Deciphering the Mechanisms Underlying the Antitumor Effects of Eucalyptus Essential Oil and Its Component 3-Cyclohexene-1-Methanol Against Human Colon Cancer Cells
Abstract
1. Introduction
2. Results
2.1. EEO Inhibits the Viability of LS174 Colon Cancer Cells
2.2. EEO Modulates Survival-Signaling Pathways in LS174 Colon Cancer Cells
2.3. EEO Induces Cell Cycle Arrest in Colon Cancer LS174 Cells
2.4. EEO Induces Caspase-Dependent Apoptosis in LS174 Colon Cancer Cells
2.5. Characterization of the Chemical Composition of Eucalyptus Essential Oil
2.6. The Major Bioactive Components of EEO Inhibit the Proliferation of LS174 and HT29 Colon Cancer Cell Lines
2.7. 3-Cyclohexene-1-Methanol Compound Induces Cell Cycle Arrest in Colon Cancer Cells
2.8. 3-Cyclohexene-1-Methanol Compound Induces Apoptosis of LS174 and HT29 Cells
2.9. 3-Cyclohexene-1-Methanol Compound Modulates Survival-Signaling Pathways in LS174 and HT29 Colon Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Plant Material and Pure Compounds
4.2. Cell Culture
4.3. Cell Viability
4.4. Cell Cytotoxicity
4.5. Cell Cycle Analysis
4.6. Assessment of Cell Apoptosis
4.7. Western Blotting Analysis
4.8. Real-Time Quantitative RT-PCR
4.9. Chemical Characterization of Eucalyptus Essential Oil (EEO) and Compounds Identification
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 8 July 2025).
- Blondy, S.; David, V.; Verdier, M.; Mathonnet, M.; Perraud, A.; Christou, N. 5-Fluorouracil Resistance Mechanisms in Colorectal Cancer: From Classical Pathways to Promising Processes. Cancer Sci. 2020, 111, 3142–3154. [Google Scholar] [CrossRef]
- Esteva, M.; Leiva, A.; Ramos-Monserrat, M.; Espí, A.; González-Luján, L.; Macià, F.; Murta-Nascimento, C.; Sánchez-Calavera, M.A.; Magallón, R.; Balboa-Barreiro, V.; et al. Relationship between Time from Symptom’s Onset to Diagnosis and Prognosis in Patients with Symptomatic Colorectal Cancer. BMC Cancer 2022, 22, 910. [Google Scholar] [CrossRef]
- Çetinkaya, M.; Baran, Y. Therapeutic Potential of Luteolin on Cancer. Vaccines 2023, 11, 554. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential Oils as Anticancer Agents: Potential Role in Malignancies, Drug Delivery Mechanisms, and Immune System Enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef]
- Riahi-Chebbi, I.; Souid, S.; Othman, H.; Haoues, M.; Karoui, H.; Morel, A.; Srairi-Abid, N.; Essafi, M.; Essafi-Benkhadir, K. The Phenolic Compound Kaempferol Overcomes 5-Fluorouracil Resistance in Human Resistant LS174 Colon Cancer Cells. Sci. Rep. 2019, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, P.M.; Shukla, A.; Beraiya, S.; Tripathi, S.; Mishra, S.K. Biochemical and Pharmacological Applications of Essential Oils in Human Health Especially in Cancer Prevention. Anticancer. Agents Med. Chem. 2018, 18, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Braga, M.A.; Cesar, P.H.S.; Trento, M.V.C.; Espósito, M.A.; Silva, L.F.; Marcussi, S. Anticancer Properties of Essential Oils: An Overview. Curr. Cancer Drug Targets 2018, 18, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.N.; Mumtaz, S. Prunin: An Emerging Anticancer Flavonoid. Int. J. Mol. Sci. 2025, 26, 2678. [Google Scholar] [CrossRef]
