Cauchao Berry (Amomyrtus luma) as a Promising Source of Bioactive Compounds: Optimized Extraction, Phytochemical Characterization, and Assessment of Antioxidant and Antidiabetic Potential
Abstract
1. Introduction
2. Results
2.1. Proximate Composition and Reducing Sugars
2.2. Dietary Fiber Content
2.3. Fatty Acids Profile and α-Tocopherol Content
2.4. RSM Method
2.5. Total Content of Phenolics, Flavonoids, and Anthocyanin
2.6. Antioxidant Potential
2.7. α-Glucosidase Activity
2.8. Phenolic Compound Profiles
3. Discussion
3.1. Proximal Composition, Reduces Sugar and Dietary Fiber
3.2. Fatty Acids Profile and α-Tocopherol Content
3.3. RSM Method
3.4. Total Content of Phenolics, Flavonoids, and Anthocyanin
3.5. Antioxidant Potential
3.6. α-Glucosidase Activity
3.7. Phenolics Compound Profile
4. Materials and Methods
4.1. Raw Material
4.2. Proximate Composition and Reducing Sugars
4.3. Dietary Fiber Content
4.4. Fatty Acids Profile and α-Tocopherols Content
4.5. Ultrasound/Solvent Extraction
4.6. Optimization of Extraction Method
4.7. Total Content of Phenolics, Flavonoids, and Anthocyanins
4.8. Antioxidant Potential
4.9. α-Glucosidase Activity
4.10. Phenolic Compound Profiles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, Functional Properties and Health-promoting Potential of Native South American Berries: A Review. J. Sci. Food Agric. 2021, 101, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; Do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Cordero, S.; Abello, L.; Gálvez, F. Plantas Silvestres Comestribles y Medicinales de Chile y Otras Partes Del Mundo; Corporación Chilena de la Madera: Concepción, Chile, 2017. [Google Scholar]
- Falkenberg, S.S.; Tarnow, I.; Guzman, A.; Mølgaard, P.; Simonsen, H.T. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation. Evid.-Based Complement. Altern. Med. 2012, 2012, 647620. [Google Scholar] [CrossRef]
- Weyerstahl, P.; Marschall, H.; Landrum, L.R. Constituents of the Leaf Extract of Amomyrtus meli (R. A. Philippi) Legrand et Kausel, Amomyrtus luma (Molina) Legrand et Kausel and of Amomyrtella guili (Speg.) Kausel. Flavour. Fragr. J. 1992, 7, 247–251. [Google Scholar] [CrossRef]
- Archaina, D.; Leiva, G.; Salvatori, D.; Schebor, C. Physical and Functional Properties of Spray-Dried Powders from Blackcurrant Juice and Extracts Obtained from the Waste of Juice Processing. Food Sci. Technol. Int. 2018, 24, 78–86. [Google Scholar] [CrossRef]
- Gagneten, M.; Corfield, R.; Mattson, M.G.; Sozzi, A.; Leiva, G.; Salvatori, D.; Schebor, C. Spray-Dried Powders from Berries Extracts Obtained upon Several Processing Steps to Improve the Bioactive Components Content. Powder Technol. 2019, 342, 1008–1015. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; González De Peredo, A.V.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barbero, G.F.; Espada-Bellido, E. Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Bouska, L. Optimization of the Ultrasound-Assisted Extraction of Polyphenols from Aronia and Grapes. Food Chem. 2022, 386, 132703. [Google Scholar] [CrossRef]
