IL-33 as a Marker of Poor Early Response in Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy
Abstract
1. Introduction
2. Results
2.1. Demographic and Clinical Features of NET Patients
2.2. Laboratory Analyses of NET Patients
2.3. NET Patients with Disease Progression Had Elevated Systemic Level of IL-33
2.4. IL-33 Correlates with the Disease Progression
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Data Collection
4.3. Sampling
4.4. Evaluation
4.4.1. Determination of Hematological, Standard Biochemical Parameters, and Hematological/Biochemical Indices
4.4.2. Measurement of TNF-α, IL-4, IL-6, IL-10, IL-17, IL-33, IL-41, sST2, Galectin-1 and Galectin-3 in Sera
4.5. PRRT and Response
4.6. Statistical Analysis
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Modica, R.; Benevento, E.; Liccardi, A.; Cannavale, G.; Minotta, R.; DI Iasi, G.; Colao, A. Recent advances and future challenges in the diagnosis of neuroendocrine neoplasms. Minerva Endocrinol. 2024, 49, 158–174. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.; Kulke, M.; Jacene, H.; et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Santo, G.; Di Santo, G.; Virgolini, I. Peptide receptor radionuclide therapy of neuroendocrine tumors: Agonist, antagonist and alternatives. Semin. Nucl. Med. 2024, 54, 557–569. [Google Scholar] [CrossRef]
- Puliani, G.; Chiefari, A.; Mormando, M.; Bianchini, M.; Lauretta, R.; Appetecchia, M. New insights in PRRT: Lessons from 2021. Front. Endocrinol. 2022, 13, 861434. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef]
- Ohlendorf, F.; Werner, R.A.; Henkenberens, C.; Ross, T.L.; Christiansen, H.; Bengel, F.M.; Derlin, T. Predictive and prognostic impact of blood-based inflammatory biomarkers in patients with gastroenteropancreatic neuroendocrine tumors commencing peptide receptor radionuclide therapy. Diagnostics 2021, 11, 504. [Google Scholar] [CrossRef]
- Abou-Jokh Casas, E.; Martínez-Lago, N.; Mallón Araujo, M.C.; Cabezas Agrícola, J.M.; Nogareda Seoane, Z.; Cousillas Castiñeira, A.; Ruibal Morell, A.; Pubul Núñez, V. Role of systemic inflammatory factors in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) treated with peptide receptor radionuclide therapy (PRRT): From biology to theragnosis. Rev. Esp. Med. Nucl. Imagen Mol. (Engl. Ed.) 2023, 42, 156–162. [Google Scholar] [CrossRef]
- Satapathy, S.; Bhattacharya, A.; Sood, A.; Kapoor, R.; Gupta, R.; Sood, A.; Sharma, P.; Khosla, D.; Mittal, B.R. Hematological markers as predictors of treatment outcomes with Lutetium 177 (177Lu)-DOTATATE in patients with advanced neuroendocrine tumors. Cancer Biother. Radiopharm. 2022, 37, 23–29. [Google Scholar] [CrossRef]
- Fournié, J.J.; Poupot, M. The Pro-tumorigenic IL-33 Involved in Antitumor Immunity: A Yin and Yang Cytokine. Front. Immunol. 2018, 9, 2506. [Google Scholar] [CrossRef]
- Bergis, D.; Kassis, V.; Ranglack, A.; Koeberle, V.; Piiper, A.; Kronenberger, B.; Zeuzem, S.; Waidmann, O.; Radeke, H.H. High Serum Levels of the Interleukin-33 Receptor Soluble ST2 as a Negative Prognostic Factor in Hepatocellular Carcinoma. Transl. Oncol. 2013, 6, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.M.; Minaya, M.K.; Vaish, V.; Peña, M.M.O. The Role of IL-33/ST2 Pathway in Tumorigenesis. Int. J. Mol. Sci. 2018, 19, 2676. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.R.; Sosman, J.A.; Zhang, B. The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers 2021, 13, 3281. [Google Scholar] [CrossRef]
