Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Analysis of Fresh and Dried Stembark EOs from Two C. sativa Cultivars
2.2. Chemical Composition of Stembark EOs of Two C. sativa Cultivars
2.3. Evaluation of In Vitro Antioxidant Activity of the Fresh and Dried C. sativa Stembark EOs of Two C. sativa Cultivars
2.4. In Silico Molecular Docking of Stembark Oil Constituents of Two C. sativa Cultivars
3. Materials and Methods
3.1. Reagents and Experimental Procedure
3.2. Ethical Consideration
3.3. Sample Collection and Extraction Procedure
3.4. Physicochemical Analysis of the EOs
3.5. GC-MS Sample Preparation and Analysis
Identification and Quantification of the EOs
3.6. Determination of Antioxidant Activity
3.6.1. DPPH Radical Scavenging Assay
3.6.2. Hydrogen Peroxide (H2O2) Scavenging Assay
3.6.3. Statistical Analysis
3.7. In Silico Molecular Docking
3.7.1. Preparation and Refinement of the Protein and Ligand Structures
3.7.2. Determination of the Active Site and Molecular Docking
3.8. Study Flow Chart
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ile | Isoleucine |
Leu | Leucine |
Phe | Phenylalanine |
Arg | Arginine |
His | Histidine |
Ser | Serine |
Trp | Tryptophan |
Val | Valine |
Tyr | Tyrosine |
Lys | Lysine |
Ala | Alanine |
Thr | Threonine |
Gly | Glycine |
CAT | Catalase (enzyme) |
GSH | Reduced Glutathione |
IC50 | Inhibitory concentration |
ABSSample | Absorbance value of samples |
ABSControl | Absorbance value of control |
DNA | Deoxyribonucleic Acid |
NOX2 | NADPH Oxidase 2 |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate (Reduced form) |
References
- Elsohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Phytocannabinoid 2017, 103, 1–36. [Google Scholar]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Bahji, A.; Stephenson, C. International perspectives on the implications of cannabis legalization: A systematic review & thematic analysis. Int. J. Environ. Res. Public Health 2019, 16, 3095. [Google Scholar]
- Corroon, J.; Phillips, J.A. A cross-sectional study of cannabidiol users. Cannabis Cannabinoid Res. 2018, 3, 152–161. [Google Scholar] [CrossRef]
- Debra, R.W. Everything You Need to Know About CBD Oil. Available online: https://www.medicalnewstoday.com/articles/317221#how-to-use-cbd (accessed on 18 August 2024).
- Iffland, K.; Grotenhermen, F. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, O.P.; Lemmer, Y.; Mason, S. A narrative review of the therapeutic and remedial prospects of cannabidiol with emphasis on neurological and neuropsychiatric disorders. J. Cannabis Res. 2024, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.Y.; Leis, K.; Mercado, R.E.; Castillo, M.M.; Miranda, K.J.; Carandang, R.R. Effectiveness of cannabidiol to manage chronic pain: A systematic review. Pain Manag. Nurs. 2024, 25, 76–86. [Google Scholar] [CrossRef]
- Villanueva, M.R.; Joshaghani, N.; Villa, N.; Badla, O.; Goit, R.; Saddik, S.E.; Dawood, S.N.; Rabih, A.M.; Niaj, A.; Raman, A.; et al. Efficacy, safety, and regulation of cannabidiol on chronic pain: A systematic review. Cureus 2022, 14, e26913. [Google Scholar] [CrossRef]
- Radwan, M.M.; Chandra, S.; Gul, S.; Elsohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Mofikoya, O.O. Chemical Fingerprinting of Conifer Needle Extracts by Ultrahigh Resolution Mass Spectrometry; Itä-Suomen yliopisto: Joensuu, Finland, 2022. [Google Scholar]
- Sankarikutty, B.; Narayanan, C. Essential oils: Isolation and production. In Encyclopaedia of Food Science, Food Technology and Nutrition; Wiley-Blackwell: New York, NY, USA, 2003; pp. 2185–2189. [Google Scholar]
- Mediavilla, V.; Steinemann, S. Essential oil of Cannabis sativa L. strains. J. Int. Hemp Assoc. 1997, 4, 80–82. [Google Scholar]
- Brunetti, P.; Pichini, S.; Pacifici, R.; Busardò, F.P.; Del Rio, A. Herbal preparations of medical cannabis: A vademecum for prescribing doctors. Medicina 2020, 56, 237. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef]