- López, J.; Vera, C.; Bustos, R.; Florez-Mendez, J. Native Berries of Chile: A Comprehensive Review on Nutritional Aspects, Functional Properties, and Potential Health Benefits. Food Meas. 2021, 15, 1139–1160. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Ah-Hen, K.; Vega-Gálvez, A.; Zura-Bravo, L. Effect of High Hydrostatic Pressure on Rheological and Thermophysical Properties of Murtilla (Ugni molinae Turcz) Berries. J. Food Sci. Technol. 2016, 53, 2725–2732. [Google Scholar] [CrossRef]
- Al Hasani, S.; Al-Attabi, Z.; Waly, M.; Al-Habsi, N.; Al-Subhi, L.; Shafiur Rahman, M. Polyphenol and Flavonoid Stability of Wild Blueberry (Sideroxylon mascatense) during Air- and Freeze-Drying and Storage Stability as a Function of Temperature. Foods 2023, 12, 871. [Google Scholar] [CrossRef]
- Issis, Q.-F.; Antonio, V.-G.; Elsa, U.; Valeria, V.; Nicole, C.; Jacqueline, P. Vacuum Drying Application to Maqui (Aristotelia chilensis [Mol] Stuntz) Berry: Weibull Distribution for Process Modelling and Quality Parameters. J. Food Sci. Technol. 2019, 56, 1899–1908. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Quezada, A.; Bernardo, Y.; Moncada, M.; Zúñiga, E.; Wilkens, M.; Giordano, A.; Nesic, A.; Delgado, N. Chemical Composition and Antibacterial Activity of Red Murta (Ugni molinae Turcz.) Seeds: An Undervalued Chilean Resource. Food Meas. 2020, 14, 1810–1821. [Google Scholar] [CrossRef]
- Gómez-Pérez, L.S.; Moraga, N.; Ah-Hen, K.S.; Rodríguez, A.; Vega-Gálvez, A. Dietary Fibre in Processed Murta (Ugni molinae Turcz) Berries: Bioactive Components and Antioxidant Capacity. J. Food Sci. Technol. 2022, 59, 3093–3101. [Google Scholar] [CrossRef]
- Bederska-Łojewska, D.; Pieszka, M.; Marzec, A.; Rudzińska, M.; Grygier, A.; Siger, A.; Cieślik-Boczula, K.; Orczewska-Dudek, S.; Migdał, W. Physicochemical Properties, Fatty Acid Composition, Volatile Compounds of Blueberries, Cranberries, Raspberries, and Cuckooflower Seeds Obtained Using Sonication Method. Molecules 2021, 26, 7446. [Google Scholar] [CrossRef]
- Waehler, R. Fatty Acids: Facts vs. Fiction. Int. J. Vitam. Nutr. Res. 2023, 93, 268–288. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary Linoleic Acid and Human Health: Focus on Cardiovascular and Cardiometabolic Effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Murru, E.; Manca, C.; Carta, G.; Banni, S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front. Nutr. 2022, 9, 861664. [Google Scholar] [CrossRef]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- López, J.; Shun Ah-Hen, K.; Vega-Gálvez, A.; Morales, A.; García-Segovia, P.; Uribe, E. Effects of Drying Methods on Quality Attributes of Murta (Ugni molinae Turcz) Berries: Bioactivity, Nutritional Aspects, Texture Profile, Microstructure and Functional Properties. J. Food Process Eng. 2017, 40, e12511. [Google Scholar] [CrossRef]
- Quispe-Fuentes, I.; Vega-Gálvez, A.; Aranda, M.; Poblete, J.; Pasten, A.; Bilbao-Sainz, C.; Wood, D.; McHugh, T.; Delporte, C. Effects of Drying Processes on Composition, Microstructure and Health Aspects from Maqui Berries. J. Food Sci. Technol. 2020, 57, 2241–2250. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of Polyphenols and Their Properties. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–44. ISBN 978-0-12-813572-3. [Google Scholar]