- Kwaśniak, K.; Czarnik-Kwaśniak, J.; Maziarz, A.; Aebisher, D.; Zielińska, K.; Karczma-rek-Borowska, B.; Tabarkiewicz, J. Scientific reports concerning the impact of interleu-kin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent. Eur. J. Immunol. 2019, 44, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Vukomanovic, V.; Nedic, K.V.; Radojevic, M.Z.; Dagovic, A.; Milosavljevic, N.; Markovic, M.; Ignjatovic, V.; Simic Vukomanovic, I.; Djukic, S.; Sreckovic, M.; et al. Predicting the survival probability of functional neuroendocrine tumors treated with peptide receptor radionuclide therapy: Serbian experience. Front. Endocrinol. 2024, 14, 1270421. [Google Scholar] [CrossRef]
- Theiler, D.; Cattaneo, M.; Dierickx, L.O.; Igaz, P.; Grozinsky-Glasberg, S.; Bournaud, C.; O’Dorisio, T.; O’Dorisio, M.S.; Wild, D.; Christ, E.; et al. Safety and efficacy of peptide-receptor radionuclide therapy in elderly neuroendocrine tumor patients. Cancers 2021, 13, 6290. [Google Scholar] [CrossRef]
- Mogl, M.T.; Dobrindt, E.M.; Buschermöhle, J.; Bures, C.; Pratschke, J.; Amthauer, H.; Wetz, C.; Jann, H. Influence of gender on therapy and outcome of neuroendocrine tumors of gastroenteropancreatic origin: A single-center analysis. Visc. Med. 2020, 36, 20–27. [Google Scholar] [CrossRef]
- Swiha, M.M.; Sutherland, D.E.K.; Sistani, G.; Khatami, A.; Abazid, R.M.; Mujoomdar, A.; Wiseman, D.P.; Romsa, J.G.; Reid, R.H.; Laidley, D.T. Survival predictors of 177Lu-Dotatate peptide receptor radionuclide therapy (PRRT) in patients with progressive well-differentiated neuroendocrine tumors (NETS). J. Cancer Res. Clin. Oncol. 2022, 148, 225–236. [Google Scholar] [CrossRef]
- Ertan, K.; Kara, B.; Isik Disci, S.; Vatansev, H.; Koksal, Y. The importance of systemic inflammatory response index, systemic immune-inflammation index, and hemoglobin-albumin-lymphocytes-platelets (HALP) score in children with cancer. Iran. J. Pediatr. 2021, 31, e118121. [Google Scholar] [CrossRef]
- Modica, R.; Benevento, E.; Altieri, B.; Minotta, R.; Liccardi, A.; Cannavale, G.; Di Iasi, G.; Colao, A. Role of Bone Metastases in Lung Neuroendocrine Neoplasms: Clinical Presentation, Treatment and Impact on Prognosis. Int. J. Mol. Sci. 2024, 25, 8957. [Google Scholar] [CrossRef]
- Ottaiano, A.; Facchini, B.A.; Iacovino, M.; Santorsola, M.; Facchini, S.; Di Mauro, G.; Toscano, E.; Montopoli, M.; Di Mauro, A.; Quagliariello, V.; et al. Impact of vitamin D levels on progression-free survival and response to neoadjuvant chemotherapy in breast cancer patients: A systematic review and meta-analysis. Cancers 2024, 16, 4206. [Google Scholar] [CrossRef]
- Botros, M.; Sikaris, K.A. The de Ritis ratio: The test of time. Clin. Biochem. Rev. 2013, 34, 117–130. [Google Scholar] [PubMed]