- Maoela, M.S. Spectroelectrochemical Determination of the Antioxidant Properties of Carpobrotus mellei and Carpobrotus Quadrifidus Natural Products. Ph.D. Thesis, University of the Western Cape, Western Cape, Republic of South Africa, 2009. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Shahidi, F. Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 2024, 5594386. [Google Scholar] [CrossRef]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Ramana, K.V.; Reddy, A.B.; Majeti, N.R.K.; Singhal, S.S. Therapeutic potential of natural antioxidants. Oxidative Med. Cell. Longev. 2018, 2018, 9471051. [Google Scholar] [CrossRef]
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef]
- Jin, D.; Henry, P.; Shan, J.; Chen, J. Identification of chemotypic markers in three chemotype categories of cannabis using secondary metabolites profiled in inflorescences, leaves, stem bark, and roots. Front. Plant Sci. 2021, 12, 699530. [Google Scholar] [CrossRef]
- Ryz, N.R.; Remillard, D.J.; Russo, E.B. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain. Cannabinoid Res. 2017, 2, 210–216. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Ceccarini, L.; Tavarini, S.; Flamini, G.; Angelini, L.G. Valorization of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Ind. Crops Prod. 2019, 139, 111541. [Google Scholar] [CrossRef]
- Naz, S.; Hanif, M.A.; Bhatti, H.N.; Ansari, T.M. Impact of supercritical fluid extraction and traditional distillation on the isolation of aromatic compounds from Cannabis indica and Cannabis sativa. J. Essent. Oil Bear. Plants 2017, 20, 175–184. [Google Scholar] [CrossRef]
- Hieu, L.D.; Thang, T.D.; Hoi, T.M.; Ogunwande, I.A. Chemical composition of essential oils from four Vietnamese species of Piper (Piperaceae). J. Oleoresin Sci. 2014, 63, 211–217. [Google Scholar] [CrossRef]
- Vuerich, M.; Ferfuia, C.; Zuliani, F.; Piani, B.; Sepulcri, A.; BALDINI, M. Yield and quality of essential oils in hemp varieties in different environments. Agronomy 2019, 9, 356. [Google Scholar] [CrossRef]
- Human Metabolome Database (HMDB). Available online: http://www.hmdb.ca/ (accessed on 10 November 2023).
- Nuutinen, T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef]
- Lai, Y.S.; Lee, W.C.; Lin, Y.E.; Ho, C.T.; Lu, K.H.; Lin, S.H.; Panyod, S.; Chu, Y.L.; Sheen, L.Y. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J. Agric. Food Chem. 2016, 64, 2062–2071. [Google Scholar] [CrossRef]
- Amil, M.A.; Rahman, S.N.S.A.; Yap, L.F.; Razak, F.A.; Bakri, M.M.; Salem, L.S.O.; Lim, X.Y.; Reduan, N.A.; Sim, K.S. Antimicrobial and Antiproliferative Effects of Zingiberaceae Oils: A Natural Solution for Oral Health. Chem. Biodivers. 2024, 21, e202301836. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, T.; Singh, S.; Nishad, I.; Kumar, A.; Tiwari, N.; Tandon, S.; Saikia, D.; Verma, R.S. Chemical composition and antimicrobial activity of the essential oil of senescent leaves of guava (Psidium guajava L.). Nat. Prod. Res. 2021, 35, 1393–1397. [Google Scholar] [CrossRef]
- Silva, R.C.; Costa, J.S.; Figueiredo, R.O.; Setzer, W.N.; Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef]
- Hazekamp, A. Cannabis: Extracting the Medicine. Ph.D. Thesis, Leiden University, Leiden, The Netherlands, 2007. [Google Scholar]
- Calva, J.; Silva, M.; Morocho, V. Composition and anti-acetylcholinesterase properties of the essential oil of the Ecuadorian endemic species Eugenia valvata McVaugh. Molecules 2023, 28, 8112. [Google Scholar] [CrossRef]
- Tran, G.B.; Pham, T.V.; Tuan Le, A.; Nguyen, N.H.; Vo, N.H.H.; Do, B.H. Chemical composition and the anti-inflammatory effect of volatile compounds from Anaxagorea luzonensis A. Gray. Z. Für Naturforschung C 2024, 79, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Food Sci. Technol. 2014, 11, 31–42. [Google Scholar] [CrossRef]