- Rahmati, A.; Homayouni Tabrizi, M.; Karimi, E.; Zarei, B. Fabrication and Assessment of Folic Acid Conjugated-Chitosan Modified PLGA Nanoparticle for Delivery of Alpha Terpineol in Colon Cancer. J. Biomater. Sci. Polym. Ed. 2022, 33, 1289–1307. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Quispe, C.; Llaique, H.; Villalobos, M.; Smeriglio, A.; Trombetta, D.; Ezzat, S.M.; Salem, M.A.; Zayed, A.; et al. Insights into Eucalyptus Genus Chemical Constituents, Biological Activities and Health-Promoting Effects. Trends Food Sci. Technol. 2019, 91, 609–624. [Google Scholar] [CrossRef]
- Coppen, J.J.W. (Ed.) Eucalyptus: The Genus Eucalyptus; CRC Press: London, UK, 2002; ISBN 978-0-429-21889-7. [Google Scholar]
- Gullón, P.; Gullón, B.; Astray, G.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M. Value-Added Compound Recovery from Invasive Forest for Biofunctional Applications: Eucalyptus Species as a Case Study. Molecules 2020, 25, 4227. [Google Scholar] [CrossRef]
- Shiekh, R.A.E.; Atwa, A.M.; Elgindy, A.M.; Mustafa, A.M.; Senna, M.M.; Alkabbani, M.A.; Ibrahim, K.M. Therapeutic Applications of Eucalyptus Essential Oils. Inflammopharmacology 2025, 33, 163–182. [Google Scholar] [CrossRef]
- Mieres-Castro, D.; Ahmar, S.; Shabbir, R.; Mora-Poblete, F. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals 2021, 14, 1210. [Google Scholar] [CrossRef]
- Ashour, H.M. Antibacterial, Antifungal, and Anticancer Activities of Volatile Oils and Extracts from Stems, Leaves, and Flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biol. Ther. 2008, 7, 399–403. [Google Scholar] [CrossRef]
- Adnan, M. Bioactive Potential of Essential Oil Extracted from the Leaves of Eucalyptus globulus (Myrtaceae). J. Pharmacogn. Phytochem. 2019, 8, 213–216. [Google Scholar]
- Khazraei, H.; Shamsdin, S.A.; Zamani, M. In Vitro Cytotoxicity and Apoptotic Assay of Eucalyptus globulus Essential Oil in Colon and Liver Cancer Cell Lines. J. Gastrointest. Cancer 2022, 53, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Chaudhuri, A.; Sarkar, A.; Chakraborty, S.; Bhattacharjee, S.; Mandal, D.P. Eucalyptol Targets PI3K/Akt/mTOR Pathway to Inhibit Skin Cancer Metastasis. Carcinogenesis 2022, 43, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamouda, S.; Essafi-Benkhadir, K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 5600. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.S.; Bird, M.J.; Jorissen, R.N.; Yu, Y.L.; Walker, F.; Zhang, H.H.; Nice, E.C.; Burgess, A.W. Nonsense Mediated Decay Resistant Mutations Are a Source of Expressed Mutant Proteins in Colon Cancer Cell Lines with Microsatellite Instability. PLoS ONE 2010, 5, e16012. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, X.; Xu, Q.; Cai, Y.; Gao, W.; Chen, W. Anti-Tumor Activities and Mechanism Study of α-Pinene Derivative in Vivo and in Vitro. Cancer Chemother. Pharmacol. 2020, 85, 367–377. [Google Scholar] [CrossRef]
- Bin, Y.; Bin, H.; Jiahua, P.; Xin, S.; Rui, Z.; Yu, S.; Yanfang, Z. The Comprehensive Review of Eucalyptol: Synthesis, Metabolism, and Therapeutic Applications in Disease Treatment. Mol. Biol. Rep. 2025, 52, 346. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Xu, D.; Zhang, T.; Hu, W.; Feng, Z. Gain-of-Function Mutant P53 in Cancer Progression and Therapy. J. Mol. Cell. Biol. 2020, 12, 674–687. [Google Scholar] [CrossRef]