- Lofthus, D.M.; Stevens, S.R.; Armstrong, P.W.; Granger, C.B.; Mahaffey, K.W. Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coron. Artery Dis. 2012, 23, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.P.; Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, J.M.; Nelson, K.K.; Clem, B.F.; Lane, A.N.; Arumugam, S.; Simmons, A.; Eaton, J.W.; Telang, S.; Chesney, J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 2008, 10, R84. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, F.; Xia, X.; Guo, X. Prognostic value of alkaline phosphatase and bone-specific alkaline phosphatase in breast cancer: A systematic review and meta-analysis. Int. J. Biol. Markers 2023, 38, 25–36. [Google Scholar] [CrossRef]
- Mori, K.; Janisch, F.; Parizi, M.K.; Mostafaei, H.; Lysenko, I.; Enikeev, D.V.; Kimura, S.; Egawa, S.; Shariat, S.F. Prognostic value of alkaline phosphatase in hormone-sensitive prostate cancer: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2020, 25, 247–257. [Google Scholar] [CrossRef]
- Sorbye, H.; Hjortland, G.O.; Vestermark, L.W.; Ladekarl, M.; Svensson, J.; Sundlöv, A.; Janson, E.T.; Garresori, H.; Hofsli, E.; Kersten, C.; et al. Characteristics and treatment outcome in a prospective cohort of 639 advanced high-grade digestive neuroendocrine neoplasms (NET G3 and NEC). The NORDIC NEC 2 study. Br. J. Cancer 2025, 133, 316–324. [Google Scholar] [CrossRef]
- Kalligeros, M.; Diamantopoulos, L.; Toumpanakis, C. Biomarkers in small intestine NETs and carcinoid heart disease: A comprehensive review. Biology 2021, 10, 950. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Cang, H.; Guo, B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 2019, 8, 4709–4721. [Google Scholar] [CrossRef]
- Qiao, J.; Wu, Y.W.; Wang, Y.Y.; Huang, J.J.; Shan, P.F. The role of immune cells phenotype in neuroendocrine tumors development. Discov. Oncol. 2025, 16, 993. [Google Scholar] [CrossRef]
- Geisler, L.; Hellberg, T.; Lambrecht, J.; Jann, H.; Knorr, J.; Eschrich, J.; Loosen, S.H.; Wree, A.; Hammerich, L.; Krieg, A.; et al. Inflammatory Cytokines Associated with Diagnosis, Tumor Grade and Prognosis in Patients with Neuroendocrine Tumors. J. Clin. Med. 2022, 11, 6191. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Yagi-Nakanishi, S.; Nakanishi, Y.; Kondo, S.; Tsuji, A.; Endo, K.; Wakisaka, N.; Murono, S.; Yoshizaki, T. Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Auris Nasus Larynx 2014, 41, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022, 156, 155891. [Google Scholar] [CrossRef]
- Milosavljevic, M.Z.; Jovanovic, I.P.; Pejnovic, N.N.; Mitrovic, S.L.; Arsenijevic, N.N.; Simovic Markovic, B.J.; Lukic, M.L. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget 2016, 7, 18106–18115. [Google Scholar] [CrossRef]
- Cui, G.; Florholmen, J. Polarization of cytokine profile from Th1 into Th2 along colorectal adenoma-carcinoma sequence: Implications for the biotherapeutic target? Inflamm. Allergy Drug Targets 2008, 7, 94–97. [Google Scholar] [CrossRef]
- Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and Regulation of TH Cells: A Balancing Act for Cancer Immunotherapy. Front. Immunol. 2021, 12, 669474. [Google Scholar] [CrossRef]
- Shen, J.X.; Liu, J.; Zhang, G.J. Interleukin-33 in Malignancies: Friends or Foes? Front. Immunol. 2018, 9, 3051. [Google Scholar] [CrossRef]
