat. Neurosci. 2024, 27, 2417–2429. [Google Scholar] [CrossRef]
- Sexton, C.; Snyder, H.; Beher, D.; Boxer, A.L.; Brannelly, P.; Brion, J.P.; Buée, L.; Cacace, A.M.; Chételat, G.; Citron, M.; et al. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement. 2022, 18, 988–1007. [Google Scholar] [CrossRef]
- Voelkl, J.; Cejka, D.; Alesutan, I. An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 289–296. [Google Scholar] [CrossRef]
- Voelkl, J.; Egli-Spichtig, D.; Alesutan, I.; Wagner, C.A. Inflammation: A putative link between phosphate metabolism and cardiovascular disease. Clin. Sci. 2021, 135, 201–227. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, A.; Nakano, K.; Yamagata, K.; Okada, Y.; Nakayamada, S.; Tanaka, Y. IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2. Bone 2019, 124, 53–61. [Google Scholar] [CrossRef]
- Alesutan, I.; Razazian, M.; Luong, T.T.D.; Estepa, M.; Pitigala, L.; Henze, L.A.; Obereigner, J.; Mitter, G.; Zickler, D.; Schuchardt, M.; et al. Augmentative effects of leukemia inhibitory factor reveal a critical role for TYK2 signaling in vascular calcification. Kidney Int. 2024, 106, 611–624. [Google Scholar] [CrossRef]
- Kakutani, Y.; Shioi, A.; Shoji, T.; Okazaki, H.; Koyama, H.; Emoto, M.; Inaba, M. Oncostatin M Promotes Osteoblastic Differentiation of Human Vascular Smooth Muscle Cells Through JAK3-STAT3 Pathway. J. Cell. Biochem. 2015, 116, 1325–1333. [Google Scholar] [CrossRef]
- Hao, N.; Zhou, Z.; Zhang, F.; Li, Y.; Hu, R.; Zou, J.; Zheng, R.; Wang, L.; Xu, L.; Tan, W.; et al. Interleukin-29 Accelerates Vascular Calcification via JAK2/STAT3/BMP2 Signaling. J. Am. Heart Assoc. 2023, 12, e027222. [Google Scholar] [CrossRef]
- Horwitz, D.A.; Fahmy, T.M.; Piccirillo, C.A.; La Cava, A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol. 2019, 40, 888–908. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- Onengut-Gumuscu, S.; Chen, W.M.; Burren, O.; Cooper, N.J.; Quinlan, A.R.; Mychaleckyj, J.C.; Farber, E.; Bonnie, J.K.; Szpak, M.; Schofield, E.; et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 2015, 47, 381–386. [Google Scholar] [CrossRef]
- Bradfield, J.P.; Qu, H.Q.; Wang, K.; Zhang, H.; Sleiman, P.M.; Kim, C.E.; Mentch, F.D.; Qiu, H.; Glessner, J.T.; Thomas, K.A.; et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011, 7, e1002293. [Google Scholar] [CrossRef]
- Mine, K.; Nagafuchi, S.; Akazawa, S.; Abiru, N.; Mori, H.; Kurisaki, H.; Shimoda, K.; Yoshikai, Y.; Takahashi, H.; Anzai, K. TYK2 signaling promotes the development of autoreactive CD8+ cytotoxic T lymphocytes and type 1 diabetes. Nat. Commun. 2024, 15, 1337. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.S.; Guzman-Llorens, D.; Perez-Serna, A.A.; Nadal, A.; Marroqui, L. Deucravacitinib, a tyrosine kinase 2 pseudokinase inhibitor, protects human EndoC-βH1 β-cells against proinflammatory insults. Front. Immunol. 2023, 14, 1263926. [Google Scholar] [CrossRef]
- Marroqui, L.; Perez-Serna, A.A.; Babiloni-Chust, I.; Dos Santos, R.S. Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. Int. Rev. Cell Mol. Biol. 2021, 359, 1–80. [Google Scholar]
- Lombardi, A.; Tomer, Y. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress. J. Autoimmun. 2017, 80, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Coomans de Brachène, A.; Dos Santos, R.S.; Marroqui, L.; Colli, M.L.; Marselli, L.; Mirmira, R.G.; Marchetti, P.; Eizirik, D.L. IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia 2018, 61, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Colli, M.L.; Ramos-Rodríguez, M.; Nakayasu, E.S.; Alvelos, M.I.; Lopes, M.; Hill, J.L.E.; Turatsinze, J.V.; Coomans de Brachène, A.; Russell, M.A.; Raurell-Vila, H.; et al. An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nat. Commun. 2020, 11, 2584. [Google Scholar] [CrossRef]
- Sanda, T.; Tyner, J.W.; Gutierrez, A.; Ngo, V.N.; Glover, J.; Chang, B.H.; Yost, A.; Ma, W.; Fleischman, A.G.; Zhou, W.; et al. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 2013, 3, 564–577. [Google Scholar] [CrossRef]
- Waanders, E.; Scheijen, B.; Jongmans, M.C.; Venselaar, H.; van Reijmersdal, S.V.; van Dijk, A.H.; Pastorczak, A.; Weren, R.D.; van der Schoot, C.E.; van de Vorst, M.; et al. Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukemia occurrences. Leukemia 2017, 31, 821–828. [Google Scholar] [CrossRef]
- Sentman, C.L.; Shutter, J.R.; Hockenbery, D.; Kanagawa, O.; Korsmeyer, S.J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991, 67, 879–888. [Google Scholar] [CrossRef]