- Schulz-Heddergott, R.; Stark, N.; Edmunds, S.J.; Li, J.; Conradi, L.-C.; Bohnenberger, H.; Ceteci, F.; Greten, F.R.; Dobbelstein, M.; Moll, U.M. Therapeutic Ablation of Gain-of-Function Mutant P53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell 2018, 34, 298–314.e7. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Tong, J.H.M.; Chan, A.W.H.; Yu, J.; Kang, W.; To, K.F. Targeting the Oncogenic P53 Mutants in Colorectal Cancer and Other Solid Tumors. Int. J. Mol. Sci. 2019, 20, 5999. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.M.; Al Doghaither, H.A.; Al-Ghafari, A.B.; Pushparaj, P.N. 5-Fluorouracil and Capecitabine Therapies for the Treatment of Colorectal Cancer (Review). Oncol. Rep. 2023, 50, 175. [Google Scholar] [CrossRef] [PubMed]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) Resistance and the New Strategy to Enhance the Sensitivity against Cancer: Implication of DNA Repair Inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef]
- Gmeiner, W.H.; Okechukwu, C.C. Review of 5-FU Resistance Mechanisms in Colorectal Cancer: Clinical Significance of Attenuated on-Target Effects. Cancer Drug Resist. 2023, 6, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Hussain, M.; Muzaffar, R.; Bano, A.; Ahmed, M.; Sadia, H. Eucalyptus Essential Oil Based Nanoemulsions: Preparation and Biological Activities. Chem. Biodivers. 2024, 21, e202400406. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, Medicinal and Toxicological Significance of Eucalyptus Leaf Essential Oil: A Review. J. Sci. Food Agric. 2018, 98, 833–848. [Google Scholar] [CrossRef]
- Bahrami, A.; Khazaei, M.; Hasanzadeh, M.; ShahidSales, S.; Joudi Mashhad, M.; Farazestanian, M.; Sadeghnia, H.R.; Rezayi, M.; Maftouh, M.; Hassanian, S.M.; et al. Therapeutic Potential of Targeting PI3K/AKT Pathway in Treatment of Colorectal Cancer: Rational and Progress. J. Cell Biochem. 2018, 119, 2460–2469. [Google Scholar] [CrossRef]
- Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.-I.; Nica, R.I.; Greabu, M.; Totan, A.R.; Jinga, M. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int. J. Mol. Sci. 2021, 22, 10260. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK Signalling: A Master Regulator of Cell Behaviour, Life and Fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z. NR3C2 Suppresses the Proliferation, Migration, Invasion and Angiogenesis of Colon Cancer Cells by Inhibiting the AKT/ERK Signaling Pathway. Mol. Med. Rep. 2022, 25, 133. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK Signalling Pathway and Tumorigenesis. Exp. Ther. Med. 2020, 19, 1997. [Google Scholar] [CrossRef]
- Ren, Y.; Lv, C.; Zhang, J.; Zhang, B.; Yue, B.; Luo, X.; Yu, Z.; Wang, H.; Ren, J.; Wang, Z.; et al. Alantolactone Exhibits Antiproliferative and Apoptosis-Promoting Properties in Colon Cancer Model via Activation of the MAPK-JNK/c-Jun Signaling Pathway. Mol. Cell Biochem. 2021, 476, 4387–4403. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, F. Ceramide Analog 5cc Overcomes TRAIL Resistance by Enhancing JNK Activation and Repressing XIAP Expression in Metastatic Colon Cancer Cells. Chemotherapy 2023, 68, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Zhang, Y. Curcumin Activates the JNK Signaling Pathway to Promote Ferroptosis in Colon Cancer Cells. Chem. Biol. Drug Des. 2024, 103, e14468. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-J.; Chao, J.-I.; Lee, Y.-J.; Hsu, T.-S. Regulation of Gamma-H2AX and Securin Contribute to Apoptosis by Oxaliplatin via a P38 Mitogen-Activated Protein Kinase-Dependent Pathway in Human Colorectal Cancer Cells. Toxicol. Lett. 2008, 179, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Lee, W.S.; Lu, J.N.; Kang, M.H.; Ryu, C.H.; Kim, G.Y.; Kang, H.S.; Shin, S.C.; Choi, Y.H. Induction of Apoptosis in Human Colon Cancer HCT-116 Cells by Anthocyanins through Suppression of Akt and Activation of P38-MAPK. Int. J. Oncol. 2009, 35, 1499–1504. [Google Scholar] [CrossRef]
- Lim, J.H.; Woo, S.M.; Min, K.-J.; Park, E.J.; Jang, J.H.; Seo, B.R.; Iqbal, T.; Lee, T.-J.; Kim, S.H.; Choi, Y.H.; et al. Rottlerin Induces Apoptosis of HT29 Colon Carcinoma Cells through NAG-1 Upregulation via an ERK and P38 MAPK-Dependent and PKC δ-Independent Mechanism. Chem. Biol. Interact. 2012, 197, 1–7. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, W.; Yang, Y.; Gao, D.; Wang, J.; Qu, Y.; Zhang, Y. Tectoridin Inhibits the Progression of Colon Cancer through Downregulating PKC/P38 MAPK Pathway. Mol. Cell Biochem. 2021, 476, 2729–2738. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef]
- Ashkenazi, A. Targeting the Extrinsic Apoptotic Pathway in Cancer: Lessons Learned and Future Directions. J. Clin. Investig. 2015, 125, 487–489. [Google Scholar] [CrossRef]
- Lossi, L. The Concept of Intrinsic versus Extrinsic Apoptosis. Biochem. J. 2022, 479, 357–384. [Google Scholar] [CrossRef]
- Glover, H.L.; Schreiner, A.; Dewson, G.; Tait, S.W.G. Mitochondria and Cell Death. Nat. Cell Biol. 2024, 26, 1434–1446. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, B. Cytochrome c and Cancer Cell Metabolism: A New Perspective. Saudi Pharm. J. 2024, 32, 102194. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.; Thorburn, J.; Pandolfi, P.P.; Thorburn, A. Nuclear and Cytoplasmic Shuttling of TRADD Induces Apoptosis via Different Mechanisms. J. Cell Biol. 2002, 157, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Bender, L.M.; Morgan, M.J.; Thomas, L.R.; Liu, Z.-G.; Thorburn, A. The Adaptor Protein TRADD Activates Distinct Mechanisms of Apoptosis from the Nucleus and the Cytoplasm. Cell Death Differ. 2005, 12, 473–481. [Google Scholar] [CrossRef]
- Iordanov, M.S.; Kirsch, J.D.; Ryabinina, O.P.; Wong, J.; Spitz, P.N.; Korcheva, V.B.; Thorburn, A.; Magun, B.E. Recruitment of TRADD, FADD, and Caspase 8 to Double-Stranded RNA-Triggered Death Inducing Signaling Complexes (dsRNA-DISCs). Apoptosis 2005, 10, 167–176. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, W.; Lin, Z. Functional Roles in Cell Signaling of Adaptor Protein TRADD from a Structural Perspective. Comput. Struct. Biotechnol. J. 2020, 18, 2867–2876. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Ouyang, G.; Bao, S. The Activation of Akt/PKB Signaling Pathway and Cell Survival. J. Cell Mol. Med. 2005, 9, 59–71. [Google Scholar] [CrossRef]
- Ming, L.; Wang, P.; Bank, A.; Yu, J.; Zhang, L. PUMA Dissociates Bax and Bcl-X(L) to Induce Apoptosis in Colon Cancer Cells. J. Biol. Chem. 2006, 281, 16034–16042. [Google Scholar] [CrossRef]
- Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N.; et al. Antitumor Effect of 1, 8-Cineole against Colon Cancer. Oncol. Rep. 2013, 30, 2647–2652. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell Cycle Proteins as Promising Targets in Cancer Therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Liu, J.; Peng, Y.; Wei, W. Cell Cycle on the Crossroad of Tumorigenesis and Cancer Therapy. Trends Cell Biol. 2022, 32, 30–44. [Google Scholar] [CrossRef]
- Coqueret, O. New Roles for P21 and P27 Cell-Cycle Inhibitors: A Function for Each Cell Compartment? Trends Cell Biol. 2003, 13, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Besson, A.; Dowdy, S.F.; Roberts, J.M. CDK Inhibitors: Cell Cycle Regulators and Beyond. Dev. Cell 2008, 14, 159–169. [Google Scholar] [CrossRef]
- Adams, P.D. Regulation of the Retinoblastoma Tumor Suppressor Protein by Cyclin/Cdks. Biochim. Biophys. Acta 2001, 1471, M123–M133. [Google Scholar] [CrossRef] [PubMed]
- Tsytlonok, M.; Sanabria, H.; Wang, Y.; Felekyan, S.; Hemmen, K.; Phillips, A.H.; Yun, M.-K.; Waddell, M.B.; Park, C.-G.; Vaithiyalingam, S.; et al. Dynamic Anticipation by Cdk2/Cyclin A-Bound P27 Mediates Signal Integration in Cell Cycle Regulation. Nat. Commun. 2019, 10, 1676. [Google Scholar] [CrossRef]
- Kim, S.; Leong, A.; Kim, M.; Yang, H.W. CDK4/6 Initiates Rb Inactivation and CDK2 Activity Coordinates Cell-Cycle Commitment and G1/S Transition. Sci. Rep. 2022, 12, 16810. [Google Scholar] [CrossRef]
- Martínez-Sánchez, M.; Hernandez-Monge, J.; Rangel, M.; Olivares-Illana, V. Retinoblastoma: From Discovery to Clinical Management. FEBS J. 2022, 289, 4371–4382. [Google Scholar] [CrossRef] [PubMed]
- Ingham, M.; Schwartz, G.K. Cell-Cycle Therapeutics Come of Age. J. Clin. Oncol. 2017, 35, 2949–2959. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the P53 Network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef]
- Engeland, K. Cell Cycle Regulation: P53-P21-RB Signaling. Cell Death Differ. 2022, 29, 946–960. [Google Scholar] [CrossRef]
- Engeland, K. Cell Cycle Arrest through Indirect Transcriptional Repression by P53: I Have a DREAM. Cell Death Differ. 2018, 25, 114–132. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical Variability and Biological Activities of Eucalyptus Spp. Essential Oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Totté, J.; Pieters, L.; Vlietinck, A.J. Correlation between Chemical Composition and Antibacterial Activity of Essential Oils of Some Aromatic Medicinal Plants Growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Choi, H.-Y.; Choi, W.-S.; Clark, J.M.; Ahn, Y.-J. Ovicidal and Adulticidal Activity of Eucalyptus globulus Leaf Oil Terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2004, 52, 2507–2511. [Google Scholar] [CrossRef]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G. Biological Activity of Some Plant Essential Oils against Varroa destructor (Acari: Varroidae), an Ectoparasitic Mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2011, 55, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Medini, H.; Simmonds, M.; Lynen, F.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; Khouja, M.L. Variation in Volatile Leaf Oils of Seven Eucalyptus Species Harvested from Zerniza Arboreta (Tunisia). Chem. Biodivers. 2011, 8, 362–372. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Palacios, S.M. Insecticidal Toxicity of Eucalyptus cinerea Essential Oil and 1,8-Cineole against Musca domestica and Possible Uses According to the Metabolic Response of Flies. Ind. Crops Prod. 2015, 63, 133–137. [Google Scholar] [CrossRef]