- Ameri, A.H.; Moradi Tuchayi, S.; Zaalberg, A.; Park, J.H.; Ngo, K.H.; Li, T.; Lopez, E.; Colonna, M.; Lee, R.T.; Mino-Kenudson, M.; et al. IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc. Natl. Acad. Sci. USA 2019, 116, 2646–2651. [Google Scholar] [CrossRef]
- Alim, L.F.; Keane, C.; Souza-Fonseca-Guimaraes, F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr. Opin. Immunol. 2024, 86, 102409. [Google Scholar] [CrossRef]
- Jovanovic, I.; Radosavljevic, G.; Mitrovic, M.; Juranic, V.L.; McKenzie, A.N.; Arsenijevic, N.; Jonjic, S.; Lukic, M.L. ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur. J. Immunol. 2011, 41, 1902–1912. [Google Scholar] [CrossRef]
- Jovanovic, I.P.; Pejnovic, N.N.; Radosavljevic, G.D.; Pantic, J.M.; Milovanovic, M.Z.; Arsenijevic, N.N.; Lukic, M.L. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer 2014, 134, 1669–1682. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Bu, X.; Han, Y.; Shan, S.; Ren, T.; Song, W. IL-33 signaling fuels outgrowth and metastasis of human lung cancer. Biochem. Biophys. Res. Commun. 2016, 479, 461–468. [Google Scholar] [CrossRef]
- Liang, W.; Ferrara, N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunol. Res. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- De la Fuente, M.; MacDonald, T.T.; Hermoso, M.A. The IL-33/ST2 axis: Role in health and disease. Cytokine Growth Factor Rev. 2015, 26, 615–623. [Google Scholar] [CrossRef]
- Akimoto, M.; Maruyama, R.; Takamaru, H.; Ochiya, T.; Takenaga, K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 2016, 7, 13589. [Google Scholar] [CrossRef] [PubMed]
- Öberg, K. Management of functional neuroendocrine tumors of the pancreas. Gland Surg. 2018, 7, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Huszno, J.; Kolosza, Z. Prognostic value of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratio in breast cancer patients. Oncol. Lett. 2019, 18, 6275–6283. [Google Scholar] [PubMed]
- Fang, Y.; Zheng, T.; Zhang, C. Prognostic role of the C-reactive protein/albumin ratio in patients with gynecological cancers: A meta-analysis. Front. Oncol. 2021, 11, 737155. [Google Scholar] [CrossRef]
- Fukui-Kawaura, S.; Kawahara, T.; Araki, Y.; Nishimura, R.; Uemura, K.; Namura, K.; Mizuno, N.; Yao, M.; Uemura, H.; Ikeda, I. A higher De Ritis ratio (AST/ALT) is a risk factor for progression in high-risk non-muscle invasive bladder cancer. Oncotarget 2021, 12, 917–922. [Google Scholar] [CrossRef]
- Jovanovic, M.; Simovic Markovic, B.; Gajovic, N.; Jurisevic, M.; Djukic, A.; Jovanovic, I.; Arsenijevic, N.; Lukic, A.; Zdravkovic, N. Metabolic syndrome attenuates ulcerative colitis: Correlation with interleukin-10 and galectin-3 expression. World J. Gastroenterol. 2019, 25, 6465–6482. [Google Scholar] [CrossRef]
- Wetz, C.; Ruhwedel, T.; Rogasch, J.M.M.; Steinhagen, P.R.; Bolduan, F.; Amthauer, H.; Schatka, I. To perform, or not to perform interim PET: Questioning the impact of midtherapy evaluation during PRRT in GEP-NET patients. Clin. Nucl. Med. 2025, 50, 19–24. [Google Scholar] [CrossRef]
Variables | Characteristic | Responders (n = 37) | Non-Responders (n = 14) | p-Value * |
---|---|---|---|---|
Age (y) | 58.4 ± 2.1 | 56.9 ± 2.6 | 0.453 § | |
Sex | Female | 19 (51.4%) | 10 (71.4%) | 0.255 £ |
Male | 18 (48.6%) | 4 (28.6%) | ||