- Rodríguez, K.; Ah-Hen, K.S.; Vega-Gálvez, A.; Vásquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in Bioactive Components and Antioxidant Capacity of Maqui, Aristotelia chilensis [Mol] Stuntz, Berries during Drying. LWT 2016, 65, 537–542. [Google Scholar] [CrossRef]
- López, J.; Vega-Gálvez, A.; Ah-Hen, K.S.; Rodríguez, A.; Quispe-Fuentes, I.; Delporte, C.; Valenzuela-Barra, G.; Arancibia, Y.; Zambrano, A. Evaluation of the Antioxidant, Anti-Inflammatory, and Anti-Tumoral Properties of Bioactive Compounds Extracted from Murta Berries (Ugni molinae T.) Dried by Different Methods. Front. Plant Sci. 2023, 14, 1095179. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Galvez, A.; Pasten, A.; Ah-Hen, K.S.; Mejias, N.; Sepúlveda, L.; Poblete, J.; Gomez-Perez, L.S. Drying: A Practical Technology for Blueberries (Vaccinium corymbosum L.)—Processes and Their Effects on Selected Health-Promoting Properties. Antioxidants 2024, 13, 1554. [Google Scholar] [CrossRef]
- Lutz, M.; Hernández, J.; Henríquez, C. Phenolic Content and Antioxidant Capacity in Fresh and Dry Fruits and Vegetables Grown in Chile. CyTA J. Food 2015, 13, 541–547. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A.; et al. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and In Vivo Antidiabetic Activity of Withania frutescens L. Foliar Extract. Molecules 2021, 26, 293. [Google Scholar] [CrossRef] [PubMed]
- Wattanathorn, J.; Kawvised, S.; Thukham-mee, W. Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. Oxid. Med. Cell. Longev. 2019, 2019, 5360560. [Google Scholar] [CrossRef]
- Escobar-Beiza, N.; Pérez-Correa, J.R.; Franco, W. Fermentation of Murta (Ugni molinae) Juice: Effect on Antioxidant Activity and Control of Enzymes Associated with Glucose Assimilation. Int. J. Mol. Sci. 2023, 24, 15197. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Khatri, D.; Chhetri, S.B.B. Reducing Sugar, Total Phenolic Content, and Antioxidant Potential of Nepalese Plants. BioMed Res. Int. 2020, 2020, 7296859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, D.; Ding, Y.; Zhang, J.; Ding, Y.; Lyu, F. Effect and Mechanism of Insoluble Dietary Fiber on Postprandial Blood Sugar Regulation. Trends Food Sci. Technol. 2024, 146, 104354. [Google Scholar] [CrossRef]
- Bai, X.; He, Y.; Quan, B.; Xia, T.; Zhang, X.; Wang, Y.; Zheng, Y.; Wang, M. Physicochemical Properties, Structure, and Ameliorative Effects of Insoluble Dietary Fiber from Tea on Slow Transit Constipation. Food Chem. X 2022, 14, 100340. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Alarcon-Gil, J.; Sierra-Magro, A.; Morales-Garcia, J.A.; Sanz-SanCristobal, M.; Alonso-Gil, S.; Cortes-Canteli, M.; Niso-Santano, M.; Martínez-Chacón, G.; Fuentes, J.M.; Santos, A.; et al. Neuroprotective and Anti-Inflammatory Effects of Linoleic Acid in Models of Parkinson’s Disease: The Implication of Lipid Droplets and Lipophagy. Cells 2022, 11, 2297. [Google Scholar] [CrossRef]
- Froyen, E.; Burns-Whitmore, B. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients 2020, 12, 2329. [Google Scholar] [CrossRef]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de La Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Pal, P.K.; Chattopadhyay, A.; Bandyopadhyay, D. Oleic Acid Protects against Cadmium Induced Cardiac and Hepatic Tissue Injury in Male Wistar Rats: A Mechanistic Study. Life Sci. 2020, 244, 117324. [Google Scholar] [CrossRef] [PubMed]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, C.; Bao, N. Molecular Mechanism of Palmitic Acid and Its Derivatives in Tumor Progression. Front. Oncol. 2023, 13, 1224125. [Google Scholar] [CrossRef]