- Judžentienė, A.; Garjonytė, R.; Būdienė, J. Phytochemical composition and antioxidant activity of various extracts of fibre hemp (Cannabis sativa L.) cultivated in Lithuania. Molecules 2023, 28, 4928. [Google Scholar] [CrossRef] [PubMed]
- Pino, S.; Espinoza, L.; Jara-Gutiérrez, C.; Villena, J.; Olea, A.F.; Díaz, K. Study of cannabis oils obtained from three varieties of C. sativa and by two different extraction methods: Phytochemical characterization and biological activities. Plants 2023, 12, 1772. [Google Scholar] [CrossRef]
- Cásedas, G.; Moliner, C.; Maggi, F.; Mazzara, E.; López, V. Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents. Front. Pharmacol. 2022, 13, 1009868. [Google Scholar] [CrossRef]
- Setha, B.; Gaspersz, F.F.; Idris, A.P.S.; Rahman, S.; Mailoa, M.N. Potential of seaweed Padina sp. as a source of antioxidant. Int. J. Sci. Technol. Res. 2013, 2, 221–224. [Google Scholar]
- Jumina, J.; Siswanta, D.; Zulkarnain, A.K.; Triono, S.; Priatmoko, P.; Yuanita, E.; Fatmasari, N.; Nursalim, I. Development of C-arylcalix [4] resorcinarenes and C-arylcalix [4] pyrogallolarenes as antioxidant and UV-B protector. Indones. J. Chem. 2019, 19, 273–284. [Google Scholar] [CrossRef]
- Jumina, J.; Kurniawan, Y.S.; Sari, R.; Purba, S.N.H.B.; Radean, H.; Priatmoko, P.; Pranowo, D.; Purwono, B.; Julianus, J.; Zulkarnain, A.K.; et al. Synthesis and High Antioxidant activity of C-alkyl calix [4] resorcinarene and C-alkyl Calix [4] pyrogallolarene derivatives. Indones. J. Pharm. 2022, 33, 422–433. [Google Scholar]
- Vun-Sang, S.E.N.T.Y.; Iqbal, M. Phytochemical analysis and antioxidant activity of aqueous extract of Ficus septica Leaves from Sabah, Malaysia: Phytochemical and antioxidant activity of Ficus septica leaves. Borneo J. Resour. Sci. Technol. 2023, 13, 67–78. [Google Scholar]
- Berrouet, C.; Dorilas, N.; Rejniak, K.A.; Tuncer, N. Comparison of drug inhibitory effects (IC50) in monolayer and spheroid cultures. Bull. Math. Biol. 2020, 82, 68. [Google Scholar]
- Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Huang, S.S.C.; Jupe, F.; Sasaki, E.; Schmitz, R.J.; Urich, M.A.; Castanon, R.; Nery, J.R.; Barragan, C.; He, Y.; et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 2016, 166, 492–505. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Schultz, M.D.; Urich, M.A.; Nery, J.R.; Pelizzola, M.; Libiger, O.; Alix, A.; McCosh, R.B.; Chen, H.; Schork, N.J.; et al. Patterns of population epigenomic diversity. Nature 2013, 495, 193–198. [Google Scholar] [CrossRef]
- Dubin, M.J.; Zhang, P.; Meng, D.; Remigereau, M.S.; Osborne, E.J.; Paolo Casale, F.; Drewe, P.; Kahles, A.; Jean, G.; Vilhjálmsson, B.; et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. elife 2015, 4, e05255. [Google Scholar]
- Shen, X.; De Jonge, J.; Forsberg, S.K.; Pettersson, M.E.; Sheng, Z.; Hennig, L.; Carlborg, Ö. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 2014, 10, e1004842. [Google Scholar] [CrossRef]
- Hagmann, J.; Becker, C.; Müller, J.; Stegle, O.; Meyer, R.C.; Wang, G.; Schneeberger, K.; Fitz, J.; Altmann, T.; Bergelson, J.; et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 2015, 11, e1004920. [Google Scholar]
- Girima, N.; Devendra, K.B. Alleviation of lindane induced toxicity in testis of Swiss mice by combined treatment with vitamin C, vitamin E and α-lipoic acid. Indian J. Exp. Biol. 2011, 49, 191–199. [Google Scholar]
- Diebold, B.A.; Smith, S.M.; Li, Y.; Lambeth, J.D. NOX2 as a target for drug development: Indications, possible complications, and progress. Antioxid. Redox Signal. 2015, 23, 375–405. [Google Scholar] [CrossRef]
- D8282-19; Standard Practice for Laboratory Test Method Validation and Method Development [Online]. American National Standards Institute (ANSI): Washington, DC, USA, 2019. Available online: https://webstore.ansi.org/standards/astm/astmd828219 (accessed on 20 November 2023).