- Bouzabata, A.; Bighelli, A.; Abed, L.; Casanova, J.; Tomi, F. Composition and Chemical Variability of Eucalyptus bosistoana Essential Oil from Algerian Sahara. Nat. Prod. Commun. 2014, 9, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Ameur, E.; Sarra, M.; Yosra, D.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical Composition of Essential Oils of Eight Tunisian Eucalyptus Species and Their Antibacterial Activity against Strains Responsible for Otitis. BMC Complement. Med. Ther. 2021, 21, 209, Erratum in BMC Complement. Med. Ther. 2021, 21, 241. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2010, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole Plant Extracts versus Single Compounds for the Treatment of Malaria: Synergy and Positive Interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Tinti, L.; Cicaloni, V.; Nezi, P.; Isoldi, G.; Etiope, P.; Barlozzini, B.; Pecorari, R.; Salvini, L. Hydroxyanthracene Derivates Citotoxicity: A Differential Evaluation between Single Molecule and Whole Plant Extract. Front. Plant Sci. 2023, 14, 1166075. [Google Scholar] [CrossRef]
- Ong, E.S. Extraction Methods and Chemical Standardization of Botanicals and Herbal Preparations. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2004, 812, 23–33. [Google Scholar] [CrossRef]
- Heinrich, M.; Jalil, B.; Abdel-Tawab, M.; Echeverria, J.; Kulić, Ž.; McGaw, L.J.; Pezzuto, J.M.; Potterat, O.; Wang, J.-B. Best Practice in the Chemical Characterisation of Extracts Used in Pharmacological and Toxicological Research-The ConPhyMP-Guidelines. Front. Pharmacol. 2022, 13, 953205. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.N.; Gul, K.; Mumtaz, S. Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery. Int. J. Mol. Sci. 2025, 26, 7381. [Google Scholar] [CrossRef]
- Abdul-Razek, N.; Khalil, R.G.; Abdel-Latif, M.; Kamel, M.M.; Alhazza, I.M.; Awad, E.M.; Ebaid, H.; Abuelsaad, A.S.A. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BioNanoScience 2025, 15, 135. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Magdalena, C.L.; Thomas, G.H. The Role of P53 Signaling in Colorectal Cancer. Cancers 2021, 13, 2125. [Google Scholar] [CrossRef]
- Stiewe, T.; Haran, T.E. How Mutations Shape P53 Interactions with the Genome to Promote Tumorigenesis and Drug Resistance. Drug Resist. Updat. 2018, 38, 27–43. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Cao, H.; Wang, C.; Shen, C.; Liu, J. Effect and Mechanism of Magnolia Officinalis in Colorectal Cancer: Multi-Component-Multi-Target Approach. J. Ethnopharmacol. 2025, 338, 119007. [Google Scholar] [CrossRef] [PubMed]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary Mastic Oil Extracted from Pistacia Lentiscus Var. Chia Suppresses Tumor Growth in Experimental Colon Cancer Models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef]