- Engwa, G.A.; Nweke, F.N.; Nkeh-Chungag, B.N. Free Radicals, Oxidative Stress-Related Diseases and Antioxidant Supplementation. Altern. Ther. Health Med. 2022, 28, 114–128. [Google Scholar]
- Sozen, E.; Demirel, T.; Ozer, N.K. Vitamin E: Regulatory Role in the Cardiovascular System. IUBMB Life 2019, 71, 507–515. [Google Scholar] [CrossRef]
- Pelczarski, M.; Wolaniuk, S.; Zaborska, M.; Sadowski, J.; Sztangreciak-Lehun, A.; Bułdak, R.J. The Role of α-Tocopherol in the Prevention and Treatment of Alzheimer’s Disease. Mol. Cell Biochem. 2025, 480, 3385–3398. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Tavan, M.; Hanachi, P.; De La Luz Cádiz-Gurrea, M.; Segura Carretero, A.; Mirjalili, M.H. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem. Res. 2024, 49, 306–326. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Futur. J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Ekalu, A.; Habila, J.D. Flavonoids: Isolation, Characterization, and Health Benefits. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 45. [Google Scholar] [CrossRef]
- Hasan, S.; Khatri, N.; Rahman, Z.N.; Menezes, A.A.; Martini, J.; Shehjar, F.; Mujeeb, N.; Shah, Z.A. Neuroprotective Potential of Flavonoids in Brain Disorders. Brain Sci. 2023, 13, 1258. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Leem, E.; Lee, J.M.; Kim, S.R. Control of Reactive Oxygen Species for the Prevention of Parkinson’s Disease: The Possible Application of Flavonoids. Antioxidants 2020, 9, 583. [Google Scholar] [CrossRef]
- Alam, M.A.; Islam, P.; Subhan, N.; Rahman, M.M.; Khan, F.; Burrows, G.E.; Nahar, L.; Sarker, S.D. Potential Health Benefits of Anthocyanins in Oxidative Stress Related Disorders. Phytochem. Rev. 2021, 20, 705–749. [Google Scholar] [CrossRef]
- Zaa, C.A.; Marcelo, Á.J.; An, Z.; Medina-Franco, J.L.; Velasco-Velázquez, M.A. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023, 13, 1598. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Athauda, D.; Evans, J.; Wernick, A.; Virdi, G.; Choi, M.L.; Lawton, M.; Vijiaratnam, N.; Girges, C.; Ben-Shlomo, Y.; Ismail, K.; et al. The Impact of Type 2 Diabetes in Parkinson’s Disease. Mov. Disord. 2022, 37, 1612–1623. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic Acid: A Review on Its Mechanisms of Anti-Inflammation, Disease Treatment, and Related Delivery Systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, B.; Zheng, Y.; Liu, X.; Rostyslav, P.; Finiuk, N.; Sik, A.; Stoika, R.; Liu, K.; Jin, M. Neuroprotective Effect of Chlorogenic Acid on Parkinson’s Disease like Symptoms through Boosting the Autophagy in Zebrafish. Eur. J. Pharmacol. 2023, 956, 175950. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.; Garg, S. Modeling Inhibitory Effects of Chlorogenic Acid on Amyloid Beta Aggregation. Ind. Eng. Chem. Res. 2024, 63, 7636–7645. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and Therapeutic Applications of Sinapic Acid—An Updated Review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef]