- Oyedeji, O.; Yani, V.; Afolayan, A. Chemical composition of the essential oil from Arctotis arctotoides (LF) O. Hoffm.(syn. Vendium arctotoides Less.). Flavour Fragr. J. 2005, 20, 232–234. [Google Scholar] [CrossRef]
- Costa, O.B.D.; Del Menezzi, C.H.S.; Benedito, L.E.C.; Resck, I.S.; Vieira, R.F.; Ribeiro Bizzo, H. Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during daytime. Int. J. For. Res. 2014, 2014, 982576. [Google Scholar] [CrossRef]
- Babushok, V.; Linstrom, P.; Zenkevich, I. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Adams, R.P.; Beauchamp, P.S.; Dev, V.; Dutz, S.M. New natural products isolated from one-seeded Juniperus of the Southwestern United States: Isolation and occurrence of 2-ethenyl-3-methyl phenol and its derivatives. J. Essent. Oil Res. 2007, 19, 146–152. [Google Scholar] [CrossRef]
- Oriola, A.O.; Miya, G.M.; Singh, M.; Oyedeji, A.O. Flavonol glycosides from Eugenia uniflora leaves and their In vitro cytotoxicity, antioxidant and anti-inflammatory activities. Sci. Pharm. 2023, 91, 42. [Google Scholar] [CrossRef]
- Okeleye, B.I.; Nongogo, V.; Mkwetshana, N.T.; Ndip, R.N. Polyphenolic content and in vitro antioxidant evaluation of the stem bark extract of Peltophorum africanum Sond (Fabaceae). Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 1–8. [Google Scholar] [CrossRef]
- Noreng, S.; Ota, N.; Sun, Y.; Ho, H.; Johnson, M.; Arthur, C.P.; Schneider, K.; Lehoux, I.; Davies, C.W.; Mortara, K.; et al. Structure of the core human NADPH oxidase NOX2. Nat. Commun. 2022, 13, 6079. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Schüttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Binkowski, T.A.; Naghibzadeh, S.; Liang, J. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2003, 31, 3352–3355. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.; Saleh-E-In, M.M.; Jaishee, N.; Anandraj, A.; Kormuth, E.; Vellingiri, B.; Angione, C.; Rahman, P.K.S.M.; Pillay, S.; Sen, A.; et al. Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS-CoV-2 wild-type and the variants of concern, viral cell-entry process, and cytokine storm in COVID-19. J. Cell. Biochem. 2022, 123, 964–986. [Google Scholar] [CrossRef]
- Kar, P.; Sharma, N.R.; Singh, B.; Sen, A.; Roy, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in-silico investigation. J. Biomol. Struct. Dyn. 2021, 39, 4774–4785. [Google Scholar] [CrossRef] [PubMed]
Sample Codes | Total Weight of Fresh Plant (g) | Net Weight of Oils (g) | % Yield (w/w) | Color | Odor/Scent |
---|---|---|---|---|---|
LSO | 22.73 | 0.12 | 0.53 | Transparent | Mildly skunky |
