Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content
Abstract
1. Introduction
2. Results
2.1. EV Yield Across MSC Sources and Growth Phases
2.2. Global miRNA Landscape Across MSC-EV Sources and Growth Phases
2.3. Regeneration- and Fibrosis-Related miRNAs Show Source- and Phase-Specific Enrichment
3. Discussion
4. Materials and Methods
4.1. Cell Sources and Culture Conditions
4.2. Definition of Growth Phases and Conditioned Medium Collection
4.3. Extracellular Vesicle Isolation and Particle Characterization by Nanoparticle Tracking Analysis
4.4. EV RNA Extraction, Microarray-Based miRNA Profiling, and Data Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EV | Extracellular vesicle |
MSC | Mesenchymal stromal cell |
SHED | Stem cells from human exfoliated deciduous teeth |
AD-MSC | Adipose-derived mesenchymal stromal cell |
UC-MSC | Umbilical cord-derived mesenchymal stromal cell |
BM-MSC | Bone marrow-derived mesenchymal stromal cell |
miRNA | MicroRNA |
DVIU | Direct visual internal urethrotomy |
NTA | Nanoparticle tracking analysis |
AOF | Animal-origin-free (medium) |
OMG | Oral Mucosal Graft |
References
- European Association of Urology. EAU Guidelines on Urethral Strictures. Available online: https://uroweb.org/guidelines/urethral-strictures (accessed on 10 August 2025).
- Wessells, H.; Morey, A.; Souter, L.; Rahimi, L.; Vanni, A. Urethral Stricture Disease Guideline Amendment (2023). J. Urol. 2023, 210, 64–71. [Google Scholar] [CrossRef]
- Takekawa, K.; Horiguchi, A.; Shinchi, M.; Ojima, K.; Segawa, Y.; Takahashi, E.; Asakuma, J.; Furukawa, Y.; Watanabe, D.; Ito, K. One-Sided Dorsal Onlay Urethroplasty with Penile Invagination (Kulkarni Urethroplasty) for Complex Anterior Urethral Strictures: A Single-Center Experience. Int. J. Urol. 2025; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bullock, T.L.; Brandes, S.B. Adult Anterior Urethral Strictures: A National Practice Patterns Survey of Board Certified Urologists in the United States. J. Urol. 2007, 177, 685–690. [Google Scholar] [CrossRef]
- Barbagli, G.; Guazzoni, G.; Lazzeri, M. One-Stage Bulbar Urethroplasty: Retrospective Analysis of the Results in 375 Patients. Eur. Urol. 2008, 53, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Ojima, K.; Horiguchi, A.; Shinchi, M.; Hirano, Y.; Hamamoto, K.; Kimura, F.; Takahashi, E.; Asano, T.; Ito, K.; Azuma, R. Is Pre-Referral Management of Anterior Urethral Strictures prior to Urethroplasty Appropriate? Int. J. Urol. 2021, 28, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Nikolavsky, D.; Manwaring, J.; Bratslavsky, G.; Caza, T.; Landas, S.; Hryniewicz-Jankowska, A.; Kotula, L. Novel Concept and Method of Endoscopic Urethral Stricture Treatment Using Liquid Buccal Mucosal Graft. J. Urol. 2016, 196, 1788–1795. [Google Scholar] [CrossRef]
- Scott, K.A.; Li, G.; Manwaring, J.; Nikolavsky, D.A.; Fudym, Y.; Caza, T.; Badar, Z.; Taylor, N.; Bratslavsky, G.; Kotula, L.; et al. Liquid buccal mucosa graft endoscopic urethroplasty: A validation animal study. World J. Urol. 2020, 38, 2139–2145. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, M.; Yu, H.; Wang, L.; Li, X.; Rak, J.; Wang, S.; Zhao, R.C. Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Mitigate Oxidative Stress-Induced Senescence in Endothelial Cells via Regulation of miR-146a/Src. Signal Transduct. Target. Ther. 2021, 6, 354. [Google Scholar] [CrossRef]
- Chen, C.-C.; Nien, C.-J.; Chen, L.-G.; Huang, K.-Y.; Chang, W.-J.; Huang, H.-M. Effects of Sapindus mukorossi Seed Oil on Skin Wound Healing: In Vivo and in Vitro Testing. Int. J. Mol. Sci. 2019, 20, 2579, Erratum in Int. J. Mol. Sci. 2019, 20, 4178. [Google Scholar]
- Li, D.; Li, X.I.; Wang, A.; Meisgen, F.; Pivarcsi, A.; Sonkoly, E.; Ståhle, M.; Landén, N.X. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. J. Investig. Dermatol. 2015, 135, 1676–1685. [Google Scholar] [CrossRef]
- Shi, J.; Ma, X.; Su, Y.; Song, Y.; Tian, Y.; Yuan, S.; Zhang, X.; Yang, D.; Zhang, H.; Shuai, J.; et al. MiR-31 Mediates Inflammatory Signaling to Promote Re-Epithelialization during Skin Wound Healing. J. Investig. Dermatol. 2018, 138, 2253–2263. [Google Scholar] [CrossRef]