Performance status (ECOG) | 0 | 28 (75.7%) | 11 (78.6%) | 0.828 £ |
1 | 9 (24.3%) | 3 (21.4%) | ||
Location of primary tumor | GEP-NETs | 25 (67.6%) | 12 (85.7%) | 0.366 £ |
Unknown primary NETs | 7 (18.9%) | 0 (0%) | ||
Lung | 3 (8.1%) | 1 (7.1%) | ||
Others | 2 (5.4%) | 1 (7.1%) | ||
Ki-67 (%) | 17.3 ± 2.1 | 10.8 ± 2.1 | 0.076 ¥ | |
Grade | G1/TC | 4 (10.8%) | 1 (7.1%) | 0.405 £ |
G2/AC | 25 (67.6%) | 12 (85.7%) | ||
G3 | 8 (21.6%) | 1 (7.1%) | ||
Metastatic spread | Lymphonodal | 28 (75.7%) | 11 (78.6%) | 1.00 £ |
Hepatic | 34 (91.9%) | 13 (92.9%) | 1.00 £ | |
Osseous | 9 (24.3%) | 2 (14.3%) | 0.692 £ | |
Previous treatment | Surgery | 15 (40.5%) | 7 (50.0%) | 0.715 £ |
Chemotherapy/targeted molecular therapies | 10 (27.1%) | 3 (21.4%) | ||
No previous treatment | 12 (32.4%) | 4 (28.6%) | ||
Long-acting SSA | Octreotide LAR (30 mg every 4 weeks) | 6 (16.2%) | 3 (21.4%) | 0.762 £ |
Lanreotide (120 mg every 4 weeks) | 30 (81.1%) | 11 (78.6%) | ||
No | 1 (2.7%) | 0 (0%) | ||
Functionality | No | 15 (40.5%) | 6 (42.9%) | 1.00 £ |
Yes | 22 (59.5%) | 8 (57.1%) |
Laboratory Parameter | Before the 1st PRRT Cycle | Before the 2nd PRRT Cycle | ||||
---|---|---|---|---|---|---|
Responders | Non-Responders | p-Value * | Responders | Non-Responders | p-Value * | |
WBC (white blood cell count) (109/L) | 7.08 ± 0.39 | 5.37 ± 0.32 | 0.013 ¥ | 6.04 ± 0.32 | 4.83 ± 0.36 | 0.04 ¥ |
Absolute Neutrophil Count (109/L) | 4.45 ± 0.27 | 3.43 ± 0.32 | 0.037 § | 3.89 ± 0.18 | 3.04 ± 0.28 | 0.039 ¥ |
Absolute lymphocyte count (109/L) | 1.95 ± 0.16 | 1.40 ± 0.10 | 0.03 § | 1.51 ± 0.14 | 1.07 ± 0.07 | 0.03 § |
Absolute monocyte count (109/L) | 0.65 ± 0.06 | 0.39 ± 0.04 | 0.002 § | 0.56 ± 0.05 | 0.45 ± 0.10 | 0.029 § |
RBC (red blood cell count) (1012/L) | 4.47 ± 0.10 | 4.39 ± 0.12 | 0.479 ¥ | 4.32 ± 0.11 | 4.25 ± 0.14 | 0.792 ¥ |
Hemoglobin (g/L) | 132.73 ± 2.81 | 122.93 ± 4.55 | 0.065 ¥ | 130.16 ± 2.51 | 123.24 ± 4.60 | 0.213 ¥ |
Platelets (109/L) | 270.73 ± 15.53 | 216.38 ± 22.42 | 0.021 § | 257.73 ± 14.29 | 222.79 ± 45.86 | 0.014 § |
NLR | 3.55 ± 0.55 | 2.71 ± 0.40 | 0.527 § | 3.19 ± 0.37 | 3.10 ± 0.39 | 0.688 § |
PLR | 205.75 ± 32.16 | 174.80 ± 23.81 | 0.883 § | 225.61 ± 35.32 | 221.86 ± 58.65 | 0.673 § |
SIRI | 2.45 ± 0.57 | 1.11 ± 0.23 | 0.021 § | 1.76 ± 0.21 | 1.07 ± 0.18 | 0.049 § |
SII | 925.55 ± 121.03 | 495.62 ± 77.75 | 0.026 § | 821.69 ± 105.69 | 538.26 ± 78.59 | 0.049 § |
CRP (mg/L) | 6.80 ± 2.77 | 5.55 ± 2.66 | 0.499 § | 6.31 ± 1.69 | 5.72 ± 1.51 | 0.728 § |
Total protein (g/L) | 70.24 ± 0.97 | 72.00 ± 1.07 | 0.241 ¥ | 69.49 ± 1.17 | 70.00 ± 1.60 | 0.983 § |
Albumin (g/L) | 42.65 ± 0.70 | 42.36 ± 0.78 | 0.711 ¥ | 44.32 ± 0.80 | 42.86 ± 1.36 | 0.574 § |
CRP/Alb | 0.30 ± 0.12 | 0.26 ± 0.13 | 0.506 § | 0.14 ± 0.04 | 0.15 ± 0.04 | 0.738 § |
HALP score | 39.91 ± 3.77 | 36.58 ± 4.13 | 1.00 § | 35.25 ± 2.89 | 34.34 ± 4.15 | 0.916 ¥ |
AST (U/L) | 31.49 ± 2.97 | 30.36 ± 4.67 | 0.597 § | 30.54 ± 2.08 | 48.5 ± 8.41 | 0.039 § |
ALT (U/L) | 30.84 ± 3.90 | 30.50 ± 7.95 | 0.380 § | 40.81 ± 9.08 | 46.29 ± 12.73 | 0.792 § |
De Ritis ratio (AST/ALT) | 1.20 ± 0.07 | 1.28 ± 0.15 | 0.635 § | 1.17 ± 0.07 | 1.22 ± 0.15 | 0.975 ¥ |
GGT (U/L) | 72.43 ± 11.84 | 56.14 ± 18.99 | 0.160 § | 77.03 ± 11.68 | 136.43 ± 62.84 | 0.387 § |