CSO | 136.40 | 0.25 | 0.18 | Transparent | Mildly sweet |
DLSO | 30.00 | 0.20 | 0.67 | Pale yellow | Mildly sweet |
DCSO | 50.00 | 0.79 | 1.58 | Transparent | Mildly sweet |
RT (Min) | Chemical Components Identified a | CAS | RI Cal. b | RI Lit. | Percent Composition of Plant Parts (%) | |||
---|---|---|---|---|---|---|---|---|
LSO c | CSO c | DLSO d | DCSO d | |||||
8.815 | α-Pinene | 000080-56-8 | 936 | 936 | _ | _ | _ | 0.16 |
11.172 | β-Myrcene | 000123-35-3 | 998 | 997 | _ | 0.95 | _ | 0.31 |
12.540 | D-Limonene | 005989-27-5 | 1033 | 1030 | _ | 0.35 | _ | 0.25 |
13.299 | β-cis-Ocimene | 003338-55-4 | 1053 | 1053 | _ | 0.33 | _ | _ |
15.122 | Linalool | 000078-70-6 | 1101 | 1103 | _ | _ | 0.24 | 0.30 |
15.503 | Fenchol | 001632-73-1 | 1110 | 1123 | _ | _ | _ | 0.13 |
17.994 | Terpineol | 1000411-59-6 | 1176 | *** | _ | _ | 0.13 | _ |
18.304 | Dodecane | 000112-40-3 | 1205 | 1200 | _ | _ | _ | 0.11 |
21.207 | Tridecane | 000629-50-5 | 1305 | 1300 | _ | _ | _ | 0.11 |
23.308 | α-Cubebene | 017699-14-8 | 1377 | 1349 | _ | _ | _ | 0.11 |
24.125 | Isocaryophyllene | 000118-65-0 | 1410 | 1406 | _ | 0.73 | _ | 0.67 |
24.323 | Cis-α-Bergamotene | 018252-46-5 | 1418 | 1415 | _ | 0.49 | _ | _ |
24.552 | Caryophyllene | 000087-44-5 | 1428 | 1423 | _ | 16.61 | 0.64 | 7.90 |
24.717 | (E)-β-Farnesene | 028973-97-9 | 1435 | 1445 | _ | _ | _ | 0.13 |
24.868 | Trans-α-Bergamotene | 013474-59-4 | 1441 | 1437 | _ | 2.50 | _ | 1.63 |
24.968 | α-Guaiene | 003691-12-1 | 1445 | 1439 | _ | 2.69 | _ | 1.37 |
25.378 | Humulene | 006753-98-6 | 1462 | 1457 | _ | 8.15 | 0.37 | 4.47 |
25.521 | 9-epi-trans-Caryophyllene | 068832-35-9 | 1468 | 1467 | _ | _ | _ | 0.63 |
25.900 | γ-Muurolene | 030021-74-0 | 1483 | 1480 | _ | _ | _ | 0.64 |
26.020 | α-Curcumene | 000644-30-4 | 1488 | 1480 | _ | 0.35 | _ | 0.14 |
26.091 | Naphthalene, 1,2,3,4,4a,5,6,7-octahydro-4a,8-dimethyl-2-(1-methylethenyl)-; | 103827-22-1 | 1491 | 1492 | _ | 0.63 | _ | _ |
26.143 | α-Selinene | 000473-13-2 | 1493 | 1493 | _ | 2.26 | _ | 1.69 |
26.166 | (+)-β-Selinene | 017066-67-0 | 1494 | 1492 | _ | _ | _ | 1.46 |
26.486 | α-Amorphene | 020085-19-2 | 1507 | 1485 | _ | _ | _ | 0.26 |
26.677 | δ-Guaiene | 003691-11-0 | 1515 | 1509 | _ | 5.65 | _ | 2.82 |
26.743 | β-Curcumenene | 028976-67-2 | 1518 | 1518 | _ | _ | _ | 0.19 |
26.824 | γ-Cadinene | 039029-41-9 | 1521 | 1513 | _ | _ | _ | 0.7 |
27.040 | (+)-δ-Cadinene | 000483-76-1 | 1530 | 1524 | _ | _ | _ | 0.87 |
27.337 | γ-Selinene | 000515-17-3 | 1542 | 1479 | _ | _ | 0.15 | 0.48 |
27.394 | (+/−)-β-cadinene | 005951-61-1 | 1544 | *** | _ | _ | 0.18 | _ |
27.505 | Selina-3,7(11)-diene | 006813-21-4 | 1549 | 1546 | _ | _ | 0.38 | _ |