- Yasser, M.B.; Hagag, R.S.; El-Sayed, N.M.; Hazem, R.M. Sinapic Acid: A Brief Review of Its Therapeutic Potential and Molecular Targets in Parkinson’s Disease. Rec. Pharm. Biomed. Sci. 2025, 9, 1–7. [Google Scholar] [CrossRef]
- Prabhakar, P.; Ahmed, B.A.; Chidambaram, S.B.; Kumar, A.; Pandian, A. In Vitro Ameliorative Effects of Sinapic Acid on Parkinson Related Neurotoxicity in SHSY5Y Cell Lines. Int. J. Nutr. Pharmacol. Neurol. Dis. 2023, 13, 16–24. [Google Scholar] [CrossRef]
- Fredes, C.; Parada, A.; Aguirre, C.; Rojas, L.; Robert, P.; Bernales, M. We Only Collect What We Need: Women’s Experiences on Collecting Cauchao (Amomyrtus Luma Molina) in Food Systems of Extreme South Forests in Chile. Sustainability 2024, 16, 9460. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Chandra, M.; Probst, Y.; Price, W.; Kelso, C. Relative comparisons of extraction methods and solvent composition for Australian blueberry anthocyanins. J. Food Compos. Anal. 2022, 105, 104232. [Google Scholar] [CrossRef]
- Rodríguez, K.; Ah-Hen, K.; Vega-Gálvez, A.; López, J.; Quispe-Fuentes, I.; Lemus-Mondaca, R.; Gálvez-Ranilla, L. Changes in Bioactive Compounds and Antioxidant Activity during Convective Drying of Murta (Ugni molinae T.) Berries. Int. J. Food Sci. Technol. 2014, 49, 990–1000. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. Antioxidant Compound Contents and Antioxidant Activity before and after Cooking in Sweet and Bitter Chenopodium Quinoa Seeds. LWT-Food Sci. Technol. 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Souza, V.B.D.; Fujita, A.; Thomazini, M.; Da Silva, E.R.; Lucon, J.F.; Genovese, M.I.; Favaro-Trindade, C.S. Functional Properties and Stability of Spray-Dried Pigments from Bordo Grape (Vitis labrusca) Winemaking Pomace. Food Chem. 2014, 164, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Panya, A.; Figueroa-Espinoza, M.C. Antioxidant Activity of Protocatechuates Evaluated by DPPH, ORAC, and CAT Methods. Food Chem. 2016, 194, 749–757. [Google Scholar] [CrossRef]
- Uribe, E.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Zamorano, M.; Quispe-Fuentes, I.; Pasten, A.; Di Scala, K. Influence of Process Temperature on Drying Kinetics, Physicochemical Properties and Antioxidant Capacity of the Olive-Waste Cake. Food Chem. 2014, 147, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Fuentes, I.; Uribe, U.E.; Vega-Gálvez, A.; Poblete, G.J.; Olmos, C.A.; Pasten, C.A. Solar Drying of Flame Seedless (Vitis vinifera L.) Grape after Different Pretreatments: Characterization of Raisin’s Physicochemical and Functional Properties. Food Meas. 2023, 17, 2755–2766. [Google Scholar] [CrossRef]
- Martins, M.S.; Azevedo, R.; Alves, G.; Almeida, A.; De Pinho, P.G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R.; Gonçalves, A.C. Assessment of Chemical Composition of Blackberries and Mulberries from Covilhã Region, Portugal. J. Food Compos. Anal. 2025, 137, 106832. [Google Scholar] [CrossRef]
Parameters (g/100 g) | Fresh | Freeze-Dried |
---|---|---|
Moisture | 75.31 a ± 0.41 | 2.78 b ± 0.10 |
Fat | 2.15 b ± 0.15 | 9.15 a ± 0.16 |
Ash | 0.57 b ± 0.03 | 2.50 a ± 0.15 |