- Wang, T.; Feng, Y.; Sun, H.; Zhang, L.; Hao, L.; Shi, C.; Wang, J.; Li, R.; Ran, X.; Su, Y.; et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 2012, 181, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ganesh, K.; Khanna, S.; Sen, C.K.; Roy, S. Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014, 192, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, R.; Madhyastha, H.; Nakajima, Y.; Omura, S.; Maruyama, M. MicroRNA signature in diabetic wound healing: Promotive role of miR-21 in fibroblast migration. Int. Wound J. 2012, 9, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhao, N.; Long, S.; Ge, L.; Wang, A.; Sun, H.; Ran, X.; Zou, Z.; Wang, J.; Su, Y. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim. Biophys. Acta 2016, 1862, 1443–1452. [Google Scholar] [CrossRef]
- Chen, L.; Arbieva, Z.H.; Guo, S.; Marucha, P.T.; Mustoe, T.A.; DiPietro, L.A. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genom. 2010, 11, 471. [Google Scholar] [CrossRef]
- Iglesias-Bartolome, R.; Uchiyama, A.; Molinolo, A.A.; Abusleme, L.; Brooks, S.R.; Callejas-Valera, J.L.; Edwards, D.; Doci, C.; Asselin-Labat, M.L.; Onaitis, M.W.; et al. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci. Transl. Med. 2018, 10, eaap8798. [Google Scholar] [CrossRef]
- Simões, A.; Chen, L.; Chen, Z.; Zhao, Y.; Gao, S.; Marucha, P.T.; Dai, Y.; DiPietro, L.A.; Zhou, X. Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Sci. Rep. 2019, 9, 7160. [Google Scholar] [CrossRef]
- Yang, S.; Fan, T.; Hu, Q.; Xu, W.; Yang, J.; Xu, C.; Zhang, B.; Chen, J.; Jiang, H. Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Mol. Genet. Genom. 2018, 293, 883–894. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, I.C.; Meng, S.; Xu, J. miR-146a Decreases Inflammation and ROS Production in Aged Dermal Fibroblasts. Int. J. Mol. Sci. 2024, 25, 6821. [Google Scholar] [CrossRef]
- Büssing, I.; Slack, F.J.; Grosshans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 2008, 14, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Roush, S.; Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Boyerinas, B.; Park, S.M.; Hau, A.; Murmann, A.E.; Peter, M.E. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 2010, 17, F19–F36. [Google Scholar] [CrossRef] [PubMed]
MSC Origin | Log Phase (particles/mL) | Stationary Phase (particles/mL) |
---|---|---|
SHED | 1.97 × 109 | 1.18 × 109 |
AD-MSC | 1.64 × 109 | 1.10 × 109 |
UC-MSC | 1.39 × 109 | 1.54 × 109 |
BM-MSC | 1.49 × 109 | 4.18 × 108 |
miRNA | Primary Function | Target Pathways/Molecules | Clinical Significance for Mucosal Grafting | Reference |
---|---|---|---|---|
miR-31 | Promotes proliferation and migration | RhoA, FZD3, Wnt/β-catenin | Accelerates initial epithelial closure and graft integration | [10,11,12] |
miR-21 | Anti-apoptotic, pro-survival, anti-inflammatory | PTEN/AKT, TGF-β | Facilitates early tissue adaptation and inhibits fibrotic response | [13,14,15] |
miR-205 | Maintains epithelial phenotype, inhibits EMT | ZEB1/2, E-cadherin | Promotes epithelial integrity; downregulation is required for keratinocyte migration during re-epithelialization; potential therapeutic target in chronic wounds | [16] |
miR-99 family (miR-99a/miR-100) | Regulates proliferation and metabolism | mTOR/IGF1R pathway | Maintains controlled epithelial proliferation and energy balance during early repair | [17,18,19] |
miR-17-5p | Regulates epithelial–mesenchymal crosstalk; fibroblast and endothelial activity | TGF-β, Col1A1; angiogenic regulators | May support matrix remodeling, but excessive activity can enhance fibrosis; downregulation improves endothelial survival and angiogenesis | [20] |
miR-146a | Anti-inflammatory, antioxidative, immune-suppressive | TRAF6, IRAK1 | Resolves chronic inflammation, reduces oxidative stress, and facilitates transition from inflammatory to proliferative phase during wound healing | [21] |
let-7 family | Controls cell cycle and differentiation; tumor suppression | RAS, HMGA2 | Promotes epithelial stability and suppresses oncogenic transformation in vitro and in vivo | [22,23,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, D.; Mizushima, A.; Horiguchi, A. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content. Int. J. Mol. Sci. 2025, 26, 9412. https://doi.org/10.3390/ijms26199412
Watanabe D, Mizushima A, Horiguchi A. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content. International Journal of Molecular Sciences. 2025; 26(19):9412. https://doi.org/10.3390/ijms26199412
Chicago/Turabian StyleWatanabe, Daisuke, Akio Mizushima, and Akio Horiguchi. 2025. "Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content" International Journal of Molecular Sciences 26, no. 19: 9412. https://doi.org/10.3390/ijms26199412
APA StyleWatanabe, D., Mizushima, A., & Horiguchi, A. (2025). Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content. International Journal of Molecular Sciences, 26(19), 9412. https://doi.org/10.3390/ijms26199412