27.511 | α-Calacorene | 021391-99-1 | 1549 | 1542 | _ | _ | _ | 0.23 |
27.759 | Sesquisabinene hydrate, cis | 058319-05-4 | 1559 | 1540 | _ | _ | _ | 0.29 |
28.011 | Nerolidol | 000142-50-7 | 1570 | 1570 | _ | 4.99 | 0.32 | 2.74 |
28.582 | Caryophyllene oxide | 001139-30-6 | 1593 | 1583 | 1.27 | 19.58 | 1.74 | 9.41 |
28.888 | Guaiol | 000489-86-1 | 1605 | 1600 | 0.64 | 0.37 | 0.66 | _ |
28.969 | Ledol | 000577-27-5 | 1609 | 1608 | _ | _ | 0.18 | 0.21 |
29.167 | Humulene-1,2-epoxide | 019888-34-7 | 1617 | 1603 | 0.45 | 5.78 | 0.81 | 3.32 |
29.409 | 7-epi-γ-Eudesmol | 117066-77-0 | 1627 | 1660 | 0.74 | 0.53 | 1.00 | _ |
29.506 | Isoaromadendrene epoxide | 1000159-36-6 | 1632 | 1590 | _ | _ | 0.35 | _ |
29.539 | Zingiberenol | 058334-55-7 | 1632 | 1611 | _ | _ | _ | 0.75 |
29.608 | Trans -α-Bisabolene epoxide | 1000131-71-1 | 1635 | 1586 | _ | 1.52 | _ | _ |
29.704 | Caryophylla-4(12),8(13)-dien-5-α-ol | 019431-79-9 | 1639 | 1637 | _ | _ | _ | 1.00 |
29.727 | Bicyclo [7.2.0]undecan-3-ol,11,11-dimethyl-4,8-bis(methylene)- | 079580-01-1 | 1640 | 1645 | _ | _ | _ | 1.50 |
29.774 | Caryophylla-4(12),8(13)-dien-5-β-ol | 019431-80-2 | 1642 | 1644 | _ | 2.33 | _ | _ |
30.034 | β-Eudesmol | 000473-15-4 | 1652 | 1652 | 0.34 | 0.50 | 0.50 | _ |
30.090 | 5-epi-7-epi-α-Eudesmol | 1000411-50-1 | 1655 | 1616 | 0.85 | _ | ||
30.177 | α-Eudesmol | 000473-16-5 | 1658 | 1643 | 0.39 | _ | _ | _ |
30.405 | Bulnesol | 022451-73-6 | 1668 | 1666 | _ | _ | 0.35 | _ |
30.772 | α-Bisabolol | 000515-69-5 | 1683 | 1685 | 2.01 | _ | 2.73 | _ |
31.046 | Juniper camphor | 000473-04-1 | 1694 | 1700 | _ | _ | 0.27 | _ |
32.401 | Myristic acid | 000544-63-8 | 1731 | 1763 | _ | _ | _ | 0.26 |
32.471 | Benzyl Benzoate | 000120-51-4 | 1734 | 1763 | _ | _ | _ | 0.53 |
34.081 | Hexahydrofarnesyl acetone | 000502-69-2 | 1848 | 1844 | _ | _ | 0.27 | 0.40 |
34.393 | Pentadecanoic acid | 001002-84-2 | 1834 | 1867 | _ | _ | 0.16 | 0.28 |
34.608 | Benzyl salicylate | 000118-58-1 | 1816 | 1860 | _ | _ | _ | 0.34 |
34.798 | n-Cetyl alcohol | 036653-82-4 | 1865 | 1880 | _ | _ | _ | 0.22 |
36.053 | Palmitoleic acid | 000373-49-9 | 1919 | 1941 | _ | _ | 0.29 | |
36.728 | Palmitic acid | 000057-10-3 | 1948 | 1962 | 1.45 | _ | 3.99 | 4.45 |
37.612 | Isopropyl palmitate | 000142-91-6 | 2026 | 2025 | _ | _ | _ | 0.37 |
39.243 | Phytol (trans) | 000150-86-7 | 2115 | 2116 | _ | _ | 0.30 | _ |
39.655 | Linoleic acid | 000060-33-3 | 2116 | 2113 | _ | _ | 0.22 | 0.60 |
39.684 | cis-13-Octadecenoic acid | 013126-39-1 | 2117 | 2178 | _ | _ | _ | 0.62 |