- Karaghiosoff, M.; Neubauer, H.; Lassnig, C.; Kovarik, P.; Schindler, H.; Pircher, H.; McCoy, B.; Bogdan, C.; Decker, T.; Brem, G.; et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 2000, 13, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Akahane, K.; Li, Z.; Etchin, J.; Berezovskaya, A.; Gjini, E.; Masse, C.E.; Miao, W.; Rocnik, J.; Kapeller, R.; Greenwood, J.R.; et al. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2017, 177, 271–282. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Munteis, E.; Cano, J.F.; Flores, J.A.; Martinez-Rodriguez, J.E.; Miret, M.; Roquer, J. Prevalence of autoimmune thyroid disorders in a Spanish multiple sclerosis cohort. Eur. J. Neurol. 2007, 14, 1048–1052. [Google Scholar] [CrossRef]
- Marrie, R.A.; Reider, N.; Cohen, J.; Stuve, O.; Sorensen, P.S.; Cutter, G.; Reingold, S.C.; Trojano, M. A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis. Mult. Scler. 2015, 21, 282–293. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhang, X.; Hong, X.; Rang, X.; Yang, D.; Huang, S.; Xu, C.; Fu, J. Establishment of comorbidity target pools and prediction of drugs candidate for multiple sclerosis and autoimmune thyroid diseases based on GWAS and transcriptome data. Mult. Scler. Relat. Disord. 2023, 78, 104903. [Google Scholar] [CrossRef] [PubMed]
- Strobl, B.; Stoiber, D.; Sexl, V.; Mueller, M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front. Biosci. Landmark Ed 2011, 16, 3214–3232. [Google Scholar] [CrossRef]
- Shimoda, K.; Kato, K.; Aoki, K.; Matsuda, T.; Miyamoto, A.; Shibamori, M.; Yamashita, M.; Numata, A.; Takase, K.; Kobayashi, S.; et al. Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 2000, 13, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.H.; Boyartchuk, V.; Wong, S.; Karaghiosoff, M.; Ragimbeau, J.; Pellegrini, S.; Muller, M.; Dietrich, W.F.; Yap, G.S. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc. Natl. Acad. Sci. USA 2003, 100, 11594–11599. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.J.; Barrett, K.; Van Abbema, A.; Chang, C.; Kohli, P.B.; Kanda, H.; Smith, J.; Lai, Y.; Zhou, A.; Zhang, B.; et al. A restricted role for TYK2 catalytic activity in human cytokine responses revealed by novel TYK2-selective inhibitors. J. Immunol. 2013, 191, 2205–2216. [Google Scholar] [CrossRef]
- Ragimbeau, J.; Dondi, E.; Alcover, A.; Eid, P.; Uzé, G.; Pellegrini, S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J. 2003, 22, 537–547. [Google Scholar] [CrossRef]
- Meesters, L.D.; Roubroeks, J.A.Y.; Gerritsen, A.; Velthuijs, N.; Klijnhout, J.A.; Laberthonnière, C.; van Vlijmen-Willems, I.M.; Hübenthal, M.; Rodijk-Olthuis, D.; Peters, R.H.W.; et al. Dissecting key contributions of TH2 and TH17 cytokines to atopic dermatitis pathophysiology. J. Allergy Clin. Immunol. 2025, 156, 690–704. [Google Scholar] [CrossRef]
- Saeki, H.; Mabuchi, T.; Asahina, A.; Abe, M.; Igarashi, A.; Imafuku, S.; Okubo, Y.; Komine, M.; Sano, S.; Torii, H.; et al. English version of Japanese guidance for use of biologics for psoriasis (the 2022 version). J. Dermatol. 2023, 50, e41–e68. [Google Scholar] [CrossRef] [PubMed]
- Yarmolinsky, J.; Amos, C.I.; Hung, R.J.; Moreno, V.; Burrows, K.; Smith-Byrne, K.; Atkins, J.R.; Brennan, P.; Colon Cancer Family Registry (CCFR); Colorectal Cancer Transdisciplinary Study (CORECT); et al. Association of germline TYK2 variation with lung cancer and non-Hodgkin lymphoma risk. Int. J. Cancer 2022, 151, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
- Kargbo, R.B. Innovative Therapeutic Strategies in TYK2-Targeted Treatments: From Cancer to Autoimmune Disorders. ACS Med. Chem. Lett. 2024, 15, 174–176. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, J.; Liu, W.; Lin, F.; Shi, N. The efficacy and safety of tyrosine kinase 2 inhibitor deucravacitinib in the treatment of plaque psoriasis: A systematic review and meta-analysis of randomized controlled trials. Front. Med. 2023, 10, 1264667. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mima, Y.; Yamamoto, M.; Iozumi, K. Review of Promising Off-Label Use of Deucravacitinib. Int. J. Mol. Sci. 2025, 26, 9447. https://doi.org/10.3390/ijms26199447
Mima Y, Yamamoto M, Iozumi K. Review of Promising Off-Label Use of Deucravacitinib. International Journal of Molecular Sciences. 2025; 26(19):9447. https://doi.org/10.3390/ijms26199447
Chicago/Turabian StyleMima, Yoshihito, Masako Yamamoto, and Ken Iozumi. 2025. "Review of Promising Off-Label Use of Deucravacitinib" International Journal of Molecular Sciences 26, no. 19: 9447. https://doi.org/10.3390/ijms26199447
APA StyleMima, Y., Yamamoto, M., & Iozumi, K. (2025). Review of Promising Off-Label Use of Deucravacitinib. International Journal of Molecular Sciences, 26(19), 9447. https://doi.org/10.3390/ijms26199447