Crude protein | 1.73 b ± 0.17 | 7.15 a ± 0.23 |
Crude fiber | 3.94 b ± 0.67 | 15.25 a ± 0.50 |
Carbohydrates | 20.24 b ± 0.32 | 78.42 a ± 0.29 |
Reducing sugars | 7.71 b ± 0.42 | 39.82 a ± 1.58 |
Insoluble dietary fiber * | 34.78 a ± 1.73 | 34.26 a ± 2.55 |
Soluble dietary fiber * | 4.60 a ± 0.50 | 3.66 a ± 0.81 |
Total dietary fiber * | 39.37 a ± 2.23 | 37.92 a ± 3.36 |
Fatty Acids (g/100 g Fatty Acid) | Fresh | Freeze-Dried |
---|---|---|
C16:0 | 6.99 a ± 0.02 | 7.18 a ± 0.13 |
C18:0 | 2.62 b ± 0.04 | 2.71 a ± 0.02 |
C18:1n9c | 8.83 b ± 0.05 | 9.24 a ± 0.17 |
C18:2n6c | 80.29 a ± 0.06 | 79.44 b ± 0.03 |
C20:0 | 0.35 a ± 0.07 | 0.41 a ± 0.01 |
C20:1 | 0.92 a ± 0.06 | 1.02 a ± 0.04 |
α-tocopherol (µg/g) | 95.51 a ± 5.42 | 105.41 a ± 1.39 |
Factors | Coded Factor | Result | ||||
---|---|---|---|---|---|---|
Solvent (%) | Power (%) | Time (min) | X1 | X2 | X3 | DPPH (μmol TE/g d.m) |
90 | 80 | 25 | 0 | 1 | 1 | 185.89 |
50 | 60 | 35 | 1 | 0 | −1 | 248.70 |
70 | 40 | 35 | 1 | −1 | 0 | 246.87 |
50 | 40 | 25 | 0 | −1 | −1 | 254.67 |
90 | 60 | 35 | 1 | 0 | 1 | 170.16 |
90 | 60 | 15 | −1 | 0 | 1 | 169.52 |
70 | 60 | 25 | 0 | 0 | 0 | 261.32 |
90 | 40 | 25 | 0 | −1 | 1 | 191.53 |
70 | 60 | 25 | 0 | 0 | 0 | 237.68 |
50 | 60 | 15 | −1 | 0 | −1 | 205.62 |
50 | 80 | 25 | 0 | 1 | −1 | 277.65 |
70 | 60 | 25 | 0 | 0 | 0 | 243.76 |
70 | 60 | 25 | 0 | 0 | 0 | 218.70 |
70 | 80 | 15 | −1 | 1 | 0 | 222.84 |
70 | 40 | 15 | 0 | −1 | 0 | 254.89 |
70 | 80 | 35 | 1 | 1 | 0 | 246.09 |
70 | 60 | 25 | 0 | 0 | 0 | 251.31 |
Parameter | Value (Mean ± SD) |
---|---|
TPC (mg GAE/g d.m.) | 25.43 ± 0.85 |
TFC (mg QE/g d.m.) | 46.51 ± 1.38 |
TAC (mg cyanidin-3-glucoside/g d.m.) | 5.91 ± 0.40 |
DPPH (μmol TE/g d.m.) | 289.54 ± 9.05 |
ORAC (μmol TE/g d.m.) | 451.09 ± 6.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Perez, L.S.; Poblete, J.; García, V.; Vidal, R.L. Cauchao Berry (Amomyrtus luma) as a Promising Source of Bioactive Compounds: Optimized Extraction, Phytochemical Characterization, and Assessment of Antioxidant and Antidiabetic Potential. Int. J. Mol. Sci. 2025, 26, 8391. https://doi.org/10.3390/ijms26178391
Gomez-Perez LS, Poblete J, García V, Vidal RL. Cauchao Berry (Amomyrtus luma) as a Promising Source of Bioactive Compounds: Optimized Extraction, Phytochemical Characterization, and Assessment of Antioxidant and Antidiabetic Potential. International Journal of Molecular Sciences. 2025; 26(17):8391. https://doi.org/10.3390/ijms26178391
Chicago/Turabian StyleGomez-Perez, Luis S., Jacqueline Poblete, Vivian García, and René L. Vidal. 2025. "Cauchao Berry (Amomyrtus luma) as a Promising Source of Bioactive Compounds: Optimized Extraction, Phytochemical Characterization, and Assessment of Antioxidant and Antidiabetic Potential" International Journal of Molecular Sciences 26, no. 17: 8391. https://doi.org/10.3390/ijms26178391
APA StyleGomez-Perez, L. S., Poblete, J., García, V., & Vidal, R. L. (2025). Cauchao Berry (Amomyrtus luma) as a Promising Source of Bioactive Compounds: Optimized Extraction, Phytochemical Characterization, and Assessment of Antioxidant and Antidiabetic Potential. International Journal of Molecular Sciences, 26(17), 8391. https://doi.org/10.3390/ijms26178391