39.749 | cis-Vaccenic acid | 000506-17-2 | 2120 | 2117 | _ | _ | _ | 0.42 |
40.134 | Stearic acid | 000057-11-4 | 2139 | 2177 | _ | _ | _ | 0.16 |
44.143 | Tetracosane | 000646-31-1 | 2406 | 2400 | _ | _ | 2.91 | 1.75 |
44.679 | Cannabichromene | 020675-51-8 | 2418 | 2440 | _ | _ | _ | 0.17 |
44.825 | Cannabidiol | 013956-29-1 | 2426 | 2431 | 85.03 | _ | 27.16 | 0.25 |
45.163 | Cannabicoumaronone | 070474-97-4 | 2444 | 2490 | _ | _ | _ | 0.67 |
45.735 | Pentacosane | 000629-99-2 | 2508 | 2500 | _ | _ | 5.16 | _ |
46.095 | Dronabinol | 001972-08-3 | 2496 | 2470 | 2.86 | _ | 0.86 | 2.67 |
47.086 | Cannabinol | 000521-35-7 | 2550 | 2538 | 0.54 | _ | _ | 1.64 |
47.264 | Hexacosane | 000630-01-3 | 2609 | 2600 | _ | _ | 6.39 | _ |
48.739 | Heptacosane | 000593-49-7 | 2710 | 2700 | _ | _ | 7.50 | _ |
50.139 | Octacosane | 000630-02-4 | 2810 | 2800 | _ | _ | 6.55 | 3.37 |
50.500 | Squalene | 000111-02-4 | 2831 | 2833 | _ | _ | 0.31 | _ |
52.250 | 2-Methylnonacosane | 001560-75-4 | 2966 | 2958 | _ | _ | _ | 0.19 |
Total identified compounds | 95.72 | 77.29 | 73.63 | 66.63 | ||||
Total Monoterpenes (%) | _ | 1.63 | 0.37 | 1.15 | ||||
Total Sesquiterpenes (%) | 5.84 | 75.66 | 11.48 | 45.61 | ||||
Others (%) | 89.88 | _ | 61.78 | 19.87 |
Test Samples | IC50 ± SD (µg/mL) | |
---|---|---|
DPPH | H2O2 | |
LSO | 38.60 ± 0.48 *** | 29.26 ± 1.80 * |
DLSO | 21.68 ± 1.71 * | 26.20 ± 1.34 * |
CSO | 90.15 ± 8.32 *** | 68.66 ± 9.90 *** |
DCSO | 64.18 ± 10.20 *** | 55.06 ± 10.23 *** |
Ascorbic acid | 17.23 ± 0.13 | 21.43 ± 0.27 |
Sl. No. | Compound Name | Binding Affinity (Kcal/mol) |
---|---|---|
1. | Linalool | −6.5 |
2. | Terpineol | −5.5 |
3. | Caryophyllene | −5.8 |
4. | Humulene | −6.1 |
5. | γ-Selinene | −4.9 |
6. | (+/−)-β-cadinene | −4.5 |
7. | Selina-3,7(11)-diene | −5.7 |
8. | Nerolidol | −4.6 |
9. | Caryophyllene oxide | −4.2 |
10. | Guaiol | −4.2 |
11. | Humulene-1,2-epoxide | −4.3 |
12. | 7-epi-γ-Eudesmol | −5.1 |
13. | β-Eudesmol | −5.5 |
14. | 5-epi-7-epi-α-Eudesmol | −5.3 |
15. | α-Eudesmol | −6.2 |
16. | Bulnesol | −5.1 |
17. | α-Bisabolol | −5.2 |
18. | Juniper camphor | −4.3 |
19. | Hexahydrofarnesyl acetone | −4.7 |
20. | Pentadecanoic acid | −4.1 |
21. | Palmitic acid | −4.3 |
22. | Phytol (trans) | −4.0 |
23. | Linoleic acid | −3.9 |
24. | Tetracosane | −3.8 |
25. | Cannabidiol | −8.5 |
26. | Pentacosane | −4.1 |
27. | Dronabinol | −4.8 |
28. | Cannabinol | −9.7 |
29. | Hexacosane | −4.6 |
30. | Heptacosane | −5.7 |
31. | Octacosane | −5.1 |
32. | Squalene | −4.8 |
Sl. No. | Compound Name | Binding Affinity (Kcal/mol) |
---|---|---|
1. | α-Pinene | −7.0 |
2. | β-Myrcene | −6.4 |
3. | D-Limonene | −7.1 |