- Xu, Q.; Li, M.; Yang, M.; Yang, J.; Xie, J.; Lu, X.; Wang, F.; Chen, W. α-Pinene Regulates miR-221 and Induces G2/M Phase Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells. Biosci. Rep. 2018, 38, BSR20180980. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-Tumor Effect of α-Pinene on Human Hepatoma Cell Lines through Inducing G2/M Cell Cycle Arrest. J. Pharmacol. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.B.; Gali-Muhtasib, H.; Göransson, H.; Larsson, R. Alpha Terpineol: A Potential Anticancer Agent Which Acts through Suppressing NF-kappaB Signalling. Anticancer. Res. 2010, 30, 1911–1919. [Google Scholar]
- Nasr, F.A.; Noman, O.M.; Alqahtani, A.S.; Qamar, W.; Ahamad, S.R.; Al-Mishari, A.A.; Alyhya, N.; Farooq, M. Phytochemical Constituents and Anticancer Activities of Tarchonanthus camphoratus Essential Oils Grown in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1474–1480. [Google Scholar] [CrossRef]
- Gong, S.; Xu, D.; Zou, F.; Peng, R. (-)-Curine Induces Cell Cycle Arrest and Cell Death in Hepatocellular Carcinoma Cells in a P53-Independent Way. Biomed. Pharmacother. 2017, 89, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Cullot, G.; Boutin, J.; Fayet, S.; Prat, F.; Rosier, J.; Cappellen, D.; Lamrissi, I.; Pennamen, P.; Bouron, J.; Amintas, S.; et al. Cell Cycle Arrest and P53 Prevent ON-Target Megabase-Scale Rearrangements Induced by CRISPR-Cas9. Nat. Commun. 2023, 14, 4072. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, R.; Madjid Ansari, A.; Forouzesh, F.; Shahriari, F.; Shariatpanahi, S.P.; Salaritabar, A.; Javidi, M.A. P53 Status, and G2/M Cell Cycle Arrest, Are Determining Factors in Cell-Death Induction Mediated by ELF-EMF in Glioblastoma. Sci. Rep. 2023, 13, 10845. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Yin, R. Targeting WEE1 Kinase in Gynecological Malignancies. Drug Des. Devel Ther. 2024, 18, 2449–2460. [Google Scholar] [CrossRef]
- Kim, B.; Srivastava, S.K.; Kim, S.-H. Caspase-9 as a Therapeutic Target for Treating Cancer. Expert. Opin. Ther. Targets 2015, 19, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Gyrd-Hansen, M.; Farkas, T.; Fehrenbacher, N.; Bastholm, L.; Høyer-Hansen, M.; Elling, F.; Wallach, D.; Flavell, R.; Kroemer, G.; Nylandsted, J.; et al. Apoptosome-Independent Activation of the Lysosomal Cell Death Pathway by Caspase-9. Mol. Cell. Biol. 2006, 26, 7880–7891, Erratum in Mol. Cell. Biol. 2017, 38, e00563-17. [Google Scholar] [CrossRef]
- Bano, D.; Prehn, J.H.M. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. eBioMedicine 2018, 30, 29–37. [Google Scholar] [CrossRef]
- Nguyen, T.N.A.; Lai, H.-T.; Fernandes, R.; Dall’Olio, F.G.; Blériot, C.; Ha-Duong, T.; Brenner, C. Apoptosis-Inducing Factor (AIF) at the Crossroad of Cell Survival and Cell Death: Implications for Cancer and Mitochondrial Diseases. Cell Commun. Signal 2025, 23, 264. [Google Scholar] [CrossRef]
- Zakraoui, O.; Marcinkiewicz, C.; Aloui, Z.; Othman, H.; Grépin, R.; Haoues, M.; Essafi, M.; Srairi-Abid, N.; Gasmi, A.; Karoui, H.; et al. Lebein, a Snake Venom Disintegrin, Suppresses Human Colon Cancer Cells Proliferation and Tumor-Induced Angiogenesis through Cell Cycle Arrest, Apoptosis Induction and Inhibition of VEGF Expression. Mol. Carcinog. 2017, 56, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Geng, S.; Luo, H.; Wang, W.; Mo, Y.-Q.; Luo, Q.; Wang, L.; Song, G.-B.; Sheng, J.-P.; Xu, B. Signaling Pathways Involved in Colorectal Cancer: Pathogenesis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 266. [Google Scholar] [CrossRef]