ALP (U/L) | 100.81 ± 8.52 | 110.07 ± 16.28 | 0.435 § | 95.06 ± 7.59 | 185.75 ± 38.60 | 0.029 § |
LDH (U/L) | 415.81 ± 33.92 | 385.29 ± 31.99 | 0.941 § | 399.05 ± 24.19 | 398.00 ± 30.64 | 0.816 § |
Urea (mmol/L) | 5.43 ± 0.28 | 5.71 ± 0.53 | 0.907 § | 5.30 ± 0.25 | 6.19 ± 0.42 | 0.053 ¥ |
Creatinine (µmol/L) | 76.81 ± 2.48 | 88.84 ± 7.70 | 0.398 § | 76.05 ± 2.55 | 83.79 ± 7.52 | 0.650 ¥ |
eGFR (mL/min/1.73 m2) | 86.38 ± 3.11 | 74.36 ± 6.30 | 0.102 ¥ | 87.89 ± 3.20 | 81.76 ± 8.56 | 0.250 ¥ |
CgA (ng/mL) | 803.82 ± 157.21 | 1065.95 ± 593.78 | 0.399 § | 379.80 ± 82.92 | 1265.99 ± 562.86 | 0.036 § |
5HIAA (µmol/24 h) | 150.85 ± 49.74 | 197.47 ± 91.88 | 0.241 § | 86.35 ± 21.41 | 276.02 ± 106.66 | 0.03 § |
NSE (ng/mL) | 20.26 ± 8.78 | 18.31 ± 7.92 | 0.908 § | 12.08 ± 2.26 | 29.44 ± 16.06 | 0.250 § |
Vitamin D (nmol/L) | 61.27 ± 4.81 | 40.83 ± 5.39 | 0.037 § | 72.26 ± 5.68 | 48.28 ± 5.79 | 0.029 § |
Spearman’s Rho | p-Value * | ||
---|---|---|---|
IL-33 | IL-4 | 0.747 | 0.001 |
Disease progression | 0.293 | 0.037 | |
Neutrophil Count % | −0.287 | 0.041 | |
sST2 | Absolute Neutrophil Count | 0.319 | 0.022 |
Triglycerides | −0.277 | 0.049 | |
Lipase | −0.439 | 0.001 | |
Gamma-glutamyl transferase | 0.300 | 0.033 |
Univariable OR | OR (95%CI) | p-Value * | |
---|---|---|---|
Age (>65) | 1.522 | (0.4–5.791) | 0.538 |
Sex (male) | 2.368 | 0.628–8.926 | 0.203 |
Location of primary tumor (non-GEP-NETs) | 2.880 | 0.554–14.960 | 0.208 |
Ki67(>10%) | 4.255 | 1.159–15.625 | 0.029 |
CgA (>600 ng/mL) | 1.760 | 0.413–7.506 | 0.445 |
NSE (>15 ng/mL) | 1.145 | 0.297–4.424 | 0.844 |
Il/33 (>147 pg/mL) | 4.552 | 1.159–15.628 | 0.029 |
IL4 (pg/mL) | 1 | 1–1.01 | 0.145 |
sST2 (pg/mL) | 1 | 1–1.01 | 0.126 |
TNF (pg/mL) | 0.99 | 0.994–1.004 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuleta Nedic, K.; Gajovic, N.; Jovanovic, I.; Jurisevic, M.; Jovanovic, M.; Jakovljević, S.; Popovic, B.; Djordjevic, J.; Ignjatovic, V.; Vukomanovic, V. IL-33 as a Marker of Poor Early Response in Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy. Int. J. Mol. Sci. 2025, 26, 8526. https://doi.org/10.3390/ijms26178526
Vuleta Nedic K, Gajovic N, Jovanovic I, Jurisevic M, Jovanovic M, Jakovljević S, Popovic B, Djordjevic J, Ignjatovic V, Vukomanovic V. IL-33 as a Marker of Poor Early Response in Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy. International Journal of Molecular Sciences. 2025; 26(17):8526. https://doi.org/10.3390/ijms26178526
Chicago/Turabian StyleVuleta Nedic, Katarina, Nevena Gajovic, Ivan Jovanovic, Milena Jurisevic, Marina Jovanovic, Slobodan Jakovljević, Bojana Popovic, Jelena Djordjevic, Vesna Ignjatovic, and Vladimir Vukomanovic. 2025. "IL-33 as a Marker of Poor Early Response in Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy" International Journal of Molecular Sciences 26, no. 17: 8526. https://doi.org/10.3390/ijms26178526
APA StyleVuleta Nedic, K., Gajovic, N., Jovanovic, I., Jurisevic, M., Jovanovic, M., Jakovljević, S., Popovic, B., Djordjevic, J., Ignjatovic, V., & Vukomanovic, V. (2025). IL-33 as a Marker of Poor Early Response in Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy. International Journal of Molecular Sciences, 26(17), 8526. https://doi.org/10.3390/ijms26178526