4. | β-cis-Ocimene | −6.5 |
5. | Fenchol | −7.0 |
6. | Dodecane | −6.0 |
7. | Tridecane | −6.3 |
8. | α-Cubebene | −8.3 |
9. | Isocaryophyllene | −8.2 |
10. | Cis-α-Bergamotene | −8.0 |
11. | (E)-β-Farnesene | −7.5 |
12. | Trans-α-Bergamotene | −8.2 |
13. | α-Guaiene | −8.0 |
14. | 9-epi-trans-Caryophyllene | −7.7 |
15. | γ-Muurolene | −7.8 |
16. | α-Curcumene | −8.0 |
17. | Naphthalene, 1,2,3,4,4a,5,6,7-octahydro-4a,8-dimethyl-2-(1-methylethenyl)- | −7.8 |
18. | α-Selinene | −7.9 |
19. | (+)-β-Selinene | −6.5 |
20. | α-Amorphene | −7.6 |
21. | δ-Guaiene | −8.4 |
22. | β-Curcumenene | −8.0 |
23. | γ-Cadinene | −7.9 |
24. | (+)-δ-Cadinene | −7.1 |
25. | α-Calacorene | −7.8 |
26. | Sesquisabinene hydrate, cis | −7.8 |
27. | Zingiberenol | −7.7 |
28. | Trans -α-Bisabolene epoxide | −7.5 |
29. | Caryophylla-4(12),8(13)-dien-5-α-ol | −8.1 |
30. | Bicyclo [7.2.0]undecan-3-ol,11,11-dimethyl-4,8-bis(methylene)- | −8.2 |
31. | Caryophylla-4(12),8(13)-dien-5-β-ol | −7.2 |
32. | Myristic acid | −6.3 |
33. | Benzyl Benzoate | −8.3 |
34. | n-Cetyl alcohol | −6.1 |
35. | Palmitoleic acid | −6.9 |
36. | Isopropyl palmitate | −6.5 |
37. | cis-13-Octadecenoic acid | −6.2 |
38. | cis-Vaccenic acid | −6.7 |
39. | Stearic acid | −6.4 |
40. | Cannabichromene | −8.8 |
41. | Cannabicoumaronone | −8.1 |
42. | 2-Methylnonacosane | −7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odieka, A.E.; Oriola, A.O.; Miya, G.M.; Kar, P.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Madliwa, T.; Oyedeji, A.O. Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa. Int. J. Mol. Sci. 2025, 26, 8552. https://doi.org/10.3390/ijms26178552
Odieka AE, Oriola AO, Miya GM, Kar P, Oyedeji OO, Gondwe M, Hosu YS, Madliwa T, Oyedeji AO. Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa. International Journal of Molecular Sciences. 2025; 26(17):8552. https://doi.org/10.3390/ijms26178552
Chicago/Turabian StyleOdieka, Anwuli E., Ayodeji O. Oriola, Gugulethu M. Miya, Pallab Kar, Opeoluwa O. Oyedeji, Mavuto Gondwe, Yiseyon S. Hosu, Thami Madliwa, and Adebola O. Oyedeji. 2025. "Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa" International Journal of Molecular Sciences 26, no. 17: 8552. https://doi.org/10.3390/ijms26178552
APA StyleOdieka, A. E., Oriola, A. O., Miya, G. M., Kar, P., Oyedeji, O. O., Gondwe, M., Hosu, Y. S., Madliwa, T., & Oyedeji, A. O. (2025). Chemical Composition and Antioxidant Activity of the Stembark Essential Oils of Two Cannabis sativa L. Cultivars from Komga, South Africa. International Journal of Molecular Sciences, 26(17), 8552. https://doi.org/10.3390/ijms26178552