- Kilic-Kurt, Z.; Aka, Y.; Kutuk, O. Novel Pyrrolopyrimidine Derivatives Induce P53-Independent Apoptosis via the Mitochondrial Pathway in Colon Cancer Cells. Chem. Biol. Interact. 2020, 330, 109236. [Google Scholar] [CrossRef]
- Hernández Borrero, L.J.; El-Deiry, W.S. Tumor Suppressor P53: Biology, Signaling Pathways, and Therapeutic Targeting. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef] [PubMed]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of Rosemary, Oregano, and a Commercial Blend of Essential Oils in Broiler Chickens: In Vitro Antimicrobial Activities and Effects on Growth Performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef] [PubMed]
Constituents | RI | % Value |
---|---|---|
Monoterpene hydrocarbons (10.5%) | ||
α-Pinene | 887 | 9.19 |
β-Pinene | 932 | 0.25 |
α-Phellandrene | 970 | 1.06 |
Oxygenated monoterpenes (68.6%) | ||
Eucalyptol | 999 | 63.28 |
z-Citral | 1439 | 0.12 |
α-Terpineol | 1490 | 4.95 |
2,6-Octadienal | 1520 | 0.12 |
Geraniol | 1643 | 0.13 |
Sesquiterpene hydrocarbons (0.89%) | ||
Caryophyllene | 1380 | 0.44 |
α-Caryophyllene | 1448 | 0.04 |
Bicyclogermacrene | 1511 | 0.41 |
Oxygenated sesquiterpenes (0.15%) | ||
Ledol | 1849 | 0.15 |
Others (14.35%) | ||
Butanal | 842 | 1.29 |
1,4-Cyclohexadiene | 1039 | 0.32 |
Benzene | 1063 | 1.08 |
Cyclohexene | 1074 | 0.45 |
1H-Cyclohexene-1-one | 1476 | 0.21 |
3-Cyclohexene-1-methanol | 1487 | 10.18 |
1,3,6-Octariene | 1035 | 0.65 |
Cis-p-Mentha-1(7) | 1585 | 0.17 |
Cell Lines | LS174 (p53 WT) | HT29 (p53 Mut) |
---|---|---|
Compounds | IC50 (µg/mL) | |
24 h | 72 h | |
α-Pinene | >2.72 | 1.05 |
Eucalyptol | 3.09 | 1.13 |
α-Terpineol | 0.85 | 0.93 |
3-cyclohexene-1-methanol | 0.6 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Hamouda, S.; Zakraoui, O.; Souissi, S.; Bouzeyen, R.; Essafi, M.; Essafi-Benkhadir, K. Deciphering the Mechanisms Underlying the Antitumor Effects of Eucalyptus Essential Oil and Its Component 3-Cyclohexene-1-Methanol Against Human Colon Cancer Cells. Int. J. Mol. Sci. 2025, 26, 8876. https://doi.org/10.3390/ijms26188876
Ben Hamouda S, Zakraoui O, Souissi S, Bouzeyen R, Essafi M, Essafi-Benkhadir K. Deciphering the Mechanisms Underlying the Antitumor Effects of Eucalyptus Essential Oil and Its Component 3-Cyclohexene-1-Methanol Against Human Colon Cancer Cells. International Journal of Molecular Sciences. 2025; 26(18):8876. https://doi.org/10.3390/ijms26188876
Chicago/Turabian StyleBen Hamouda, Sonia, Ons Zakraoui, Sonia Souissi, Rania Bouzeyen, Makram Essafi, and Khadija Essafi-Benkhadir. 2025. "Deciphering the Mechanisms Underlying the Antitumor Effects of Eucalyptus Essential Oil and Its Component 3-Cyclohexene-1-Methanol Against Human Colon Cancer Cells" International Journal of Molecular Sciences 26, no. 18: 8876. https://doi.org/10.3390/ijms26188876
APA StyleBen Hamouda, S., Zakraoui, O., Souissi, S., Bouzeyen, R., Essafi, M., & Essafi-Benkhadir, K. (2025). Deciphering the Mechanisms Underlying the Antitumor Effects of Eucalyptus Essential Oil and Its Component 3-Cyclohexene-1-Methanol Against Human Colon Cancer Cells. International Journal of Molecular Sciences, 26(18), 8876. https://doi.org/10.3390/ijms26188876